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Chapter 1

Intro

1.1 Linear programs

Lecture 1
May 2

Example 1.1.1. Suppose we are selling apples and bananas at a stand. Apples sell for $2 per
kilogram, and bananas sell for $1.5 per kilogram. Our stand holds up to 75 kilograms of fruits.
Also, there are only 4 square metres of shelf space. Each kilogram of apples/bananas takes up
roughly 0.08/0.05 square metres of shelf space, respectively. How much of each fruit should
we stock to maximize the total sales?

Solution. Let 𝑥1, 𝑥2 be weight of apples, bananas (kg). Define objective function max 2𝑥1 + 1.5𝑥2.
Add constraints 𝑥1 + 𝑥2 ≤ 75 for weight, 0.08𝑥1 + 0.05𝑥2 ≤ 4 for shelf space, and 𝑥1, 𝑥2 ≥ 0 for
common sense.

Summarize as a linear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear programlinear program:

max 2𝑥1 + 1.5𝑥2

subject to (s.t.) 𝑥1 + 𝑥2 ≤ 75
0.08𝑥1 + 0.05𝑥2 ≤ 4

𝑥1, 𝑥2 ≥ 0

Trial and error:

• (𝑥1, 𝑥2) = (30, 20) satisfies constraints (feasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasiblefeasible) with objective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective value 90
• (𝑥1, 𝑥2) = (31, 20) feasible with objective value 92
• (𝑥1, 𝑥2) = (50, 0) feasible with objective value 100
• (𝑥1, 𝑥2) = (81

3 , 662
3) feasible with objective value 1162

3 (claim without proof that this is
optimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimal)

N.B.: we take domain to be ℝ since we can take fractional parts of a kilogram of fruit

Plot feasible solutions:
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(81
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𝑥1

𝑥2

Bound by convex region defined by axes, 𝑥1 + 𝑥2 = 23, and 0.08𝑥1 + 0.05𝑥2 = 4 to give optimal
solution at vertex

Course overview

• Formulation/modelling: create mathematical programs from problems
• Solving linear programs: use simplex method to optimize
• Geometric interpretation: conceptualize linear programs and simplex method
• Integer programs: linear programs defined over ℤ
• Nonlinear programs: convex functions

Definition 1.1.2 (optimization problem)
Given a set of feasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible pointsfeasible points 𝐴 ⊆ ℝ𝑛 and 𝑓 ∶ 𝐴 → ℝ, find some 𝑥 ∈ 𝐴 that minimizes or
maximizes the objective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective valueobjective value 𝑓(𝑥).

Composed of decision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variablesdecision variables x ∈ ℝ𝑛, the objective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective functionobjective function max 𝑓(x) or min 𝑓(x), and some
constraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraintsconstraints of the form 𝑔𝑖(x) ≤ 𝑏𝑖

Definition 1.1.3 (affine function)
Function of the form 𝑓(x) = a𝑇x + 𝑏 = 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛 + 𝑏 for constants a and 𝑏

Definition 1.1.4 (linear function)
Affine function with 𝑏 = 0

Definition 1.1.5 (linear program)
An optimization problem with affine objective function 𝑓(x) and finitely many linear constraint
functions 𝑔𝑖(𝑥) ≥ 𝑏𝑖 (or ≤ 𝑏𝑖 or = 𝑏𝑖) with constant b.

N.B.: constraints cannot be strict inequalities
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1.2 LP Formulation

Example 1.2.1. A company makes 4 types of products, each requiring time on two different
machines and two types of labour. The amount of machine time and labour needed to produce
one unit of each product along with its sale price are summarized in the following table.

Product Machine 1 Machine 2 Skilled labour Unskilled labour Unit sale price
1 11 4 8 7 300
2 7 6 5 8 260
3 6 5 5 7 220
4 5 4 6 4 180

Each month, the company can use up to 700 hours on machine 1, and 500 hours on machine 2,
with no cost. The company can hire up to 600 hours of skilled labour at $8 per hour, and up
to 650 hours of unskilled labour at $6 per hour. How should the company operate to maximize
their monthly profit?

Solution. Let x ∈ ℝ4 be number of units of products, 𝑦𝑠 and 𝑦𝑢 be hours of labour hired

Let the objective function be max 300𝑥1 + 260𝑥2 + 220𝑥3 + 180𝑥4 − 8𝑦𝑠 − 6𝑦𝑢 (unit sale revenue
net of labour costs)

Let the constraints be 11𝑥1 + 7𝑥2 + 6𝑥3 + 5𝑥4 ≤ 700 (machine 1), 4𝑥1 + 6𝑥2 + 5𝑥3 + 4𝑥4 ≤ 500
(machine 2), 8𝑥1 + 5𝑥2 + 5𝑥3 + 6𝑥4 = 𝑦𝑠, 7𝑥1 + 8𝑥2 + 7𝑥3 + 4𝑥4 = 𝑦𝑢 (defining 𝑦𝑠 and 𝑦𝑢), 𝑦𝑠 ≤ 600,
𝑦𝑢 ≤ 650 (labour), and 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦𝑠, 𝑦𝑢 ≥ 0 (non-negativity)

Lecture 2
May 4Example 1.2.2. A certain company provides heading oil for the local commnity. They have

historical data that helps them predict demand for heating oil in the next four months: 5000,
8000, 9000, 6000 (litres/month)

At the beginning of each month, they can purchase oil from the supplier at the current market
rate. The projected rates are given: 0.75, 0.72, 0.92, 0.90 ($/litre)

There is a storage tank that holds up to 4000 litres of oil, and at the start of month 1, it
contains 2000 litres. How should the company buy the required oil to minimize the total
money spent?

Solution. Let 𝑥𝑖 be the amount of oil purchased in the 𝑖th month, and 𝑦𝑖 be the amount of oil in
the storage tank at the start of month 𝑖.

Then, we want to minimize 0.75𝑥1 + 0.72𝑥2 + 0.92𝑥3 + 0.9𝑥4.

The storage tank constrains us by 𝑦𝑖 ≤ 4000 and the problem gives 𝑦1 = 2000.

Non-negativity gives 𝑥𝑖, 𝑦𝑖 ≥ 0.

For each demand 𝑑𝑖, we have 𝑥𝑖 + 𝑦𝑖 = 𝑑𝑖 + 𝑦𝑖+1.
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Then, we can write:
min 0.75𝑥1 + 0.72𝑥2 + 0.92𝑥3 + 0.9𝑥4

s.t. 𝑦1, 𝑦2, 𝑦3, 𝑦4 ≤ 4000
𝑦1 = 2000

𝑥1 + 𝑦1 = 5000 + 𝑦2

𝑥2 + 𝑦2 = 8000 + 𝑦3

𝑥3 + 𝑦3 = 9000 + 𝑦4

𝑥4 + 𝑦4 = 6000
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1, 𝑦2, 𝑦3, 𝑦4 ≥ 0

Example 1.2.3. Instead of minimizing the total money spent, suppose we do not have much
money to spend each month, and we want to reduce the maximum amount spent in a month.

Solution. Let 𝑀 = max{0.75𝑥1, 0.72𝑥2, 0.92𝑥3, 0.9𝑥4}.

Since 𝑀 is not linear, we cannot simply put min𝑀 in an LP.

Instead, define 𝑚 with constraints 𝑚 ≥ 0.75𝑥1, 𝑚 ≥ 0.72𝑥2, 𝑚 ≥ 0.92𝑥3, 𝑚 ≥ 0.9𝑥4.

Since we are doing min𝑚, we are guaranteed that the optimal solution will give 𝑚 = 𝑀 (if 𝑚 is
not 𝑀, we can make 𝑚 smaller).

Example 1.2.4. Given a set of data points {(𝑥𝑖, 𝑦𝑖) ∶ 𝑖 = 1, … , 𝑛} on the plane. Find a line
𝑦 = 𝑎𝑥 + 𝑏 that “best fits” this set of data points.

Solution. Define “best fit” as minimizing total vertical distance between points and the line.

That is, we must minimize ∑ |𝑎𝑥𝑖 + 𝑏 − 𝑦𝑖|, but that is not affine.

Define instead the errors 𝑒𝑖 associated with the point 𝑖.

We want to constrain 𝑒𝑖 = |𝑎𝑥𝑖 + 𝑏 − 𝑦𝑖|, which we can do with 𝑒𝑖 ≥ 𝑎𝑥𝑖 +𝑏−𝑦𝑖 and 𝑒𝑖 ≥ 𝑦𝑖 −𝑎𝑥𝑖 −𝑏
since |𝑥| = max{𝑥, −𝑥}.

Then, we can use min∑ 𝑒𝑖 as above to get the final LP:

min ∑ 𝑒𝑖

s.t. 𝑒𝑖 ≥ 𝑎𝑥𝑖 + 𝑏 − 𝑦𝑖

𝑒𝑖 ≥ 𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏

N.B.: since 𝑒𝑖, 𝑒𝑗 do not share constraints when 𝑖 ≠ 𝑗, min∑ 𝑒𝑖 is equivalent to min 𝑒1, … ,min 𝑒𝑛.

Exercise 1.2.5. Modify this to find the best fit parabola. Is this an LP?

Solution. Yes, since considering the error function 𝑎𝑥2
𝑖 + 𝑏𝑥𝑖 + 𝑐 − 𝑦𝑖 is still linear with respect to

the variables for optimization 𝑎, 𝑏, and 𝑐.

6



CO 250 Spring 2022: Lecture Notes James Ah Yong

1.3 Formulating IPs

Lecture 3
May 9

Example 1.3.1. Consider the job application process where a company has 3 positions avail-
able, and there are 4 applicants for these jobs. For each applicant and position, the company
assigns a number indicating how well the applicant is suited for the position. The goal is to
hire a different applicant for each position to maximize the total suitability.

𝑀 = ⎛⎜
⎝

3 5 2 4
3 1 4 3
1 4 2 3

Candidates

Po
sit

io
ns

⎞⎟
⎠

Solution. Want: For each position, who gets that position

Define: Create binary variable 𝑥𝑖𝑗 for each position 𝑖 and candidates 𝑗. Let 𝑥𝑖𝑗 = 1 if position 𝑖
given to candidate 𝑗, and 0 otherwise

Objective function: max∑ ∑ 𝑀𝑖𝑗𝑥𝑖𝑗

Constraints: ∑𝑗 𝑥𝑖𝑗 = 1 for each 𝑖 (each position filled by exactly one candidate), and ∑𝑖 𝑥𝑖𝑗 ≤ 1
for each 𝑗 (each candidate takes at most one position), 𝑥𝑖𝑗 ≥ 0, 𝑥𝑖𝑗 ≤ 1, 𝑥𝑖𝑗 ∈ ℤ (integrality)

max
3

∑
𝑖=0

4
∑
𝑗=0

𝑀𝑖𝑗𝑥𝑖𝑗

s.t.
4

∑
𝑗=0

𝑥𝑖𝑗 = 1 𝑖 = 1, … , 3

3
∑
𝑖=0

𝑥𝑖𝑗 ≤ 1 𝑗 = 1, … , 4

0 ≤ 𝑥𝑖𝑗 ≤ 1, 𝑥𝑖𝑗 ∈ ℤ

Notation. We define 𝑥 ∈ {0, 1} to mean the constraints 0 ≤ 𝑥 ≤ 1 and 𝑥 ∈ ℤ

Example 1.3.2 (Knapsack problem). There are 4 types of items that you can put into your
backpack. You can take any integer number of units of any item. However, you can only carry
a maximum of 40 pounds. Each unit of item you take is also worth a certain amount of money.
The goal is to maximize the total value of the items you carry.

Item A B C D
Weight (lbs) 1 7 3 2

Value ($) 10 50 20 15

Solution. Let 𝑥𝑖, 𝑖 = 𝐴, 𝐵, 𝐶, 𝐷 be the number of units of 𝑖 packed

Objective function: max 10𝑥𝐴 + 50𝑥𝐵 + 20𝑥𝐶 + 15𝑥𝐷

7
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Constraints: 𝑥𝐴 + 7𝑥𝐵 + 3𝑥𝐶 + 2𝑥𝐷 ≤ 40 (weight limit), 𝑥𝑖 ≥ 0, 𝑥𝑖 ∈ ℤ (integrality)

max 10𝑥𝐴 + 50𝑥𝐵 + 20𝑥𝐶 + 15𝑥𝐷

s.t. 𝑥𝐴 + 7𝑥𝐵 + 3𝑥𝐶 + 2𝑥𝐷 ≤ 40
𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐷 ≥ 0
𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐷 ∈ ℤ

Example 1.3.3. Suppose we are allowed to take A only if we take at least one unit of B.

Solution. Want: if 𝑥𝐵 = 0, then we must have 𝑥𝐴 = 0. If 𝑥𝐵 ≥ 1, no restriction on 𝐴.

Equivalently, add the constraint 𝑥𝐴 ≤ 𝑥𝐵 max𝑥𝐴 = 40𝑥𝐵. When 𝑥𝐵 = 0, the RHS goes to 0 and
constrains 𝑥𝐴 = 0. Otherwise, since 𝑥𝐵 ≥ 1, 40𝑥𝐵 ≥ 40 which is the maximum value of 𝑥𝐴, so
there are effectively no constraints on 𝑥𝐴.

Example 1.3.4. Suppose we want the following conditions to hold:

1. We carry at least 5 units of items A and/or B; or
2. We carry at least 7 units of items C and/or D.

Solution. Define a binary variable 𝑦. Want: 𝑦 = {
1 condition 1 is true
0 condition 2 is true

If 𝑦 = 1, then 𝑥𝐴 + 𝑥𝐵 ≥ 5; if 𝑦 = 0, no restrictions on 𝑥𝐴, 𝑥𝐵. We can implement this by adding
the constraint 𝑥𝐴 + 𝑥𝐵 ≥ 5𝑦, since 𝑦 = 0 will send the RHS to 0

If 𝑦 = 0, then 𝑥𝐶 + 𝑥𝐷 ≥ 7; if 𝑦 = 1, no restrictions on 𝑥𝐶, 𝑥𝐷. Similarly implement with
𝑥𝐶 + 𝑥𝐷 ≥ 7(1 − 𝑦), since 𝑦 = 1 will send the RHS to 0

Notice that setting 𝑦 does not force the other condition not to hold, i.e., this implements an inclusive
or.

In summary: 𝑥𝐴 + 𝑥𝐵 ≥ 5𝑦, 𝑥𝐶 + 𝑥𝐷 ≥ 7(1 − 𝑦), and 𝑦 ∈ {0, 1}

N.B.: When feeding these constraints into an algorithm, ensure that the constraints are truly
linear, i.e., move variables to one side. For example, 𝑥𝐴 + 𝑥𝐵 − 5𝑦 ≥ 0

Exercise 1.3.5. Implement an exclusive or of these two conditions

Example 1.3.6. Suppose that the value of item A is $10 for the first 5 units, but any more
units beyond that has value $5.

Solution. Separate 𝑥𝐴 into two variables 𝑥𝐴1 for first five units and 𝑥𝐴2 for remainder. Then, we
have 𝑥𝐴 = 𝑥𝐴1 + 𝑥𝐴2 and change the objective function to 10𝑥𝐴1 + 5𝑥𝐴2 + 50𝑥𝐵 + 20𝑥𝐶 + 15𝑥𝐶.

We can create a constraint to force 𝑥𝐴2 only to go up when 𝑥𝐴1 is 5 with 𝑥𝐴2 ≤ (𝑥𝐴1 − 4)max𝑥𝐴2
which will work in tandem with the non-negativity constraint. This is not actually necessary since

8
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the maximum will always fill 𝑥𝐴1 before 𝑥𝐴2 because it is worth more (i.e. trading one 𝑥𝐴2 for 𝑥𝐴1
will increase the objective function by 5)

In summary: change the objective function and add the constraints 𝑥𝐴 = 𝑥𝐴1 + 𝑥𝐴2, 𝑥𝐴1 ≤ 5,
𝑥𝐴1, 𝑥𝐴2 ≥ 0, 𝑥𝐴1, 𝑥𝐴2 ∈ ℤ

Lecture 4
May 11Notation (vector notation). Write 𝟙 ∶= (1, … , 1)𝑇 and 𝑥 ≤ 𝑦 if 𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖.

Definition 1.3.7 (graph)
𝐺 = (𝑉 , 𝐸) consists of a set of objects 𝑉 (verticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesvertices) and a set of unordered pairs of vertices 𝐸
(edgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedges).

We restrict graphs by disallowing empty graphs, redundant edges, directed edges, or self-
connections.

Example 1.3.8. 𝐺 = (𝑉 , 𝐸) by 𝑉 = {1, 2, 3, 4}, 𝐸 = {12, 23, 34, 41, 24}

1

4

2

3

Definition 1.3.9 (incidence relation)
For an edge 𝑒 = 𝑢𝑣, 𝑒 is incident to 𝑢 and 𝑣. 𝛿(𝑣) is the set of all edges incident to 𝑣.

The incidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrixincidence matrix 𝐵 ∈ {0, 1}|𝑉|×|𝐸| has rows indexed by 𝑉, columns by 𝐸, and 𝐵𝑣𝑒 = 1
when 𝑒 ∈ 𝛿(𝑣) and 0 otherwise.

Example 1.3.10. For Example 1.3.8, 𝐵 =
⎛⎜⎜⎜⎜
⎝

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5
1 1 0 0 1 0
2 1 1 0 0 1
3 0 1 1 0 0
4 0 0 1 1 1

⎞⎟⎟⎟⎟
⎠

.

Remark 1.3.11. Each column has exactly two ones, so 𝐵𝟙 = 2𝟙.

Definition 1.3.12 (matching)
𝑀 ⊆ 𝐸 where each vertex is incident with exactly zero or one edge in 𝑀 (i.e., |𝑀 ∩ 𝛿(𝑣)| ≤ 1
for all 𝑣 ∈ 𝑉)

9
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Example 1.3.13. For Example 1.3.8, {𝑒1, 𝑒3} and {𝑒5} are matchings but {𝑒1, 𝑒5} is not since
2 is incident to both edges

Example 1.3.14 (maximum-weight matching). Given graph 𝐺 = (𝑉 , 𝐸) and weights 𝑤𝑒 for
each 𝑒 ∈ 𝐸. Find a matching in 𝐺 with the maximum edge weight, i.e., maximize ∑𝑒∈𝑀 𝑤𝑒.

Solution. Define a vector 𝑥 ∈ {0, 1}|𝐸| by 𝑥𝑒 = 1 if 𝑒 ∈ 𝑀 and 0 otherwise. Then, the objective
function is max𝑤𝑇𝑥. To ensure each node appears only once, add constraints ∑𝑒∈𝛿(𝑣) 𝑥𝑒 ≤ 1 for
each 𝑣 ∈ 𝑉. This is equivalent to taking the incidence matrix 𝐴 and saying 𝐴𝑥 ≤ 𝟙 This gives us
the integer program

max 𝑤𝑇𝑥
s.t. 𝐴𝑥 ≤ 𝟙

𝑥𝑒 ∈ {0, 1} 𝑒 ∈ 𝐸

Definition 1.3.15 (𝑣1,𝑣𝑘-path)
Sequence of edges 𝑣1𝑣2, 𝑣2𝑣3, … , 𝑣𝑘−1𝑣𝑘 such that 𝑣1, … , 𝑣𝑘 are distinct

Example 1.3.16. Consider graph ({𝑠, 𝑡, 𝑎, 𝑏, 𝑐, 𝑑}, {𝑠𝑎, 𝑠𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑑, 𝑏𝑡, 𝑐𝑏, 𝑐𝑑, 𝑑𝑡}).

𝑠 𝑎 𝑏

𝑐 𝑑

𝑡

Then, 𝑠𝑎, 𝑎𝑏, 𝑏𝑡 and 𝑠𝑐, 𝑐𝑏, 𝑏𝑑, 𝑑𝑡 are 𝑠,𝑡-paths but 𝑠𝑎, 𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑐𝑏, 𝑏𝑡 is not since 𝑏 is visited
twice.

Lecture 5
May 16Problem 1.3.17 (shortest path)

Given graph 𝐺 = (𝑉 , 𝐸), vertices 𝑠 and 𝑡, and positive weights 𝑤𝑒 for each 𝑒 ∈ 𝐸. Find an
𝑠,𝑡-path 𝑃 with the minimum edge weight, i.e., minimize ∑𝑒∈𝑃 𝑤𝑒.

Define a vector 𝑥 ∈ {0, 1}|𝐸| by 𝑥𝑒 = 1 if 𝑒 ∈ 𝑃 and 0 otherwise.

The objective function is min𝑤𝑇𝑥.

Need to constrain 𝑥 into a path: use cuts.

10
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Definition 1.3.18 (cut)
The cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊cut induced by vertices 𝑊 is the set 𝛿(𝑊) of all edges with exactly one endpoint in 𝑊.
Formally, 𝛿(𝑊) = {𝑢𝑣 ∈ 𝐸 ∶ 𝑢 ∈ 𝑊, 𝑣 ∉ 𝑊}.

An 𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut𝑠, 𝑡-cut 𝛿(𝑊) has 𝑠 ∈ 𝑊 and 𝑡 ∉ 𝑊.

Example 1.3.19. In Example 1.3.16, 𝑊 = {𝑠, 𝑎, 𝑏} induces the cut 𝛿(𝑊) = {𝑠𝑐, 𝑎𝑐, 𝑏𝑐, 𝑏𝑑, 𝑏𝑡}

𝑠 𝑎 𝑏

𝑐 𝑑

𝑡

Proposition 1.3.20
Notice that the edges in an 𝑠, 𝑡-cut separate 𝑠 from 𝑡, so an 𝑠, 𝑡-path must use at least one edge
from every 𝑠, 𝑡-cut (formal proof in graph theory course)

We get a constraint ∑𝑒∈𝛿(𝑊) 𝑥𝑒 ≥ 1 for all 𝑠, 𝑡-cuts 𝛿(𝑊) (that is, for all 𝑊 ⊂ 𝑉 with 𝑠 ∈ 𝑊 and
𝑡 ∉ 𝑊)

Proposition 1.3.21
If a set of edges intersects every 𝑠, 𝑡-cut, then it contains an 𝑠, 𝑡-path

Minimizing the edge weights will ensure that the extraneous edges are optimized away and the
𝑠, 𝑡-path remains so long as the edge weights are all positive.

This gives us a final IP of

min 𝑤𝑇𝑥
s.t. ∑

𝑒∈𝛿(𝑊)
𝑥𝑒 ≥ 1 𝛿(𝑊) an 𝑠, 𝑡-cut

𝑥𝑒 ≥ 0, 𝑥𝑒 ∈ ℤ 𝑒 ∈ 𝐸

1.4 Formulating NLPs

Definition 1.4.1 (non-linear program)
A program of the general form min 𝑓(𝑥) subject to 𝑔𝑖(𝑥) ≤ 0 for some arbitrary functions
𝑓 ∶ ℝ𝑛 → ℝ, 𝑔𝑖 ∶ ℝ𝑛 → ℝ with no restrictions

11
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Example 1.4.2. Among all the points 𝑥 that satisfy 𝐴𝑥 ≤ 𝑏, find one that is closest to the
target point ̄𝑥

Solution. We can take the norm and minimize ‖𝑥 − ̄𝑥‖ = √∑(𝑥𝑖 − ̄𝑥𝑖)2. This gives us the non-
linear program min ‖𝑥 − ̄𝑥‖, s.t. 𝐴𝑥 ≤ 𝑏.

Lecture 6
May 18Since the definition for NLP has no constraints on 𝑓 and 𝑔𝑖, a LP is an NLP.

The integrality constraint makes IPs not NLPs. To get around this, use a periodic function like
sin 𝜃 = 0 which permits values 𝜃 = 𝑘𝜋 for integer 𝑘, so 𝑥 ∈ ℤ ⇔ sin𝑥𝜋 = 0. Using this makes IPs
into NLPs.

If we can solve NLPs, we can also solve LPs and IPs.

1.5 LP outcomes

An algorithm that solves LPs should produce:

• The optimal solution (or that no solution exists)
• Certificate of correctness that reduces complexity of verification

Definition 1.5.1 (infeasibility)
No feasible solutions exist.

Example 1.5.2. max𝑥 s.t. 𝑥 ≤ 2 and 𝑥 ≥ 3. Obviously, no 𝑥 exists.

Example 1.5.3. max (3, 1, −7, 4)𝑥 s.t. ⎛⎜
⎝

−5 4 3 −1
2 1 −5 3

−1 −3 1 −2
⎞⎟
⎠

𝑥 = ⎛⎜
⎝

3
−2
1

⎞⎟
⎠

and 𝑥 ≥ 𝟘.

Taking −2𝑅1 − 3𝑅2 − 4𝑅3, we get 8𝑥1 + 𝑥2 + 5𝑥3 + 𝑥4 = −4 but each entry in 𝑥 must be
non-negative, so this is impossible.

Formally, we can let 𝑦 = (−2, −3, −4)𝑇, then multiply on the left by 𝑦𝑇 to give us the same
equation as (8, 1, 5, 1)𝑥 = −4.

Then, 𝑦 is the certificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibilitycertificate of infeasibility.

Proposition 1.5.4
The system 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘 is infeasible if there exists a vector 𝑦 such that 𝑦𝑇𝐴 ≥ 𝟘 but 𝑦𝑇𝑏 < 0

Proof. Suppose the system is feasible with 𝑥 as the feasible solution. Then, 𝐴𝑥 = 𝑏 and 𝑥 ≥ 𝟘.
However, 𝑦𝑇𝐴𝑥 ≥ 0 and 𝑦𝑇𝑏 < 0. Contradiction.

The converse is also true. Proof will come later as Farkas’ Lemma.

12
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Definition 1.5.5 (unboundedness)
Infinitely better feasible solutions exist.

Formally, a max (resp. min) LP is unboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunboundedunbounded if there exists a series of feasible solutions 𝑥(𝑡)
with the objective value of 𝑥(𝑡) approaching +∞ (resp. −∞) as 𝑡 → ∞.

Example 1.5.6. max𝑥 s.t. 𝑥 ≥ 1: there is no best solution (cf. strict inequalities)

Example 1.5.7. max (−1, 2, −3, 4)𝑥 s.t. ( 3 0 2 −5
−2 3 −4 4 )𝑥 = (4

1) and 𝑥 ≥ 𝟘.

Consider ̄𝑥 = (3, 1, 0, 1)𝑇 and 𝑑 = (0, 4, 5, 2)𝑇. Define 𝑥(𝑡) = ̄𝑥+𝑡𝑑 and consider 𝑡 from 0 → ∞.
We must show feasibility and unboundedness.

Obviously, 𝑥(𝑡) ≥ 𝟘 since ̄𝑥, 𝑑 ≥ 𝟘 and 𝑡 ≥ 0.

Notice 𝐴𝑥(𝑡) = 𝐴 ̄𝑥 + 𝑡𝐴𝑑 = (4, 1)𝑇 + 𝑡(0, 0)𝑇 = 𝑏. That is, ̄𝑥 solves 𝐴𝑥 = 𝑏 and 𝑑 lies in the
kernel of 𝐴.

The objective value 𝑐𝑇𝑥(𝑡) = 𝑐𝑇( ̄𝑥 + 𝑡𝑑) = 𝑐𝑇 ̄𝑥 + 𝑡𝑐𝑇𝑑 = 3 + 𝑡 clearly goes to +∞ as 𝑡 → ∞.

Then, ( ̄𝑥, 𝑑) is a certificate of unboundedness for the LP.

Proposition 1.5.8
The LP max{𝑐𝑇𝑥 ∶ 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘} is unbounded if there exist vectors ̄𝑥 and 𝑑 such that

̄𝑥, 𝑑 ≥ 𝟘, 𝐴𝑑 = 𝟘, 𝑐𝑇𝑑 > 0.

13



Chapter 2

Solving LPs

2.1 Preparation

Lecture 7
May 23Example 2.1.1. max (0, −2, −3, 0)𝑥 + 7 subject to (1 3 −5 0

0 −1 2 1)𝑥 = (6
9) and 𝑥 ≥ 𝟘

Solution. Trivial solution: ̄𝑥 = (6, 0, 0, 9)⊺ gives objective value 7

Claim: ̄𝑥 is optimal

Proof: the term (0, −2, −3, 0)𝑥 ≤ 0 since 𝑥 ≥ 𝟘. Its highest value is then 0, so the highest objective
value is 7. Since the objective value of ̄𝑥 is 7, it is optimal.

Theorem 2.1.2 (Fundamental Theorem of Linear Programming)
For a linear program 𝑃, exactly one of the following holds:

• 𝑃 is infeasible
• 𝑃 is unbounded
• 𝑃 has an optimal solution

This does not apply to non-linear programs: e.g., max𝑥 subject to 𝑥 < 1. This NLP is feasible
(consider ̄𝑥 = 0) and bounded (𝑥 < 1), but has no optimal solution (given ̄𝑥 a solution, �̄�+1

2 is a
better solution)

Definition 2.1.3 (standard equality form)
A linear program of the form max{𝑐⊺𝑥 + ̄𝑧 ∶ 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘}

Requires maximization, equality constraint, and non-negative variables

Simplex requires SEF, so must convert LPs into equivalent SEF LP.

14
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Definition 2.1.4 (equivalence)
𝑃 and 𝑃 ′ are equivalent if (1) 𝑃 infeasible iff 𝑃 ′ infeasible, (2) 𝑃 unbounded iff 𝑃 ′ unbounded,
and (3) optimal solutions of 𝑃 can be constructed from 𝑃 ′ and vice versa

Find an equivalent SEF by:

• Given a minimization LP min 𝑓(𝑥), just take max−𝑓(𝑥)
• Given an inequality 𝑥 ≤ 𝑘, define a slack variable 𝑥 + 𝑥′ = 𝑘 with 𝑥′ ≥ 0
• Given a free variable 𝑥, define two non-negative variables 𝑥+ and 𝑥− so that we can replace

𝑥 = 𝑥+ − 𝑥−

Example 2.1.5. Find an equivalent LP in SEF

min(−1, 2, −3)𝑥

s.t. ⎛⎜
⎝

1 5 3
2 −1 2
1 2 −1

⎞⎟
⎠

⎛⎜
⎝

𝑥1
𝑥2
𝑥3

⎞⎟
⎠

≤
≥
=

⎛⎜
⎝

5
4
2
⎞⎟
⎠

𝑥1, 𝑥2 ≥ 0

Solution. Switch min to max with new objective function (1, −2, 3)𝑥

Divide 𝑥3 = 𝑥+
3 − 𝑥−

3 giving ⎛⎜
⎝

1 5 3 −3
2 −1 2 −2
1 2 −1 1

⎞⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥+

3
𝑥−

3

⎞⎟⎟⎟⎟
⎠

Add slack variables 𝑥4, 𝑥5 giving new rows (1, 5, 3, 1, 0)𝑥 = 5 and (2, −1, 2, 0, 1)𝑥 = 4

Let 𝑥 = (𝑥1, 𝑥2, 𝑥+
3 , 𝑥−

3 , 𝑥4, 𝑥5)⊺ and combine to get the SEF

max
⎧{
⎨{⎩

(1, −2, 3, −3, 0, 0)𝑥 ∶ ⎛⎜
⎝

1 5 3 −3 1 0
2 −1 2 −2 0 1
1 2 −1 1 0 0

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

5
4
2
⎞⎟
⎠

, 𝑥 ≥ 𝟘
⎫}
⎬}⎭

Suppose simplex solves this and gives optimal solution (11
4 , 0, 3

4 , 0, 0, 3)⊺ with optimal value 5. Then,
the original LP is solved by (11

4 , 0, 3
4 − 0)⊺ = (11

4 , 0, 3
4) with optimal value −5.

Lecture 8
May 25

Example 2.1.6. max(3, −2, 0, 0, 0)𝑥 such that 𝑥 ≥ 𝟘 and ⎛⎜
⎝

4 −1 1 0 0
3 −3 0 1 0

−2 2 0 0 1
⎞⎟
⎠

𝑥 = ⎛⎜
⎝

8
9
1
⎞⎟
⎠

Solution. Feasible solution: ̄𝑥 = (0, 0, 8, 9, 1)⊺ with objective value (3, −2, 0, 0, 0)(0, 0, 8, 9, 1)⊺ = 0

To increase objective value, must increase 𝑥1 (the only one with a positive coefficient in the objective
function)

Change 𝑥1 ↦ 𝑡, keep 𝑥2 = 0, and set 𝑥3 ↦ 8 − 4𝑡, 𝑥4 ↦ 9 − 3𝑡, and 𝑥5 ↦ 1 + 2𝑡 to maintain
feasibility

15
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But we still have non-negativity, giving us 𝑡 ≤ 2, i.e., ̄̄𝑥 = (2, 0, 0, 3, 5)⊺

This example worked because we had (1) the identity matrix embedded in columns, (2) those
columns have zero coefficients in the objective function. Equivalent strategies will exist if the
matrix’s rows are independent.

Notation. Given a matrix 𝐴, notate the column 𝑗 = 1, … , 𝑛 of 𝐴 by 𝐴𝑗 and then the submatrix
formed by columns 𝐽 ⊆ {1, … , 𝑛} by 𝐴𝐽

Proposition 2.1.7
tfae: 𝐵 ⊆ {1, … , 𝑛} is a basis; 𝐴𝐵 is invertible; and |𝐵| = 𝑚 and the columns 𝐴𝐵 are linearly
independent

Definition 2.1.8
Given a basis 𝐵, a non-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basisnon-basis 𝑁 = {1, … , 𝑛} −𝐵.

The variables 𝑥𝐵 where 𝐵 a basis are basic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variablesbasic variables; conversely, 𝑥𝑁 are non-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variablesnon-basic variables.
This lets us write 𝐴𝑥 = 𝐴𝐵𝑥𝐵 + 𝐴𝑁𝑥𝑁.

A basic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solutionbasic solution (with respect to 𝐵) is a solution 𝑥 where 𝑥𝑁 = 0.

To find a basic solution 𝑥𝐵, multiply both sides of the constraint 𝐴𝑥 = 𝑏 on the left by 𝐴−1
𝐵 . Then,

𝐴−1
𝐵 𝐴𝑥 = 𝐴−1

𝐵 𝑏 and we can read the basic solution 𝑥𝐵 = 𝐴−1
𝐵 𝑏.

Definition 2.1.9 (basic feasible solution)
A value ̄𝑥 such that ̄𝑥𝐵 ≥ 𝟘.

Definition 2.1.10 (canonical form)
SEF max{𝑐⊺𝑥 + ̄𝑧 ∶ 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘} if 𝐴𝐵 = 𝐼 and 𝑐𝐵 = 𝟘

Lecture 9
May 30Example 2.1.11. Write the canonical form for 𝐵 = {2, 3} of max(3, −1, 4, 0, −1)𝑥 + 2 s.t.

𝑥 ≥ 𝟘 and ( 2 1 −2 5 −4
−1 0 −1 −3 2 )𝑥 = ( 3

−2)

Solution. Multiply the constraint on the left by 𝐴−1
𝐵 = (1 −2

0 −1) to get new constraint (4 1 0 11 −8
1 0 1 3 −2)𝑥 =

(7
2) which is equivalent

Then, we need to set the entries in the objective function vector 𝑐𝐵 = 𝟘

16
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To find an expression for −𝑐⊺
𝐵𝑥𝐵 which can cancel, take −𝑐⊺

𝐵𝐴𝑥 = −𝑐𝐵𝑏 to get (0, 1, −4, −1, 0)𝑥 =
−1 ⟹ (0, 1, −4, −1, 0)𝑥 + 1 = 0

Add this to 𝑐⊺𝑥 + ̄𝑧 to get the new objective function max(3, 0, 0, −1, −1)𝑥 + 3

In general, to convert from SEF to canonical form given a basis 𝐵:

1. Amend the constraint: 𝐴𝑥 = 𝑏 ↦ 𝐴−1
𝐵 𝐴𝑥 = 𝐴−1

𝐵 𝑏
2. Calculate 𝑦 = (𝐴−1

𝐵 )⊺𝑐𝐵 (this will be used later as a certificate)
3. Amend the objective function: 𝑐⊺𝑥 + ̄𝑧 ↦ (𝑐⊺ − 𝑦⊺𝐴)𝑥 + ( ̄𝑧 − 𝑦⊺𝑏)

2.2 Simplex

Main idea: go between feasible bases, attempting to raise the objective value

1. Start with a feasible basis 𝐵.
Use “2-phase simplex” to find one if there is not a trivial feasible basis

2. Convert the LP to canonical form with respect to 𝐵.
If 𝑐𝑁 ≤ 𝟘, then the optimal solution is the basic feasible solution. Stop.

3. Pick a non-basic entering variable 𝑥𝑘 where 𝑐𝑘 > 0.
(Bland’s rule) Pick the variable with lowest index 𝑘.
If 𝐴𝑘 ≤ 𝟘, then the linear program is unbounded. Stop.
Increase 𝑥𝑘 = 𝑡 while reducing 𝑥𝐵 to increase the objective value, i.e., maximize 𝑡 subject to
𝑥𝐵 = 𝑏 − 𝐴𝑘𝑡 and 𝑥 ≥ 𝟘. That is, 𝑡 = min{ 𝑏𝑖

𝐴𝑖𝑘
∶ 𝐴𝑖𝑘 > 0}

4. Pick a leaving variable 𝑥ℓ.
Let 𝑥ℓ be the index used for the minimum above. Then, 𝑥ℓ = 0 after setting 𝑥𝑘 = 𝑡 making
𝑥ℓ non-basic.
Repeat step 2 with the new basis 𝐵 = 𝐵 ∪ {𝑘} −{ℓ}

Example 2.2.1. Maximize (0, 2, 1, 0, 0, 0)𝑥 such that 𝑥 ≥ 𝟘 and

⎛⎜
⎝

1 −1 1
−2 1 0
0 1 −2

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

5
3
5
⎞⎟
⎠

Solution. Perform simplex:

1. Entering variable 𝑥2 since 𝑐2 = 2 > 0
Set 𝑥2 = 𝑡 = min{−, 3

1 , 5
1} = 3

Leaving variable is 𝑥5, new basis 𝐵 = {2, 4, 6}
New canonical form max(4, 0, 1, 0, −2, 0)𝑥 + 6 with 𝑥 ≥ 𝟘 and

⎛⎜
⎝

−2 1 0 0 1 0
−1 0 1 1 1 0
2 0 2 0 −1 1

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

3
8
2
⎞⎟
⎠

17
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2. Entering variable 𝑥1. Set 𝑥1 = 𝑡 = min{−, −, 2
2} = 1.

Leaving variable 𝑥6. New basis 𝐵 = {1, 2, 4}
New canonical form max(0, 0, 5, 0, 0, −2)𝑥 + 10 with 𝑥 ≥ 𝟘 and

⎛⎜⎜
⎝

1 0 −1 0 −1
2

1
2

0 1 −2 0 0 1
0 0 0 1 1

2
1
2

⎞⎟⎟
⎠

𝑥 = ⎛⎜
⎝

1
5
9
⎞⎟
⎠

3. Entering variable 𝑥3. Set 𝑥3 = 𝑡 = min{−, −, −} = ∞. No bound on 𝑡, so this LP is
unbounded.

Lecture 10
June 1Iteration 3 entered 𝑥3, and 𝐴3 ≤ 0. Then, 𝑡 had no bounds, so the LP is unbounded. Find a

certificate of unboundedness:

Current basic feasible solution: ̄𝑥 = (1, 5, 0, 9, 0, 0)⊺

Set 𝑥3 = 𝑡. New solution is 𝑥(𝑡) = (1 + 𝑡, 5 + 2𝑡, 𝑡, 9, 0, 0)⊺ = ̄𝑥 + 𝑡𝑑 where 𝑑 = (1, 2, 1, 0, 0, 0)⊺.

Then, 𝑥(𝑡) is feasible for all 𝑡 ≥ 0 and 𝑐⊺𝑥(𝑡) = 5𝑡 − 10 → ∞. This is all we need to show that
( ̄𝑥, 𝑡) form a certificate of unboundedness.

Recall: simplex iterates over feasible bases to optimize one variable at a time and set coefficients
to zero, eventually finding an optimal solution or showing unboundedness

Does simplex always terminate? Intuitively it should, since each iteration increases the objective
value. However, this is not true in general

Definition 2.2.2 (degenerate iteration)
Iteration where the objective value is held constant. That is, only the basis is changed.

Example 2.2.3. Maximize (1, 0, 0, 0)𝑥 subject to 𝑥 ≥ 𝟘 and (3 2 1 0
1 1 0 1)𝑥 = (0, 2)⊺.

The start basis is clearly {1, 4} The only entering variable is 𝑥1. Let 𝑡 = 𝑥1 and 𝑡 = min{2
1 , 0

3} =
0 We pick 𝑥4 for a leaving variable, giving 𝐵′ = {1, 4}, which is the same.

Definition 2.2.4 (cycling)
Repeating bases with the same basic feasible solution.

This happens when there is a series of degenerate iterations that repeat bases already used. Bland’s
Rule, when applied, prevents cycling and guarantees simplex terminates. That is, when there is a
choice for the entering or leaving variable, pick the one with the lowest index.

Tableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau methodTableau method (easier to perform by hand) Use a matrix to encode the entire state of the
algorithm, allowing row reductions to replace taking inverses
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Example 2.2.5. Maximize 𝑧 = (3, −2, 0, 0, 0)𝑥 + 0 subject to 𝑥 ≥ 𝟘 and

⎛⎜
⎝

4 −1
3 −3

−2 2

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

8
9
1
⎞⎟
⎠

Solution. Create a tableau ( 1 −𝑐 ̄𝑧
𝟘 𝐴 𝐵 ) =

⎛⎜⎜⎜⎜
⎝

1 −3 2 0 0 0 0
0 4 −1 1 0 0 8
0 3 −3 0 1 0 9
0 −2 2 0 0 1 1

⎞⎟⎟⎟⎟
⎠

Entering variable: look for negative coefficient in objective row 𝑥𝑘 (in this case 𝑥1)

Leaving variable: look at ratio between 𝑏 and 𝐴𝑘 to find row with 𝑥ℓ (in this case 𝐴1)

Take the entry in column of 𝑥𝑘 and the row of 𝑥ℓ (in this case 𝐴11). Use row operations to make
it 1 and the rest of the column 0.

In this case 1
4𝑅2, 𝑅1 + 3𝑅2, 𝑅3 − 3𝑅2, 𝑅4 + 2𝑅2, to yield

⎛⎜⎜⎜⎜
⎝

1 0 5
4

3
4 0 0 6

0 1 −1
4

1
4 0 0 2

0 0 −9
4 −3

4 1 0 3
0 0 3

2
1
2 0 1 5

⎞⎟⎟⎟⎟
⎠

Since top row is all positive, this means that 𝑐 is all negative, so we have an optimal solution with
optimal objective value 6

Since tableau method involves iterative dividing of decimals, computers will lose precision after
each iteration. With canonical form, calculations are always done from the original LP, so no
compounded error.

If no obvious basic feasible solution to start simplex, do two-stage simplex.

2.3 Two-phase simplex

Main idea: Form an auxiliary LP with an obvious BFS, then solve with simplex to help find a BFS
or prove that no BFS exists

• Negate constraints with negative right-hand sides
• Arbitrarily add auxiliary variables to append an identity matrix to 𝐴
• Apply simplex to the new LP: there is a solution to the original LP if and only if this LP has

solutions with the auxiliary variables set to zero

Example 2.3.1. Maximize (−3, 2, 0, 0, 0)𝑥 subject to 𝑥 ≥ 𝟘 and

⎛⎜
⎝

−1 1
−1 −2
0 1

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

−1
−4
4

⎞⎟
⎠

Solution. Notice that 𝐵 = {3, 4, 5} is a basis. However, the trivial basic solution (0, 0, −1, −4, 4)⊺
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is not feasible.

Negate constraints to get ⎛⎜
⎝

1 −1 −1 0 0
1 2 0 −1 0
0 1 0 0 1

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

1
4
4
⎞⎟
⎠
.

Add auxiliary variables to get ⎛⎜
⎝

1 −1 −1 0 0
1 2 0 −1 0
0 1 0 0 1

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

1
4
4
⎞⎟
⎠
.

This LP has a BFS (0, 0, 0, 0, 0, 1, 4, 4)⊺.
Lecture 11
June 6Start with 𝐵 = {6, 7, 8} with BFS ̄𝑥 = (0, 0, 0, 0, 0, 1, 4, 4)⊺.

Minimize the sum of auxiliary variables: min (0, 0, 0, 0, 0, 1, 1, 1)𝑥 subject to same constraints.

Same as saying max (0, 0, 0, 0, 0, −1, −1, −1)𝑥, which we can solve with simplex.

If optimal value is 0, then auxiliary variables must be 0. If optimal value is negative, no feasible
solution exists.

Based on canonical form, multiply constraint on left by (1, 1, 1) to get (2, 1, −1, −1, 1, 1, 1, 1)𝑥−9 =
0.

Add to objective function to get new objective function (2, 1, −1, −1, 1, 0, 0, 0)𝑥 − 9.

Run simplex to get basis {1, 3, 5} and BFS (4, 0, 3, 0, 4, 0, 0, 0)⊺.

Now that we have a BFS (4, 0, 3, 0, 4)⊺, run simplex.

If auxiliary LP does not have a solution, then 𝑦 = 𝐴−𝑇
𝐵 𝑥𝐵 is a certificate of infeasibility for the

original LP.

Optimal solution must exist: it is feasible by construction and not unbounded because the objective
value cannot exceed 0.

Therefore, two-phase simplex will always work.

2.4 Geometry of simplex

Consider max (1, 1)𝑥 subject to 𝑥 ≥ 𝟘 and ⎛⎜
⎝

1 0
0 1
2 1

⎞⎟
⎠

𝑥 ≤ ⎛⎜
⎝

4
3
4
⎞⎟
⎠
.

Equivalently, max (1, 1, 0, 0, 0)𝑥 subject to 𝑥 ≥ 𝟘 and ⎛⎜
⎝

1 0
0 1
2 1

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

4
3
4
⎞⎟
⎠
.

Equalities define lines, inequalities define halfspaces: Lecture 12
June 8

• Non-negativity bounds (𝑥1, 𝑥2) ∈ ℝ2 to the first quadrant.
• Constraints bound 𝑥1 ≤ 4, 𝑥2 ≤ 3, and 𝑥1 + 2𝑥2 ≤ 8.

All feasible solutions are thus contained in the convex polygon bounded by (0, 0), (0, 3), (2, 3),
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(4, 2), (4, 0).

Consider contours of the objective function 𝑥1 + 𝑥2 = 𝑘 starting at 𝑘 = 0. Imagine dragging the
objective function line “up” along the normal vector (1, 1)⊺ maintaining the slope. Last point
(4, 2)⊺ which touches the highest contour 𝑘 = 6 is the optimal solution.

Notice that (4, 2)⊺ is generated by 𝑥1 = 4 and 𝑥1 + 2𝑥2 = 8, i.e., setting constraints (1) and (3) to
equality. Then, in SEF, (4, 2)⊺ ↦ (4, 2, 0, 1, 0)⊺ is a BFS.

Likewise, consider the extreme point (4, 0)⊺ generated by 𝑥1 = 4 and 𝑥2 = 0, i.e., constraints (1)
and (5) to equality. In SEF, (4, 0)⊺ ↦ (4, 0, 0, 3, 4)⊺ which is a BFS.

We can make some observations.

Definition 2.4.1 (boundary)
A point 𝑝 ∈ 𝑆 is on the boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆boundary of 𝑆 if every open neighbourhood of 𝑝 contains a point in 𝑆
and a point not in 𝑆.

Remark 2.4.2. Optimal solutions must always be on the boundary.

Definition 2.4.3 (tight constraint)
An inequality satisfied with equality by a feasible solution ̄𝑥.

Theorem 2.4.4
If an optimal solution exists and the rows of 𝐴 are linearly independent, then there is at least
one optimal “corner”.

Proof. Setting inequality to equality means setting a slack variable in SEF to 0. Every corner point
is defined by 𝑛 linear equalities in ℝ𝑛, i.e., 𝑛 (or more) tight constraints. Therefore, a corner point’s
canonical form solution will have 𝑛 slack variables set to zero, creating a BFS.

Geometrically, simplex walks along extreme points (BFSs) until it finds an optimal solution. Two-
phase simplex is required when the origin is not available as a corner to start from. Each iteration
picks an adjacent extreme point, because it swaps one tight constraint for another one and maintains
the other 𝑛 − 1 constraints.

Definition 2.4.5 (degenerate)
̄𝑥 with more than 𝑛 tight constraints, i.e., some basic variables are 0.

This means an iteration may bounce endlessly between degenerate BFSs. Degenerate iterations are
avoided by Bland’s rule.

Finally, simplex requires that the feasible region be convex. It always is because it is the convex
hull generated by the extreme points.
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Lecture 13
June 13Formalize some basic geometric ideas from last lecture.

Definition 2.4.6 (geometry)
A hyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplanehyperplane is an equation of the form 𝑎⊺𝑥 = 𝛽 with normal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vector 𝑎.

A halfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspacehalfspace is an inequality of the form 𝑎⊺𝑥 ≤ 𝛽 with normal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vectornormal vector 𝑎. Note: the halfspace is
always on the opposite side of the normal vector.

A polyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedronpolyhedron is a set of points {𝑥 ∈ ℝ𝑛 ∶ 𝐴𝑥 ≤ 𝑏}, i.e., the intersection of 𝑚 halfspaces for a
polytope with 𝑚 facets.

Definition 2.4.7 (convexity)
Subset 𝑆 ⊆ ℝ𝑛 such that for all 𝑥1, 𝑥2 ∈ 𝑆 and 𝜆 ∈ [0, 1], 𝜆𝑥1 + (1 − 𝜆)𝑥2 ∈ 𝑆. This expression
is a convex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combinationconvex combination.

Proposition 2.4.8
A halfspce is convex.

Proof. Let 𝐻 = {𝑥 ∈ ℝ𝑛 ∶ 𝑎⊺𝑥 ≤ 𝛽} be a halfspace and 𝑥1, 𝑥2 ∈ 𝐻. Then, with arbitrary 𝜆 ∈ [0, 1],
let 𝑥 = 𝜆𝑥1 + (1 − 𝜆)𝑥2.

We have 𝑎⊺𝑥 = 𝜆𝑎⊺𝑥1 + (1 − 𝜆)𝑎⊺𝑥2. But since 𝑥1, 𝑥2 ∈ 𝐻, we get 𝑎⊺𝑥 ≤ 𝜆𝛽 + (1 − 𝜆)𝛽 = 𝛽 as
desired.

Proposition 2.4.9
The intersection of convex sets is convex.

Proof. If two points are in the intersection, they are in each convex set. The line segment joining
them is then also in each convex set, meaning it is in the intersection.

Corollary 2.4.10. A polyhedron is convex.

Definition 2.4.11 (extreme point)
Point ̄𝑥 ∈ 𝐶 a convex set such that 𝑥 is not a convex combination of two distinct points in 𝐶
distinct from ̄𝑥.

Lecture 14
June 15Theorem 2.4.12 (characterization of extreme points in polyhedra)

For ̄𝑥 ∈ 𝑃 = {𝑥 ∈ ℝ𝑛 ∶ 𝐴𝑥 ≤ 𝑏} a polyhedron where 𝐴=𝑥 = 𝑏= is the set of tight constraints
for ̄𝑥, ̄𝑥 is an extreme point of 𝑃 if and only if rank(𝐴=) = 𝑛.
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Proof. Proceed by the contrapositive.

(⇐) Suppose ̄𝑥 is not an extreme point. Then, there exist distinct 𝑥1, 𝑥2 ∈ 𝑃 such that ̄𝑥 =
𝜆𝑥2 + (1 − 𝜆)𝑥2 for some 0 < 𝜆 < 1.

We have
𝐴= ̄𝑥 = 𝐴=(𝜆𝑥1 + (1 − 𝜆)𝑥2) = 𝜆(𝐴=𝑥1) + (1 − 𝜆)(𝐴=𝑥2) ≤ 𝑏=.

That is, there is equality throughout the line 𝐴=𝑥1 = 𝐴=𝑥2 = 𝑏=.

Then, since 𝐴=𝑥 = 𝑏= has at least three solutions (𝑥1, 𝑥2, ̄𝑥), we cannot have rank(𝐴=) = 𝑛.

(⇒) Suppose rank(𝐴=) < 𝑛. Then, there exists non-zero 𝑑 such that 𝐴=𝑑 = 𝟘.

Let 𝑥1 = ̄𝑥+𝜀𝑑 and 𝑥2 = ̄𝑥−𝜀𝑑 for some small positive 𝜀. By construction, ̄𝑥 is properly contained
in the line segment from 𝑥1 to 𝑥2.

Then, we can write
𝐴=𝑥1 = 𝐴=( ̄𝑥 + 𝜀𝑑) = 𝐴= ̄𝑥 + 𝜀𝐴=𝑑 = 𝐴= ̄𝑥 = 𝑏=

which means 𝑥1 (and likewise 𝑥2) satisfy the tight constraints.

For other non-tight constraints 𝑎⊺𝑥 ≤ 𝛽, we have

𝑎⊺ ̄𝑥 + 𝜀(𝑎⊺𝑑) < 𝛽 + 𝜀(𝑎⊺𝑑) ≤ 𝛽

for sufficiently small 𝜀. Therefore, 𝑥1 and 𝑥2 are in 𝑃 and ̄𝑥 is not an extreme point.

Theorem 2.4.13 (characterization of extreme points in SEF)
Let 𝑃 = {𝑥 ∈ ℝ𝑛 ∶ 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘} where 𝐴 has full row rank and let ̄𝑥 ∈ 𝑃.

Then, ̄𝑥 is an extreme point of 𝑃 if and only if ̄𝑥 is a BFS of 𝐴𝑥 = 𝑏.

Proof. Construct a polyhedron ⎛⎜
⎝

𝐴
−𝐴
−𝐼

⎞⎟
⎠

𝑥 ≤ ⎛⎜
⎝

𝑏
−𝑏
𝟘

⎞⎟
⎠

𝑥.

Suppose 𝐴 ̄𝑥 = 𝑏. By thm. 2.4.12, ̄𝑥 and extreme point if and only if the tight constraints have rank
𝑛. The top two submatrices are always tight, so we automatically get rank at least 𝑚. We need at
least 𝑛 − 𝑚 tight constraints in −𝐼 ̄𝑥 ≤ 𝟘. That is, 𝑛 − 𝑚 entries of ̄𝑥 are zero.

Then, ̄𝑥 is a basic feasible solution with 𝑚 basic variables and 𝑛 − 𝑚 non-basic variables.
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Chapter 4

Duality

4.1 Strong and weak duality

Example 4.1.1. Find max{(4, −9, 2, 4)𝑥 ∶ ( 1 −4 3 0
−1 7 −5 1)𝑥 = (7

3), 𝑥 ≥ 𝟘}.

Solution. Notice that (6, 2, 3, 10)⊺ is feasible. Objective value 52.

(7, 0, 0, 10)⊺ is feasible. Objective value 68. Claim this is optimal.

Notice that:

68 = 7 ⋅ 8 + 3 ⋅ 4
= 8(𝑥1 − 4𝑥2 + 3𝑥3) + 4(−𝑥1 + 7𝑥2 − 5𝑥3 + 𝑥4)
= 4𝑥1 − 4𝑥2 + 4𝑥3 + 4𝑥4

≥ 4𝑥1 − 9𝑥2 + 2𝑥3 + 4𝑥4 = 𝑐⊺𝑥

Since 𝑐⊺𝑥 ≤ 68, ny feasible solution has objective value at most 68. As (7, 0, 0, 10)⊺ is one such
solution, it is optimal.

In general, consider 𝑦. Then, 𝑦⊺𝑏 = 𝑦⊺𝐴𝑥
?
≥ 𝑐⊺𝑥. This works when 𝑦⊺𝐴 ≥ 𝑐⊺ or equivalently

𝐴⊺𝑦 ≥ 𝑐⊺. Then, 𝑦⊺𝑏 is an upper bound on the objective value. If 𝑦⊺𝑏 is the lowest upper bound,
it is the optimal objective value.

To find 𝑦, we can solve the dual LP.

Definition 4.1.2 (dual LP)
Given an LP (P) in SEF max{𝑐⊺𝑥 ∶ 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘}, construct the dual (D) min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 ≥ 𝑐}

Each constraint 𝑎𝑖𝑥𝑖 = 𝑏𝑖 in (P) corresponds to a variable 𝑦𝑖 in (D). Each variable 𝑥𝑗 in (P)
corresponds to a constraint (𝑎𝑗)⊺𝑦𝑗 ≤ 𝑐𝑗 in (D).

Lecture 15
June 20
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Notice that the feasible objective values of the dual are at most the feasible objective values of the
primal.

Then, the highest (optimal) value of the primal is bounded above by the lowest (optimal) value of
the dual. In fact, they meet only at optimality.

Theorem 4.1.3 (weak duality)
For an LP in SEF (P) max{𝑐⊺𝑥 ∶ 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘} and its dual (D) min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 ≥ 𝑐}, if ̄𝑥
and ̄𝑦 are feasible, then 𝑐⊺ ̄𝑥 ≤ 𝑏⊺ ̄𝑦.

Moreover, if 𝑐⊺ ̄𝑥 = 𝑏⊺ ̄𝑦, then ̄𝑥 and ̄𝑦 are optimal.

Proof. We have 𝑏⊺ ̄𝑦 = (𝐴 ̄𝑥)⊺ ̄𝑦 = ̄𝑥⊺𝐴⊺ ̄𝑦 ≥ ̄𝑥⊺𝑐 = 𝑐⊺ ̄𝑥, as desired.

Suppose 𝑐⊺ ̄𝑥 = 𝑏⊺ ̄𝑦. Let 𝑥 be arbitrary. Then, 𝑐⊺𝑥 ≤ 𝑏⊺ ̄𝑦 = 𝑐⊺ ̄𝑥. This is what it means for ̄𝑥 to
be optimal. Argue symmetrically for 𝑦.

Corollary 4.1.4. To certify ̄𝑥 is optimal for (P), it suffices to show that: ̄𝑥 is feasible, ̄𝑦 is
feasible, and 𝑐⊺ ̄𝑥 = 𝑏⊺ ̄𝑦.

Corollary 4.1.5. If (P) is unbounded, then (D) must be infeasible. Similarly, if (D) is un-
bounded, then (P) is infeasible. Finally, if both (P) and (D) are feasible, then they must have
optimal solutions.

Proof. Any feasible solution to (D) is an upper bound to the objective values of (P). Likewise in
the other direction.

Theorem 4.1.6 (strong duality)
If (P) has an optimal solution, then (D) has an optimal solution with the same optimal values.

Proof. Perform simplex on (P) to get a basic optimal solution ̄𝑥 with basis 𝐵. The objective function
in canonical form for 𝐵 is (𝑐⊺ − ̄𝑦⊺𝐴)𝑥 + 𝑏⊺ ̄𝑦 where ̄𝑦 = 𝐴−⊺

𝐵 𝑐𝐵.

Since 𝐵 is optimal, 𝑐⊺ − ̄𝑦⊺𝐴 ≤ 𝟘⊺ which gives 𝐴⊺𝑦 ≥ 𝑐, i.e., ̄𝑦 is feasible. Also, the objective value
of ̄𝑥 is 𝑐⊺𝑥 = 𝑏⊺𝑦.

Lecture 16
June 22Summarize the weak duality theorem results:

Dual \ Primal Optimal Unbounded Infeasible
Optimal ✓ × ×

Unbounded × × ✓
Infeasible × ✓ ✓ (edge case)
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Proposition 4.1.7 (dual of inequality)
Dual of max{𝑐⊺𝑥 ∶ 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 𝟘} is min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 ≥ 𝑐, 𝑦 ≥ 𝟘}.

Proof. Turn into SEF by adding slack variables: max{𝑐⊺𝑥 + 𝟘⊺𝑥′ ∶ 𝐴𝑥 + 𝐼𝑥′ = 𝑏, 𝑥 ≥ 𝟘}.

Get the dual of that which is min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 ≥ 𝑐, 𝑦 ≥ 𝟘}.

Likewise, the dual of max{𝑐⊺𝑥 ∶ 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 𝟘} is min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 ≥ 𝑐, 𝑦 ≤ 𝟘}

Proposition 4.1.8 (dual with free variables)
Dual of max{𝑐⊺𝑥 ∶ 𝐴𝑥 = 𝑏} is min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 = 𝑐}.

Proof. Turn into SEF: max{𝑐⊺𝑥+ − 𝑐⊺𝑥− ∶ 𝐴𝑥+ − 𝐴𝑥− = 𝑏, 𝑥+ ≥ 𝟘, 𝑥− ≥ 𝟘}.

Dual is min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 ≥ 𝑐, −𝐴⊺𝑦 ≥ −𝑐} = min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 = 𝑐}.

In fact, having 𝑥 ≥ 𝟘 will give 𝐴⊺𝑦 ≥ 𝑐 and 𝑥 ≤ 𝟘 will give 𝐴⊺𝑦 ≤ 𝑐.

Proposition 4.1.9 (dual of min)
Dual of the minimization LP (P*) is the maximization LP (D*) whose dual is (P*).

Proof. From max to min: constraints (swapped) → variables, variables → constraints.

From min to max: constraints → variables, variables (swapped) → constraints.

Example 4.1.10. Find the dual: Maximize (3, 1, 4, 1)𝑥 such that ⎛⎜
⎝

1 2 3 4
4 3 2 1
2 2 2 2

⎞⎟
⎠

𝑥
≥
≤
=

⎛⎜
⎝

3
4
5
⎞⎟
⎠

with 𝑥1, 𝑥2 ≥ 0, 𝑥3 ≤ 0, and 𝑥4 free.

Solution. Minimize (3, 4, 5)𝑦 such that:

• Dual constraints max → min kept:
⎛⎜⎜⎜⎜
⎝

1 4 2
2 3 2
3 2 2
4 1 2

⎞⎟⎟⎟⎟
⎠

𝑦

≥
≥
≤
=

⎛⎜⎜⎜⎜
⎝

3
1
4
1

⎞⎟⎟⎟⎟
⎠

.

• Dual variables max → min flipped: 𝑦1 ≤ 0, 𝑦2 ≥ 0, 𝑦3 free.

Theorem 4.1.11 (general weak duality)
Let (P) be a maximization LP with dual (D). If ̄𝑥 and ̄𝑦 are feasible for (P) and (D), respectively,
then the objective value of ̄𝑥 in (P) is at most the objective value of ̄𝑦 in (D).

If they are the same value, then they are both optimal.
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Theorem 4.1.12 (general strong duality)
Let (P) be an LP with dual (D). If (P) has an optimal solution, then (D) has an optimal
solution with the same optimal value.

4.2 Complementary slackness

Definition 4.2.1 (complementary slackness conditions)
For (𝐴⊺𝑦)⊺𝑥 ≥ 𝑐⊺𝑥 to hold with equality, we have 𝐴⊺

𝑖 𝑦𝑥𝑖 = 𝑐𝑖𝑥𝑖. Equivalently, either 𝐴⊺
𝑖 𝑦 = 𝑐𝑖

or 𝑥𝑖 = 0.

CS conditions are satisfied by feasible ̄𝑥 and ̄𝑦 if and only if ̄𝑥 and ̄𝑦 are optimal.
Lecture 17
June 27For an LP in SEF, the CS conditions are “either 𝑥𝑖 = 0 or the 𝑖-th dual constraint is tight”.

Equivalently, “if 𝑥𝑖 > 0, then the 𝑖-th dual constraint is tight” and “if the 𝑖-th dual constraint is
not tight, 𝑥𝑖 = 0”.

In general, given primal (P) and dual (D), their CS conditions are: (1) either 𝑥𝑖 = 0 or the 𝑖-th
constraint of (D) is tight and (2) either 𝑦𝑗 = 0 or the 𝑗-th constraint of (P) is tight. If there are
equality constraints, we can ignore that set of CS conditions since all constraints are tight.

Theorem 4.2.2 (complementary slackness)
Let (P) and (D) be a primal-dual pair with feasible solutions ̄𝑥 and ̄𝑦, respectively. Then, ̄𝑥
and ̄𝑦 are optimal if and only if all CS conditions hold.

To show ̄𝑥 is optimal for (P), we can provide ̄𝑦 and check that (1) ̄𝑥 is feasible, (2) ̄𝑦 is feasible, (3)
CS conditions.

Example 4.2.3. Find an optimal solution for max
⎧{
⎨{⎩

(1, −2)𝑥 ∶ ⎛⎜
⎝

1 −1
2 1
0 1

⎞⎟
⎠

𝑥
=
≥
≤

⎛⎜
⎝

2
1
4
⎞⎟
⎠

, 𝑥1 ≥ 0
⎫}
⎬}⎭

with dual min{(2, 1, 4)𝑦 ∶ ( 1 2 0
−1 1 1)𝑦 ≥

= ( 1
−2) ∶ 𝑦2 ≤ 0, 𝑦3 ≥ 0}

Solution. CS conditions:

• 𝑥1 = 0 or 𝑦1 + 2𝑦2 = 1
• (always true) 𝑥2 = 0 or −𝑦1 + 𝑦2 + 𝑦3 = −2
• (always true) 𝑦1 = 0 or 𝑥1 − 𝑥2 = 2
• 𝑦2 = 0 or 2𝑥1 + 𝑥2 = 1
• 𝑦3 = 0 or 𝑥2 = 4

Suppose we think that ̄𝑥 = (1, −1)⊺ is optimal. By inspection, ̄𝑥 feasible. Since ̄𝑥1 ≠ 0, we require
̄𝑦1 + 2 ̄𝑦2 = 1. The second condition is satisfied. Also, ̄𝑥2 ≠ 4, so ̄𝑦3 = 0.
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Adding on the requirement that ̄𝑦 feasible, we can solve for ̄𝑦 = (5
3 , −1

3 , 0)⊺.

Then, ̄𝑦 is feasible and satisfies CS conditions, so ̄𝑥 and ̄𝑦 are optimal.

If we try the above example with ̄𝑥 = (4, 2)⊺, we get CS conditions implying ̄𝑦 = (1, 0, 0)⊺, but
this is not feasible. Therefore, ̄𝑥 is not optimal.

The above example with simplex gives first

max
⎧{
⎨{⎩

(3, −2, 0, 0, 0)𝑥 ∶ ⎛⎜
⎝

4 −1
3 −3

−2 2

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

𝑥 = ⎛⎜
⎝

8
9
1
⎞⎟
⎠

, 𝑥 ≥ 𝟘
⎫}
⎬}⎭

and ends with

max
⎧{
⎨{⎩

(0, −
5
4, −

1
4, 0, 0)𝑥 + 6 ∶ ⎛⎜⎜

⎝

1 −1
4

1
4 0 0

0 −9
4 −3

4 1 0
0 3

2
1
2 0 1

⎞⎟⎟
⎠

𝑥 = ⎛⎜
⎝

2
3
5
⎞⎟
⎠

, 𝑥 ≥ 𝟘
⎫}
⎬}⎭

For each variable 𝑖, either 𝑥𝑖 = 0 (it is non-basic) or 𝑐𝑖 = 0 (it is basic). Recall: objective coefficients
are 𝑐′ = 𝑐 − 𝑦⊺𝐴 where 𝑦 = 𝐴−⊺

𝐵 𝑐𝐵 is the dual solution.

Then, 𝑐′
𝑖 = 0 implies 𝑐𝑖 − 𝑦⊺𝐴𝑖 = 0 or 𝑦⊺𝐴𝑖 = 𝑐𝑖 or 𝐴⊺

𝑖 𝑦 = 𝑐𝑖. That is, the 𝑖th constraint in the
dual is tight.

That is, either 𝑥𝑖 = 0 or the 𝑖-th constraint is tight, so all simplex BFS’s satisfy the CS conditions.

Also, when picking 𝑐𝑒 > 0 for the next iteration, 𝐴⊺
𝑒 𝑦 < 𝑐𝑒, i.e., we picked an infeasible 𝑦 to the

dual (since the dual constraint is 𝐴𝑦 ≤ 𝑐)

That is, whenever positive coefficients exist, 𝑦 is infeasible for the dual. Once the coefficients are
non-positive, 𝑦 is feasible and we have an optimal solution.

4.3 Geometry of the dual

Example 4.3.1. For arbitrary 𝑐, max

⎧
{
{
⎨
{
{
⎩

𝑐⊺𝑥 ∶
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1

1 2
−1 0
0 −1

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑥 ≤
⎛⎜⎜⎜⎜⎜⎜
⎝

4
3
8
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

⎫
}
}
⎬
}
}
⎭

.

Solution. (imagine polyhedron bounded by (0, 0), (0, 3), (2, 3), (4, 2), and (4, 0))

(4, 2)⊺ is the optimal solution whenever the slope is between the two constraints defining (4, 2)⊺,
i.e., −∞ ≤ 𝑚 ≤ −1

2 .

Formally, any 𝑐 in the coneconeconeconeconeconeconeconeconeconeconeconeconeconeconeconecone of (1, 0)⊺ and (1, 2)⊺ (the tight constraints).

Definition 4.3.2 (cone (generated by 𝑥))
The set {𝜆⊺𝑥 ∶ 𝜆 ≥ 𝟘}
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Lemma 4.3.3 (cone of tight constraints)
𝑐 is in the cone of tight constraints for ̄𝑥 if and only if ̄𝑥 is optimal for 𝑐.

Lecture 18
June 29

Example 4.3.4. Consider the primal-dual pair max

⎧
{
{
⎨
{
{
⎩

(𝑐1, 𝑐2)𝑥 ∶
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1
1 2

−1 0
0 −1

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑥 ≤
⎛⎜⎜⎜⎜⎜⎜
⎝

4
3
8
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

⎫
}
}
⎬
}
}
⎭

and

min{(4, 3, 8, 0, 0)𝑦 ∶ (1 0 1 −1 0
0 1 2 0 −1)𝑦 = (𝑐1

𝑐2
), 𝑦 ≥ 𝟘}

Solution. Suppose 𝑐 makes ̄𝑥 = (4, 2)⊺ optimal. Let 𝑦 be the correponding optimal dual solution.
The dual constraints are

(1
0)𝑦1 + (0

1)𝑦2 + (1
2)𝑦3 + (−1

0 )𝑦4 + ( 0
−1)𝑦5 = (𝑐1

𝑐2
)

CS conditions: either 𝑦𝑗 = 0 or the 𝑗-th primal constraint is tight. Here, constraints 1 and 3 are
tight. Then, 𝑦2 = 𝑦4 = 𝑦5 = 0 and we have

(1
0)𝑦1 + (1

2)𝑦3 = (𝑐1
𝑐2

)

with 𝑦1, 𝑦3 ≥ 0.

That is, 𝑐 is in the cone formed by the tight constraints for ̄𝑥.

Lemma 4.3.5 (Farkas’ lemma)
Given 𝐴 and 𝑏, either there exists 𝑥 such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 𝟘, or there exists 𝑦 such that
𝑦⊺𝐴 ≥ 𝟘⊺ and 𝑦⊺𝑏 < 0.

Equivalently, either a solution or certificate of infeasibility exists.

Proof. First, notice that having a certificate of infeasibility proves that there cannot be a solution
to 𝐴𝑥 = 𝑏 with 𝑥 ≥ 𝟘. Thus, both cannot hold.

Now, suppose the first condition is false. Consider max{𝟘⊺𝑥 ∶ 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘}.

This is infeasible by supposition. The dual is min{𝑏⊺𝑦 ∶ 𝐴⊺𝑦 ≥ 𝟘} which is trivially feasible since
it admits 𝑦 = 𝟘, so it must be unbounded.

Then, there must exist a solution ̄𝑦 with negative objective value, i.e., 𝑏⊺ ̄𝑦 < 0 and 𝐴⊺𝑦 ≥ 𝟘, as
desired.

Geometrically, consider the cone of column vectors. That is, all 𝑏 such that 𝐴𝑥 = 𝑏, 𝑥 ≥ 𝟘.

If 𝑏 is in the cone, we are done. If 𝑏 is not in the cone, then there must exist a hyperplane with
normal 𝑦 between the cone and 𝑏. Such a 𝑦 will give by definition 𝑦⊺𝑏 < 0 and 𝑦⊺𝐴 > 𝟘⊺.
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4.4 Shortest paths, revisited

Lecture 19
July 4Recall the formulation for shortest path problems: min{𝑐⊺𝑥 ∶ ∑𝑒∈𝛿(𝑆) 𝑥𝑒 ≥ 1, 𝑥𝑒 ≥ 0, 𝑥𝑒 ∈ ℤ}

Since there are 𝑂(2𝑛) constraints and it is an IP, this is hard to solve.

Instead, ignore integrality and take the dual: max{𝟙⊺𝑦 ∶ ∑𝑒∈𝛿(𝑆) 𝑦𝑆 ≤ 𝑐, 𝑦 ≥ 𝟘}.

There are dual variables 𝑦𝑆 corresponding to each 𝑠, 𝑡-cut and dual constraints for each edge. The
objective function is the sum of all 𝑦 variables.

Dual constraints: One constraint for each edge 𝑒, coefficient of 𝑦𝑆 is 1 if 𝑒 is in the cut 𝛿(𝑆). That
is, sum of 𝑦 values is at most the length of 𝑒

Interpret a dual solution 𝑦 as assigning a value 𝑦𝑆 to each cut so that the “sum of cuts” across an
edge is at most the edge’s weight.

Since an 𝑠, 𝑡-path must cross all 𝑠, 𝑡-cuts, this means that the “sum of cuts” is at most the sum of
weights of the edges in the path, i.e., the sum of cuts is at most the length of the path.

Equivalently, by weak duality, the objective value of the primal (length of the path) is at least the
objective value of the dual (sum of all cuts)

Imagine 𝑦𝑆 as the width of a barrier that a path must cross, so that a complete path must pass all
barriers. This is the width assignment.

Since we are maximizing, the barriers will expand to fill the path.

Take the dual and consider CS conditions:

• If 𝑒 is in the path, then the sum of width of all cuts containing 𝑒 is equal to its length and 𝑒
is tight

• If 𝑦𝑆 has positive width, then exactly one edge in 𝛿(𝑆) is in the path

Therefore, we can construct an algorithm to raise the 𝑦-value of 𝛿(𝑈) to create a tight edge.
Lecture 20
July 6Example 4.4.1. 𝐸 = {𝑠𝑎, 𝑠𝑏, 𝑎𝑏, 𝑎𝑡, 𝑏𝑡} with weights 𝑤 = {50, 30, 30, 40, 70}.

Solution. Walk through our “algorithm”:

• Initialize 𝑦 = 𝟘, 𝑈 = {𝑠}, 𝑇 = ⌀

• Iteration 1: 𝑈 = {𝑠}, 𝛿(𝑈) = {𝑠𝑎, 𝑎𝑏}. Can increase by 30 until 𝑠𝑏 becomes tight, so set
𝑦{𝑠} = 30. Append 𝑏 to 𝑈.

• Iteration 2: 𝑈 = {𝑠, 𝑏}, 𝛿(𝑈) = {𝑠𝑎, 𝑎𝑏, 𝑏𝑡}. Can increase by 20 until 𝑠𝑎 becomes tight, so set
𝑦{𝑠,𝑏} = 20. Append 𝑎 to 𝑈.

• Iteration 3: 𝑈 = {𝑠, 𝑏, 𝑎}, 𝛿(𝑈) = {𝑎𝑡, 𝑏𝑡}. Can increase by 40 until 𝑎𝑡 becomes tight, so set
𝑦{𝑠,𝑏,𝑎} = 40. Append 𝑡 to 𝑈.

Tight edges 𝑇 = {𝑠𝑏, 𝑠𝑎, 𝑎𝑡} so select path 𝑥𝑠𝑎 = 𝑥𝑎𝑡 = 1 with 𝑦{𝑠} = 30, 𝑦{𝑠𝑏} = 20, 𝑦{𝑠,𝑎,𝑏} =
40.
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Now, formalize the algorithm.

Definition 4.4.2 (slack)
The length of 𝑒 minus width of all cuts through 𝑒, i.e., slack(𝑒) = 𝑐𝑒 − ∑{𝑆∶𝑒∈𝛿(𝑆)} 𝑦𝑆

Algorithm 1 Shortest path algorithm
1: Set 𝑦 = 𝟘, 𝑈 = {𝑠}, 𝑇 = ⌀
2: while 𝑡 ∉ 𝑈 do
3: Calculate slack of all edges in 𝛿(𝑈)
4: Pick edge 𝑢𝑣 with minimum slack where 𝑢 ∈ 𝑈, 𝑣 ∉ 𝑈
5: Set 𝑦𝑈 ∶= slack(𝑢𝑣)
6: 𝑈 ∶= 𝑈 ∪ {𝑣}, 𝑇 ∶= 𝑇 ∪ {𝑢𝑣}
7: Output an 𝑠, 𝑡-path in 𝑇. Use 𝑦 as an optimal dual solution.

Example 4.4.3. 𝑉 = {𝑠, 𝑎, 𝑏, 𝑐, 𝑡}, 𝐸 = {𝑠𝑎, 𝑠𝑏, 𝑠𝑐, 𝑎𝑏, 𝑏𝑐, 𝑎𝑡, 𝑏𝑡, 𝑐𝑡} with 𝑤 = {20, 50, 30, 20, 10, 50, 40, 40}.

Solution. Perform the algorithm:

1. 𝑈 = {𝑠}, 𝑇 = ⌀, 𝛿(𝑈) = {𝑠𝑎, 𝑠𝑏, 𝑠𝑐}.
Slacks are 20, 50, and 30, so set 𝑦{𝑠} = 20 to get tight 𝑠𝑎.

2. 𝑈 = {𝑠, 𝑎}, 𝑇 = {𝑠𝑎}, 𝛿(𝑈) = {𝑎𝑡, 𝑎𝑏, 𝑠𝑏, 𝑠𝑐}.
Slacks are 50, 20, 50, and 10, so set 𝑦{𝑠,𝑎} = 10 to get tight 𝑠𝑐.

3. 𝑈 = {𝑠, 𝑎, 𝑐}, 𝑇 = {𝑠𝑎, 𝑠𝑐}, 𝛿(𝑈) = {𝑎𝑡, 𝑎𝑏, 𝑠𝑏, 𝑏𝑐, 𝑐𝑡}.
Slacks are 40, 10, 20, 10, 40, so set 𝑦{𝑠,𝑎,𝑐} = 10 to get tight 𝑎𝑏 and 𝑏𝑐. Arbitrarily pick 𝑎𝑏.

4. 𝑈 = {𝑠, 𝑎, 𝑏, 𝑐}, 𝑇 = {𝑠𝑎, 𝑠𝑐, 𝑎𝑏}, 𝛿(𝑈) = {𝑎𝑡, 𝑏𝑡, 𝑐𝑡}.
Slacks are 30, 40, and 30, so set 𝑦{𝑠,𝑎,𝑏,𝑐} = 30 to get tight 𝑎𝑡 and 𝑐𝑡. Arbitrarily pick 𝑐𝑡.

5. 𝑈 = {𝑠, 𝑎, 𝑏, 𝑐, 𝑡}, 𝑇 = {𝑠𝑎, 𝑠𝑐, 𝑎𝑏, 𝑐𝑡}.
Conclude with path {𝑠𝑐, 𝑐𝑡}.

Claim (proof omitted) that the algorithm produces a path that satisfies the second CS condition
(i.e., every cut with positive width crosses only one edge in the path)

Sketch: To cross a cut more than once, must go back and forth. To go back, must select an edge
going “backwards”, i.e., selecting a node already in 𝑈 to append to 𝑈. Contradiction.
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Chapter 6

Solving IPs

We cannot apply fundamental theorem of LPs to IPs, since some IPs may be feasible, bounded,
and still lack an optimal solution.

Example 6.0.1. max{𝑥1 −
√

2𝑥2 ∶ 𝑥1 −
√

2𝑥2 ≤ 0, 𝑥 ≥ 𝟙, 𝑥 ∈ ℤ2} has a feasible solution
𝑥 = (1, 1)⊺, is bounded since (1, −

√
2)⊺𝑥 ≤ 0, but has no optimal solution.

Definition 6.0.2 (convex hull)
The smallest convex set that contains all points in a set. Formally, conv(𝑥1, … , 𝑥𝑘) = {∑ 𝜆𝑖𝑥𝑖 ∶
∑ 𝜆𝑖 = 1, 𝜆 ≥ 𝟘}

Theorem 6.0.3 (Fundamental Theorem of Integer Programming)
Given a polyhedron 𝑃 = {𝑥 ∈ ℝ𝑛 ∶ 𝐴𝑥 ≤ 𝑏} with 𝐴, 𝑏 ∈ M(ℚ), the convex hull conv(ℤ𝑛 ∩ 𝑃)
is another polyhedron 𝑄 = {𝑥 ∈ ℝ𝑛 ∶ 𝐴′𝑥 ≤ 𝑏′} with 𝐴′, 𝑏′ ∈ M(ℚ).

This reduces solving an IP to solving a related LP, since the extreme points of 𝑄 are just integer
points in 𝑃.

Lecture 21
July 11Theorem 6.0.4

Given (IP) max{𝑐⊺𝑥 ∶ 𝐴𝑥 ≤ 𝑏 ∶ 𝑥 ∈ ℤ𝑛}, let {𝑥 ∶ 𝐴′𝑥 ≤ 𝑏′} be the convex hull of solutions of
(IP). Let (LP) be max{𝑐⊺𝑥 ∶ 𝐴′𝑥 ≤ 𝑏′}. Then:

• (IP) infeasible if and only if (LP) infeasible
• (IP) unbounded if and only if (LP) unbounded
• Every optimal solution of (IP) is an optimal solution of (LP)
• Every optimal solution of (LP) that is an extreme point is an optimal solution of (IP)

Not a great idea in general because finding the convex hull is hard.
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We need to find feasible solutions in order to define the convex hull anyways and the number of
constraints to define convex hull is 𝑂(2𝑛) in the original constraints.

There is no finite convex hull if coefficients are irrational.

Definition 6.0.5 (LP relaxation)
An IP without the integer constraint.

Example 6.0.6. Find max
⎧{
⎨{⎩

⎛⎜
⎝

0 1
3 −1

−5.5 −4
⎞⎟
⎠

𝑥 ≤ ⎛⎜
⎝

5.5
10.5
−22

⎞⎟
⎠

∶ 𝑥 ∈ ℤ3
⎫}
⎬}⎭

Solution. The optimal solution of the relaxation is (128
35 , 33

70)⊺.

To make a cutting plane, need (1) current non-integral optimal solution outside of halfspace and
(2) all integral feasible solutions inside halfspace.

For example, shrink the feasible region with 𝑥2 ≥ 2 to get new optimal solution (28
11 , 2)⊺ which is

“better”

To find cutting plane, note that simplex BFS ̄𝑥 = (128
35 , 33

70 , 176
35 , 0, 0)𝑡 with objective value −289

70 .

Take floor of coefficients on LHS, change = to ≤: 𝑥1 + ⌊ 8
35⌋𝑥4 + ⌊− 2

35⌋𝑥5 = 𝑥1 − 𝑥5 ≤ 128
35

Since 𝑥 ≥ 𝟘, LHS only decreases and all solutions are preserved.

Take floor of RHS constant: 𝑥1 − 𝑥5 ≤ ⌊128
35 ⌋ ≤ 3.

Since 𝑥 integral, coefficients integral, we can take floor without losing integral solutions. This also
eliminates ̄𝑥 since it satisfied the original constraint with equality.

Then, we have 𝑥1 − 𝑥5 ≤ 3 a cutting plane.

Lecture 22
July 13Summarize the algorithm:

Algorithm 2 Cutting plane algorithm
1: Relax the IP by removing the integrality constraint
2: Run simplex on the resulting LP to get non-integral BFS ̄𝑥
3: Select a constraint ∑ 𝑎𝑖𝑥𝑖 = 𝑏𝑗 where 𝑏𝑗 ∉ ℤ
4: Construct cutting plane ∑⌊𝑎𝑖⌋𝑥𝑖 ≤ ⌊𝑏𝑗⌋
5: Add slack variable to turn into equality and append to LP (will have to run either two-phase

simplex or dual simplex to find a new BFS)
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Chapter 7

Solving NLPs

Definition 7.0.1 (non-linear program)
min{𝑓(𝑥) ∶ 𝑔𝑖(𝑥) ≤ 0} where 𝑓, 𝑔𝑖 ∶ ℝ𝑛 → ℝ

IPs are just NLPs, so general NLP problem is even harder. The feasible regions of NLPs can be
disjoint and just all around awful.

To solve, we try to limit functions to being convex. Limiting the feasible region to be convex to
removes some of the awfulness. Local optimal solutions of convex regions are still globally optimal.
We can apply simplex to some sort of reduction of the region.

We construct halfspaces of non-linear tight constraints based on gradients. For example, 𝑔(𝑥) ≤ 0
becomes ∇𝑔( ̄𝑥) ≤ 0.

Definition 7.0.2 (convex function)
For all 𝑎, 𝑏 ∈ ℝ𝑛 and 0 ≤ 𝜆 ≤ 1, 𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) ≤ 𝜆𝑓(𝑎) + (1 − 𝜆)𝑓(𝑏). Equivalently, the line
between points 𝑓(𝑎) and 𝑓(𝑏) lies above the curve.

Lecture 23
July 18Example 7.0.3. Show 𝑓 ∶ ℝ → ℝ ∶ 𝑥 ↦ 𝑥2 is convex.

Proof. Let 𝑎, 𝑏 ∈ ℝ and 0 ≤ 𝜆 ≤ 1.

Then, 𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) = (𝜆𝑎 + (1 − 𝜆)𝑏)2 = 𝜆2𝑎2 + 2𝜆(1 − 𝜆)𝑎𝑏 + (1 − 𝜆)2𝑏2.

But (𝑎 − 𝑏)2 = 𝑎2 − 2𝑎𝑏 + 𝑏2 ≥ 0, so 2𝑎𝑏 ≥ 𝑎2 + 𝑏2.

So we have 𝑓(𝜆𝑎+(1−𝜆)𝑏) ≤ 𝜆2𝑎2+𝜆(1−𝜆)(𝑎2+𝑏2)+(1−𝜆)2𝑏2 = 𝜆𝑎2+(1−𝜆)𝑏2 = 𝜆𝑓(𝑎)+(1−𝜆)𝑓(𝑏)
as desired
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Lemma 7.0.4
The following are convex functions:

• 𝑘𝑥𝑛 for even 𝑛 and positive 𝑘
• Affine functions 𝑐⊺𝑥 + ̄𝑧
• Positive linear combinations of convex functions ∑ 𝑎𝑖𝑓𝑖(𝑥) with 𝑎 ≥ 𝟘

Definition 7.0.5 (epigraph)
The set {(𝑥, 𝑟)⊺ ∶ 𝑥 ∈ ℝ𝑛, 𝑟 ∈ ℝ, 𝑟 ≥ 𝑓(𝑥)} of points “above” the function.

Lemma 7.0.6
𝑓 is convex function if and only if the epigraph of 𝑓 is a convex set.

Since constraints in NLPs have the form 𝑔𝑖(𝑥) ≤ 0, we can use convexity.

Proposition 7.0.7
If 𝑔 ∶ ℝ𝑛 → ℝ is a convex function, 𝑆 = {𝑥 ∈ ℝ𝑛 ∶ 𝑔(𝑥) ≤ 0} is a convex set

Proof. Let 𝑎, 𝑏 ∈ 𝑆 and 0 ≤ 𝜆 ≤ 1. Then 𝑔(𝑎) ≤ 0 and 𝑔(𝑏) ≤ 0. Since 𝑔 is convex, 𝑔(𝜆𝑎+(1−𝜆)𝑏) =
𝜆𝑔(𝑎) + (1 − 𝜆)𝑔(𝑏) ≤ 𝜆 ⋅ 0 + (1 − 𝜆) ⋅ 0 = 0 so the convex combination is in 𝑆 and 𝑆 is convex.

In a convex NLP (i.e. all constraints 𝑔𝑖 are convex), the feasible region is the intersection of convex
sets, which is itself convex.

Definition 7.0.8 (relaxation)
Enlargement of a feasible region, i.e., if 𝑅 feasible region and 𝑅′ relaxation, 𝑅 ⊂ 𝑅′.

If optimal solution ̄𝑥 ∈ 𝑅′, then it must be optimal for 𝑅.

Similar to IPs, we define halfspaces that relax the feasible region.

Definition 7.0.9 (subgradient)
𝑠 ∈ ℝ𝑛 normal vector to the boundary at a point, i.e., 𝑔( ̄𝑥) + 𝑠⊺(𝑥 − ̄𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ ℝ𝑛

Since the LHS is just an affine function, this is a hyperplane beneath 𝑔(𝑥) with equality at 𝑥 = ̄𝑥

Definition 7.0.10 (supporting halfspace)
{𝑠⊺𝑥 ≤ 0 ∶ 𝑥 ∈ ℝ𝑛} ⊇ {𝑔(𝑥) ≤ 0 ∶ 𝑥 ∈ ℝ𝑛} for subgradient 𝑠
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Note: Supporting halfspaces only work with convex sets
Lecture 24
July 20Example 7.0.11. Consider 𝑔 ∶ ℝ2 → ℝ ∶ 𝑥 ↦ 1

4𝑥2
1 + 1

4𝑥2
2 − 1 with ̄𝑥 = (2, 0)⊺.

𝑠 = (2, 0)⊺ is a (unique) subgradient. The plane is 𝑠⊺(𝑥 − ̄𝑥) = 2𝑥1 − 4 = 0.

Example 7.0.12. Consider 𝑔 ∶ ℝ2 → ℝ ∶ 𝑥 ↦ |𝑥1| + |𝑥2| − 2 with ̄𝑥 = (2, 0)⊺.

Multiple subgradients exist because ̄𝑥 is on a sharp edge.

One is 𝑠 = (1, 0)⊺ with 𝑠⊺(𝑥 − ̄𝑥) = 𝑥1 − 2 = 0. Another is 𝑠 = (1, 1
2)𝑡 with 𝑠⊺(𝑥 − ̄𝑥) =

𝑥1 + 1
2𝑥2 − 2 = 0.

In fact, 𝑠 = (1, 𝑡)⊺ is a subgradient for −1 ≤ 𝑡 ≤ 1.

Definition 7.0.13 (supporting halfspace)
For convex set 𝐶 ⊆ ℝ𝑛 and ̄𝑥 ∈ 𝐶, 𝐹 = {𝑥 ∈ ℝ𝑛 ∶ 𝑠⊺𝑥 ≤ 𝛽} is a supporting halfspace of 𝐶 at

̄𝑥 if 𝐶 ⊆ 𝐹 and 𝑠⊺ ̄𝑥 = 𝛽 ( ̄𝑥 is on the boundary of the halfspace)

Note: subgradients are normal vectors of supporting halfspaces.

Theorem 7.0.14
For convex function 𝑔 ∶ ℝ𝑛 → ℝ, 𝑔( ̄𝑥) = 0 with 𝑠 a subgradient of 𝑔 at ̄𝑥 and 𝐶 = {𝑔(𝑥) ≤ 0},
𝐹 = {𝑠⊺(𝑥 − ̄𝑥) ≤ 0} is a supporting halfspace of 𝐶 at ̄𝑥

Proof. (𝐶 ⊆ 𝐹) If 𝑔(𝑥′) ≤ 0, then by definition of subgradients, 𝑔( ̄𝑥)⏟
=0

+𝑠⊺(𝑥′ − ̄𝑥) ≤ 𝑔(𝑥′) ≤ 0. That

is, 𝑥′ ∈ 𝐹.

(boundary) Plug in 𝑥 = ̄𝑥 in 𝐹, 𝑥⊺( ̄𝑥 − ̄𝑥) = 0.

Definition 7.0.15 (gradient)
For differentiable function 𝑓 ∶ ℝ𝑛 → ℝ, ∇𝑓(𝑥) = ( 𝜕𝑓

𝜕𝑥1
, … , 𝜕𝑓

𝜕𝑥𝑛
)⊺.

Lemma 7.0.16
∇𝑓( ̄𝑥) is a subgradient of 𝑓 at

Example 7.0.17. min{−𝑥1 − 𝑥2 ∶ 𝑥2
1 − 2𝑥2 − 4 ≤ 0, −7𝑥1 + 𝑥2

2 − 8 ≤ 0, −𝑥1 − 𝑥2 + 1 ≤ 0}

Solution. Propose ̄𝑥 = (4, 6)⊺ is optimal.

Replace tight constraints (1) and (2) by supporting halfspaces:
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• 𝑔1(𝑥) = 𝑥2
1 − 2𝑥2 − 4 so ∇𝑔1(𝑥) = (2𝑥1, −2)⊺ and ∇𝑔1( ̄𝑥) = (8, −2)⊺.

Supporting halfspace 8𝑥1 − 2𝑥2 − 20 ≤ 0.

• 𝑔2(𝑥) = −7𝑥1 + 𝑥2
2 − 8, so ∇𝑔2(𝑥) = (−7, 2𝑥2)⊺ and ∇𝑔1( ̄𝑥) = (−7, 12)⊺.

Supporting halfspace −7𝑥1 + 12𝑥2 − 44 ≤ 0.

Consider the LP max{(1, 1)𝑥 ∶ ( 8 −2
−7 12)𝑥 ≤ (20

44)}. Optimal if (1, 1)⊺ in cone of tight con-

straints, which it is.

Since LP is a relaxation and it is optimal, ̄𝑥 is optimal for the original NLP.

Proposition 7.0.18
For a convex NLP min{𝑐⊺𝑥 ∶ 𝑔𝑖(𝑥) ≤ 0} and a feasible solution ̄𝑥, if −𝑐 is in the cone generated
by the subgradients at ̄𝑥 of the tight constraints for ̄𝑥, then ̄𝑥 is optimal.

The converse is almost true. Need extra condition and differentiability

Definition 7.0.19 (Slater point)
𝑥′ where 𝑔𝑖(𝑥′) < 0, i.e., points in the interior of feasible region.

Theorem 7.0.20 (Karush–Kuhn–Tucker)
For NLP min{𝑓(𝑥) ∶ 𝑔𝑖(𝑥) ≤ 0} and feasible point ̄𝑥, if 𝑓, 𝑔𝑖 are all convex and differentiable
at ̄𝑥 and a Slater point exists, then ̄𝑥 is optimal if and only if −∇𝑓( ̄𝑥) is in the cone generated
by ∇𝑔𝑖( ̄𝑥) over tight constraints 𝑔𝑖
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