CO 250 Spring 2022: Lecture Notes

1 Intro 3
1.1 Linear programs 3
1.2 LP Formulation 5
1.3 Formulating IPs 7
1.4 Formulating NLPs 11
1.5 LP outcomes 12
2 Solving LPs 14
2.1 Preparation 14
2.2 Simplex 17
2.3 Two-phase simplex 19
2.4 Geometry of simplex 20
4 Duality 24
4.1 Strong and weak duality 24
4.2 Complementary slackness 27
4.3 Geometry of the dual 28
4.4 Shortest paths, revisited 30
6 Solving IPs 32
7 Solving NLPs 34
Back Matter 38
List of Named Results 38
Index of Defined Terms 39
Lecture notes taken, unless otherwise specified, by myself during section 001 of the Spring 2022offering of CO 250, taught by Martin Pei.
Notes are adapted into this format from hard copies/Obsidian.
Lectures Lecture 3 May 9 7
Lecture 4 May 11 9
Lecture 1 May 2 3 Lecture 5 May 16 10
Lecture 2 May 4 5 Lecture 6 May 18 12

Lecture 7	May 23	14	Lecture 16	June 22	25
Lecture 8	May 25	15	Lecture 17	June 27	27
Lecture 9	May 30	16	Lecture 18	June 29	29
Lecture 10	June 1	18	Lecture 19	July 4	30
Lecture 11	June 6	20	Lecture 20	July 6	30
Lecture 12	June 8	20	Lecture 21	July 11	32
Lecture 13	June 13	21	Lecture 22	July 13	33
Lecture 14	June 15	22	Lecture 23	July 18	34
Lecture 15	June 20	24	Lecture 24	July 20	36

Chapter 1

Intro

1.1 Linear programs

Example 1.1.1. Suppose we are selling apples and bananas at a stand. Apples sell for $\$ 2$ per kilogram, and bananas sell for $\$ 1.5$ per kilogram. Our stand holds up to 75 kilograms of fruits.

Lecture 1
May 2 Also, there are only 4 square metres of shelf space. Each kilogram of apples/bananas takes up roughly $0.08 / 0.05$ square metres of shelf space, respectively. How much of each fruit should we stock to maximize the total sales?

Solution. Let x_{1}, x_{2} be weight of apples, bananas (kg). Define objective function max $2 x_{1}+1.5 x_{2}$. Add constraints $x_{1}+x_{2} \leq 75$ for weight, $0.08 x_{1}+0.05 x_{2} \leq 4$ for shelf space, and $x_{1}, x_{2} \geq 0$ for common sense.
Summarize as a linear program:

$$
\begin{array}{rr}
\max & 2 x_{1}+1.5 x_{2} \\
x_{1}+x_{2} & \leq 75 \\
\text { subject to (s.t.) } & \leq 4 \\
& 0.08 x_{1}+0.05 x_{2}
\end{array} \leq 4
$$

Trial and error:

- $\left(x_{1}, x_{2}\right)=(30,20)$ satisfies constraints (feasible) with objective value 90
- $\left(x_{1}, x_{2}\right)=(31,20)$ feasible with objective value 92
- $\left(x_{1}, x_{2}\right)=(50,0)$ feasible with objective value 100
- $\left(x_{1}, x_{2}\right)=\left(8 \frac{1}{3}, 66 \frac{2}{3}\right)$ feasible with objective value $116 \frac{2}{3}$ (claim without proof that this is optimal)
N.B.: we take domain to be \mathbb{R} since we can take fractional parts of a kilogram of fruit

Plot feasible solutions:

Bound by convex region defined by axes, $x_{1}+x_{2}=23$, and $0.08 x_{1}+0.05 x_{2}=4$ to give optimal solution at vertex

Course overview

- Formulation/modelling: create mathematical programs from problems
- Solving linear programs: use simplex method to optimize
- Geometric interpretation: conceptualize linear programs and simplex method
- Integer programs: linear programs defined over \mathbb{Z}
- Nonlinear programs: convex functions

Definition 1.1.2 (optimization problem)

Given a set of feasible points $A \subseteq \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}$, find some $x \in A$ that minimizes or maximizes the objective value $f(x)$.

Composed of decision variables $\mathbf{x} \in \mathbb{R}^{n}$, the objective function $\max f(\mathbf{x})$ or $\min f(\mathbf{x})$, and some constraints of the form $g_{i}(\mathbf{x}) \leq b_{i}$

Definition 1.1.3 (affine function)
Function of the form $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}+b=a_{1} x_{1}+\cdots+a_{n} x_{n}+b$ for constants \mathbf{a} and b

Definition 1.1.4 (linear function)

Affine function with $b=0$

Definition 1.1.5 (linear program)

An optimization problem with affine objective function $f(\mathbf{x})$ and finitely many linear constraint functions $g_{i}(x) \geq b_{i}$ (or $\leq b_{i}$ or $=b_{i}$) with constant \mathbf{b}.
N.B.: constraints cannot be strict inequalities

1.2 LP Formulation

Example 1.2.1. A company makes 4 types of products, each requiring time on two different machines and two types of labour. The amount of machine time and labour needed to produce one unit of each product along with its sale price are summarized in the following table.

Product	Machine 1	Machine 2	Skilled labour	Unskilled labour	Unit sale price
1	11	4	8	7	300
2	7	6	5	8	260
3	6	5	5	7	220
4	5	4	6	4	180

Each month, the company can use up to 700 hours on machine 1 , and 500 hours on machine 2, with no cost. The company can hire up to 600 hours of skilled labour at $\$ 8$ per hour, and up to 650 hours of unskilled labour at $\$ 6$ per hour. How should the company operate to maximize their monthly profit?

Solution. Let $\mathbf{x} \in \mathbb{R}^{4}$ be number of units of products, y_{s} and y_{u} be hours of labour hired
Let the objective function be max $300 x_{1}+260 x_{2}+220 x_{3}+180 x_{4}-8 y_{s}-6 y_{u}$ (unit sale revenue net of labour costs)
Let the constraints be $11 x_{1}+7 x_{2}+6 x_{3}+5 x_{4} \leq 700$ (machine 1), $4 x_{1}+6 x_{2}+5 x_{3}+4 x_{4} \leq 500$ (machine 2), $8 x_{1}+5 x_{2}+5 x_{3}+6 x_{4}=y_{s}, 7 x_{1}+8 x_{2}+7 x_{3}+4 x_{4}=y_{u}$ (defining y_{s} and y_{u}), $y_{s} \leq 600$, $y_{u} \leq 650$ (labour), and $x_{1}, x_{2}, x_{3}, x_{4}, y_{s}, y_{u} \geq 0$ (non-negativity)

Example 1.2.2. A certain company provides heading oil for the local commnity. They have

Lecture 2
May 4

Solution. Let x_{i} be the amount of oil purchased in the i th month, and y_{i} be the amount of oil in the storage tank at the start of month i.

Then, we want to minimize $0.75 x_{1}+0.72 x_{2}+0.92 x_{3}+0.9 x_{4}$.
The storage tank constrains us by $y_{i} \leq 4000$ and the problem gives $y_{1}=2000$.
Non-negativity gives $x_{i}, y_{i} \geq 0$.
For each demand d_{i}, we have $x_{i}+y_{i}=d_{i}+y_{i+1}$.

Then, we can write:

$$
\begin{aligned}
& \min 0.75 x_{1}+0.72 x_{2}+0.92 x_{3}+0.9 x_{4} \\
& \text { s.t. } \quad y_{1}, y_{2}, y_{3}, y_{4} \leq 4000 \\
& y_{1}=2000 \\
& x_{1}+y_{1}=5000+y_{2} \\
& x_{2}+y_{2}=8000+y_{3} \\
& x_{3}+y_{3}=9000+y_{4} \\
& x_{4}+y_{4}=6000 \\
& x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4} \geq 0
\end{aligned}
$$

Example 1.2.3. Instead of minimizing the total money spent, suppose we do not have much money to spend each month, and we want to reduce the maximum amount spent in a month.

Solution. Let $M=\max \left\{0.75 x_{1}, 0.72 x_{2}, 0.92 x_{3}, 0.9 x_{4}\right\}$.
Since M is not linear, we cannot simply put $\min M$ in an LP.
Instead, define m with constraints $m \geq 0.75 x_{1}, m \geq 0.72 x_{2}, m \geq 0.92 x_{3}, m \geq 0.9 x_{4}$.
Since we are doing $\min m$, we are guaranteed that the optimal solution will give $m=M$ (if m is not M, we can make m smaller).

Example 1.2.4. Given a set of data points $\left\{\left(x_{i}, y_{i}\right): i=1, \ldots, n\right\}$ on the plane. Find a line $y=a x+b$ that "best fits" this set of data points.

Solution. Define "best fit" as minimizing total vertical distance between points and the line.
That is, we must minimize $\sum\left|a x_{i}+b-y_{i}\right|$, but that is not affine.
Define instead the errors e_{i} associated with the point i.
We want to constrain $e_{i}=\left|a x_{i}+b-y_{i}\right|$, which we can do with $e_{i} \geq a x_{i}+b-y_{i}$ and $e_{i} \geq y_{i}-a x_{i}-b$ since $|x|=\max \{x,-x\}$.

Then, we can use min $\sum e_{i}$ as above to get the final LP:

$$
\begin{aligned}
\min & \sum e_{i} \\
\text { s.t. } & e_{i} \geq a x_{i}+b-y_{i} \\
& e_{i} \geq y_{i}-a x_{i}-b
\end{aligned}
$$

N.B.: since e_{i}, e_{j} do not share constraints when $i \neq j, \min \sum e_{i}$ is equivalent to min $e_{1}, \ldots, \min e_{n}$.

Exercise 1.2.5. Modify this to find the best fit parabola. Is this an LP?

Solution. Yes, since considering the error function $a x_{i}^{2}+b x_{i}+c-y_{i}$ is still linear with respect to the variables for optimization a, b, and c.

1.3 Formulating IPs

Example 1.3.1. Consider the job application process where a company has 3 positions available, and there are 4 applicants for these jobs. For each applicant and position, the company

Lecture 3 May 9 assigns a number indicating how well the applicant is suited for the position. The goal is to hire a different applicant for each position to maximize the total suitability.

$$
\begin{aligned}
& \text { Candidates }
\end{aligned}
$$

Solution. Want: For each position, who gets that position
Define: Create binary variable $x_{i j}$ for each position i and candidates j. Let $x_{i j}=1$ if position i given to candidate j, and 0 otherwise
Objective function: $\max \sum \sum M_{i j} x_{i j}$
Constraints: $\sum_{j} x_{i j}=1$ for each i (each position filled by exactly one candidate), and $\sum_{i} x_{i j} \leq 1$ for each j (each candidate takes at most one position), $x_{i j} \geq 0, x_{i j} \leq 1, x_{i j} \in \mathbb{Z}$ (integrality)

$$
\begin{array}{ll}
\max & \sum_{i=0}^{3} \sum_{j=0}^{4} M_{i j} x_{i j} \\
\text { s.t. } & \sum_{j=0}^{4} x_{i j}=1 \\
& \sum_{i=0}^{3} x_{i j} \leq 1 \\
& i=1, \ldots, 3 \\
& \\
& j=1, \ldots, 4 \\
i j & \leq 1, x_{i j} \in \mathbb{Z}
\end{array}
$$

Notation. We define $x \in\{0,1\}$ to mean the constraints $0 \leq x \leq 1$ and $x \in \mathbb{Z}$

Example 1.3.2 (Knapsack problem). There are 4 types of items that you can put into your backpack. You can take any integer number of units of any item. However, you can only carry a maximum of 40 pounds. Each unit of item you take is also worth a certain amount of money. The goal is to maximize the total value of the items you carry.

Item	A	B	C	D
Weight (lbs)	1	7	3	2
Value (\$)	10	50	20	15

Solution. Let $x_{i}, i=A, B, C, D$ be the number of units of i packed
Objective function: $\max 10 x_{A}+50 x_{B}+20 x_{C}+15 x_{D}$

Constraints: $x_{A}+7 x_{B}+3 x_{C}+2 x_{D} \leq 40$ (weight limit), $x_{i} \geq 0, x_{i} \in \mathbb{Z}$ (integrality)

$$
\begin{array}{rr}
\max & 10 x_{A}+50 x_{B}+20 x_{C}+15 x_{D} \\
\text { s.t. } & x_{A}+7 x_{B}+3 x_{C}+2 x_{D} \leq 40 \\
& x_{A}, x_{B}, x_{C}, x_{D} \geq 0 \\
& x_{A}, x_{B}, x_{C}, x_{D} \in \mathbb{Z}
\end{array}
$$

Example 1.3.3. Suppose we are allowed to take A only if we take at least one unit of B.

Solution. Want: if $x_{B}=0$, then we must have $x_{A}=0$. If $x_{B} \geq 1$, no restriction on A.
Equivalently, add the constraint $x_{A} \leq x_{B} \max x_{A}=40 x_{B}$. When $x_{B}=0$, the RHS goes to 0 and constrains $x_{A}=0$. Otherwise, since $x_{B} \geq 1,40 x_{B} \geq 40$ which is the maximum value of x_{A}, so there are effectively no constraints on x_{A}.

Example 1.3.4. Suppose we want the following conditions to hold:

1. We carry at least 5 units of items A and/or B; or
2. We carry at least 7 units of items C and/or D .

Solution. Define a binary variable y. Want: $y= \begin{cases}1 & \text { condition } 1 \text { is true } \\ 0 & \text { condition } 2 \text { is true }\end{cases}$
If $y=1$, then $x_{A}+x_{B} \geq 5$; if $y=0$, no restrictions on x_{A}, x_{B}. We can implement this by adding the constraint $x_{A}+x_{B} \geq 5 y$, since $y=0$ will send the RHS to 0

If $y=0$, then $x_{C}+x_{D} \geq 7$; if $y=1$, no restrictions on x_{C}, x_{D}. Similarly implement with $x_{C}+x_{D} \geq 7(1-y)$, since $y=1$ will send the RHS to 0

Notice that setting y does not force the other condition not to hold, i.e., this implements an inclusive or.

In summary: $x_{A}+x_{B} \geq 5 y, x_{C}+x_{D} \geq 7(1-y)$, and $y \in\{0,1\}$
N.B.: When feeding these constraints into an algorithm, ensure that the constraints are truly linear, i.e., move variables to one side. For example, $x_{A}+x_{B}-5 y \geq 0$

Exercise 1.3.5. Implement an exclusive or of these two conditions

Example 1.3.6. Suppose that the value of item A is $\$ 10$ for the first 5 units, but any more units beyond that has value $\$ 5$.

Solution. Separate x_{A} into two variables $x_{A 1}$ for first five units and $x_{A 2}$ for remainder. Then, we have $x_{A}=x_{A 1}+x_{A 2}$ and change the objective function to $10 x_{A 1}+5 x_{A 2}+50 x_{B}+20 x_{C}+15 x_{C}$.

We can create a constraint to force $x_{A 2}$ only to go up when $x_{A 1}$ is 5 with $x_{A 2} \leq\left(x_{A 1}-4\right) \max x_{A 2}$ which will work in tandem with the non-negativity constraint. This is not actually necessary since
the maximum will always fill $x_{A 1}$ before $x_{A 2}$ because it is worth more (i.e. trading one $x_{A 2}$ for $x_{A 1}$ will increase the objective function by 5)

In summary: change the objective function and add the constraints $x_{A}=x_{A 1}+x_{A 2}, x_{A 1} \leq 5$, $x_{A 1}, x_{A 2} \geq 0, x_{A 1}, x_{A 2} \in \mathbb{Z}$

Notation (vector notation). Write $\mathbb{1}:=(1, \ldots, 1)^{T}$ and $x \leq y$ if $x_{i} \leq y_{i}$ for all i.

Lecture 4
May 11

Definition 1.3.7 (graph)
$G=(V, E)$ consists of a set of objects V (vertices) and a set of unordered pairs of vertices E (edges).

We restrict graphs by disallowing empty graphs, redundant edges, directed edges, or selfconnections.

Example 1.3.8. $G=(V, E)$ by $V=\{1,2,3,4\}, E=\{12,23,34,41,24\}$

Definition 1.3.9 (incidence relation)
For an edge $e=u v, e$ is incident to u and $v . \delta(v)$ is the set of all edges incident to v.
The incidence matrix $B \in\{0,1\}^{|V \times|E|}$ has rows indexed by V, columns by E, and $B_{v e}=1$ when $e \in \delta(v)$ and 0 otherwise.

Example 1.3.10. For Example 1.3.8, $B=\begin{gathered}e_{1} \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4\end{gathered}\left(\begin{array}{cccc}1 & e_{3} & e_{4} & e_{5} \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right) 1$.

Remark 1.3.11. Each column has exactly two ones, so $B \mathbb{1}=2 \mathbb{1}$.

Definition 1.3.12 (matching)
$M \subseteq E$ where each vertex is incident with exactly zero or one edge in M (i.e., $|M \cap \delta(v)| \leq 1$ for all $v \in V$)

Example 1.3.13. For Example 1.3.8, $\left\{e_{1}, e_{3}\right\}$ and $\left\{e_{5}\right\}$ are matchings but $\left\{e_{1}, e_{5}\right\}$ is not since 2 is incident to both edges

Example 1.3.14 (maximum-weight matching). Given graph $G=(V, E)$ and weights w_{e} for each $e \in E$. Find a matching in G with the maximum edge weight, i.e., maximize $\sum_{e \in M} w_{e}$.

Solution. Define a vector $x \in\{0,1\}^{|E|}$ by $x_{e}=1$ if $e \in M$ and 0 otherwise. Then, the objective function is $\max w^{T} x$. To ensure each node appears only once, add constraints $\sum_{e \in \delta(v)} x_{e} \leq 1$ for each $v \in V$. This is equivalent to taking the incidence matrix A and saying $A x \leq \mathbb{1}$ This gives us the integer program

$$
\begin{aligned}
\max & w^{T} x \\
\text { s.t. } & A x \leq \mathbb{1} \\
& x_{e} \in\{0,1\} \quad e \in E
\end{aligned}
$$

Definition 1.3.15 (v_{1}, v_{k}-path)
Sequence of edges $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}$ such that v_{1}, \ldots, v_{k} are distinct

Example 1.3.16. Consider graph $(\{s, t, a, b, c, d\},\{s a, s c, a b, a c, b d, b t, c b, c d, d t\})$.

Then, $s a, a b, b t$ and $s c, c b, b d, d t$ are s, t-paths but $s a, a b, b c, c d, c b, b t$ is not since b is visited twice.

Problem 1.3.17 (shortest path)
Given graph $G=(V, E)$, vertices s and t, and positive weights w_{e} for each $e \in E$. Find an s, t-path P with the minimum edge weight, i.e., minimize $\sum_{e \in P} w_{e}$.

Define a vector $x \in\{0,1\}^{|E|}$ by $x_{e}=1$ if $e \in P$ and 0 otherwise.
The objective function is $\min w^{T} x$.
Need to constrain x into a path: use cuts.

Definition 1.3.18 (cut)
The cut induced by vertices W is the set $\delta(W)$ of all edges with exactly one endpoint in W. Formally, $\delta(W)=\{u v \in E: u \in W, v \notin W\}$.

An s, t-cut $\delta(W)$ has $s \in W$ and $t \notin W$.

Example 1.3.19. In Example 1.3.16, $W=\{s, a, b\}$ induces the cut $\delta(W)=\{s c, a c, b c, b d, b t\}$

Proposition 1.3.20
Notice that the edges in an s, t-cut separate s from t, so an s, t-path must use at least one edge from every s, t-cut (formal proof in graph theory course)

We get a constraint $\sum_{e \in \delta(W)} x_{e} \geq 1$ for all s, t-cuts $\delta(W)$ (that is, for all $W \subset V$ with $s \in W$ and $t \notin W)$

Proposition 1.3.21

If a set of edges intersects every s, t-cut, then it contains an s, t-path

Minimizing the edge weights will ensure that the extraneous edges are optimized away and the s, t-path remains so long as the edge weights are all positive.

This gives us a final IP of

$$
\begin{array}{lr}
\min & w^{T} x \\
\text { s.t. } & \sum_{e \in \delta(W)} x_{e} \geq 1 \\
& x_{e} \geq 0, x_{e} \in \mathbb{Z}
\end{array} \quad \delta(W) \text { an } s, t \text {-cut } \begin{aligned}
\\
e \in E
\end{aligned}
$$

1.4 Formulating NLPs

Definition 1.4.1 (non-linear program)
A program of the general form $\min f(x)$ subject to $g_{i}(x) \leq 0$ for some arbitrary functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with no restrictions

Example 1.4.2. Among all the points x that satisfy $A x \leq b$, find one that is closest to the target point \bar{x}

Solution. We can take the norm and minimize $\|x-\bar{x}\|=\sqrt{\sum\left(x_{i}-\bar{x}_{i}\right)^{2}}$. This gives us the nonlinear program $\min \|x-\bar{x}\|$, s.t. $A x \leq b$.

Since the definition for NLP has no constraints on f and g_{i}, a LP is an NLP.

Lecture 6 May 18

The integrality constraint makes IPs not NLPs. To get around this, use a periodic function like $\sin \theta=0$ which permits values $\theta=k \pi$ for integer k, so $x \in \mathbb{Z} \Leftrightarrow \sin x \pi=0$. Using this makes IPs into NLPs.

If we can solve NLPs, we can also solve LPs and IPs.

1.5 LP outcomes

An algorithm that solves LPs should produce:

- The optimal solution (or that no solution exists)
- Certificate of correctness that reduces complexity of verification

Definition 1.5.1 (infeasibility)
No feasible solutions exist.

Example 1.5.2. $\max x$ s.t. $x \leq 2$ and $x \geq 3$. Obviously, no x exists.

Example 1.5.3. $\max (3,1,-7,4) x$ s.t. $\left(\begin{array}{cccc}-5 & 4 & 3 & -1 \\ 2 & 1 & -5 & 3 \\ -1 & -3 & 1 & -2\end{array}\right) x=\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)$ and $x \geq \mathbb{0}$.
Taking $-2 R_{1}-3 R_{2}-4 R_{3}$, we get $8 x_{1}+x_{2}+5 x_{3}+x_{4}=-4$ but each entry in x must be non-negative, so this is impossible.

Formally, we can let $y=(-2,-3,-4)^{T}$, then multiply on the left by y^{T} to give us the same equation as $(8,1,5,1) x=-4$.

Then, y is the certificate of infeasibility.

Proposition 1.5.4
The system $A x=b, x \geq \mathbb{O}$ is infeasible if there exists a vector y such that $y^{T} A \geq \mathbb{O}$ but $y^{T} b<0$

Proof. Suppose the system is feasible with x as the feasible solution. Then, $A x=b$ and $x \geq \mathbb{0}$. However, $y^{T} A x \geq 0$ and $y^{T} b<0$. Contradiction.

The converse is also true. Proof will come later as Farkas' Lemma.

Definition 1.5.5 (unboundedness)
Infinitely better feasible solutions exist.
Formally, a max (resp. min) LP is unbounded if there exists a series of feasible solutions $x(t)$ with the objective value of $x(t)$ approaching $+\infty$ (resp. $-\infty$) as $t \rightarrow \infty$.

Example 1.5.6. max x s.t. $x \geq 1$: there is no best solution (cf. strict inequalities)

Example 1.5.7. $\max (-1,2,-3,4) x$ s.t. $\left(\begin{array}{cccc}3 & 0 & 2 & -5 \\ -2 & 3 & -4 & 4\end{array}\right) x=\binom{4}{1}$ and $x \geq \mathbb{0}$.
Consider $\bar{x}=(3,1,0,1)^{T}$ and $d=(0,4,5,2)^{T}$. Define $x(t)=\bar{x}+t d$ and consider t from $0 \rightarrow \infty$. We must show feasibility and unboundedness.

Obviously, $x(t) \geq \mathbb{D}$ since $\bar{x}, d \geq \mathbb{D}$ and $t \geq 0$.
Notice $A x(t)=A \bar{x}+t A d=(4,1)^{T}+t(0,0)^{T}=b$. That is, \bar{x} solves $A x=b$ and d lies in the kernel of A.

The objective value $c^{T} x(t)=c^{T}(\bar{x}+t d)=c^{T} \bar{x}+t c^{T} d=3+t$ clearly goes to $+\infty$ as $t \rightarrow \infty$.
Then, (\bar{x}, d) is a certificate of unboundedness for the LP.

Proposition 1.5.8

The LP $\max \left\{c^{T} x: A x=b, x \geq \mathbb{O}\right\}$ is unbounded if there exist vectors \bar{x} and d such that $\bar{x}, d \geq \mathbb{O}, A d=\mathbb{O}, c^{T} d>0$.

Chapter 2

Solving LPs

2.1 Preparation

Example 2.1.1. $\max (0,-2,-3,0) x+7$ subject to $\left(\begin{array}{cccc}1 & 3 & -5 & 0 \\ 0 & -1 & 2 & 1\end{array}\right) x=\binom{6}{9}$ and $x \geq \mathbb{0}$

Solution. Trivial solution: $\bar{x}=(6,0,0,9)^{\top}$ gives objective value 7
Claim: \bar{x} is optimal
Proof: the term $(0,-2,-3,0) x \leq 0$ since $x \geq \mathbb{D}$. Its highest value is then 0 , so the highest objective value is 7 . Since the objective value of \bar{x} is 7 , it is optimal.

Theorem 2.1.2 (Fundamental Theorem of Linear Programming)
For a linear program P, exactly one of the following holds:

- P is infeasible
- P is unbounded
- P has an optimal solution

This does not apply to non-linear programs: e.g., $\max x$ subject to $x<1$. This NLP is feasible (consider $\bar{x}=0$) and bounded $\left(x<1\right.$), but has no optimal solution (given \bar{x} a solution, $\frac{\bar{x}+1}{2}$ is a better solution)

Definition 2.1.3 (standard equality form)
A linear program of the form $\max \left\{c^{\top} x+\bar{z}: A x=b, x \geq \mathbb{D}\right\}$
Requires maximization, equality constraint, and non-negative variables

Simplex requires SEF, so must convert LPs into equivalent SEF LP.

Definition 2.1.4 (equivalence)
P and P^{\prime} are equivalent if (1) P infeasible iff P^{\prime} infeasible, (2) P unbounded iff P^{\prime} unbounded, and (3) optimal solutions of P can be constructed from P^{\prime} and vice versa

Find an equivalent SEF by:

- Given a minimization LP min $f(x)$, just take max $-f(x)$
- Given an inequality $x \leq k$, define a slack variable $x+x^{\prime}=k$ with $x^{\prime} \geq 0$
- Given a free variable x, define two non-negative variables x^{+}and x^{-}so that we can replace $x=x^{+}-x^{-}$

Example 2.1.5. Find an equivalent LP in SEF

$$
\begin{aligned}
& \min (-1,2,-3) x \\
& \text { s.t. }\left(\begin{array}{ccc}
1 & 5 & 3 \\
2 & -1 & 2 \\
1 & 2 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \leq\left(\begin{array}{l}
5 \\
4 \\
2
\end{array}\right) \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution. Switch min to max with new objective function $(1,-2,3) x$
Divide $x_{3}=x_{3}^{+}-x_{3}^{-}$giving $\left(\begin{array}{cccc}1 & 5 & 3 & -3 \\ 2 & -1 & 2 & -2 \\ 1 & 2 & -1 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}^{+} \\ x_{3}^{-}\end{array}\right)$
Add slack variables x_{4}, x_{5} giving new rows $(1,5,3,1,0) x=5$ and $(2,-1,2,0,1) x=4$
Let $x=\left(x_{1}, x_{2}, x_{3}^{+}, x_{3}^{-}, x_{4}, x_{5}\right)^{\top}$ and combine to get the SEF

$$
\max \left\{(1,-2,3,-3,0,0) x:\left(\begin{array}{cccccc}
1 & 5 & 3 & -3 & 1 & 0 \\
2 & -1 & 2 & -2 & 0 & 1 \\
1 & 2 & -1 & 1 & 0 & 0
\end{array}\right) x=\left(\begin{array}{l}
5 \\
4 \\
2
\end{array}\right), x \geq \mathbb{0}\right\}
$$

Suppose simplex solves this and gives optimal solution $\left(\frac{11}{4}, 0, \frac{3}{4}, 0,0,3\right)^{\top}$ with optimal value 5 . Then, the original LP is solved by $\left(\frac{11}{4}, 0, \frac{3}{4}-0\right)^{\top}=\left(\frac{11}{4}, 0, \frac{3}{4}\right)$ with optimal value -5 .

Example 2.1.6. $\max (3,-2,0,0,0) x$ such that $x \geq \mathbb{O}$ and $\left(\begin{array}{ccccc}4 & -1 & 1 & 0 & 0 \\ 3 & -3 & 0 & 1 & 0 \\ -2 & 2 & 0 & 0 & 1\end{array}\right) x=\left(\begin{array}{l}8 \\ 9 \\ 1\end{array}\right)$

Lecture 8
May 25

Solution. Feasible solution: $\bar{x}=(0,0,8,9,1)^{\top}$ with objective value $(3,-2,0,0,0)(0,0,8,9,1)^{\top}=0$
To increase objective value, must increase x_{1} (the only one with a positive coefficient in the objective function)

Change $x_{1} \mapsto t$, keep $x_{2}=0$, and set $x_{3} \mapsto 8-4 t, x_{4} \mapsto 9-3 t$, and $x_{5} \mapsto 1+2 t$ to maintain feasibility

But we still have non-negativity, giving us $t \leq 2$, i.e., $\overline{\bar{x}}=(2,0,0,3,5)^{\top}$

This example worked because we had (1) the identity matrix embedded in columns, (2) those columns have zero coefficients in the objective function. Equivalent strategies will exist if the matrix's rows are independent.

Notation. Given a matrix A, notate the column $j=1, \ldots, n$ of A by A_{j} and then the submatrix formed by columns $J \subseteq\{1, \ldots, n\}$ by A_{J}

Proposition 2.1.7

TFAE: $B \subseteq\{1, \ldots, n\}$ is a basis; A_{B} is invertible; and $|B|=m$ and the columns A_{B} are linearly independent

Definition 2.1.8

Given a basis B, a non-basis $N=\{1, \ldots, n\} \backslash B$.
The variables x_{B} where B a basis are basic variables; conversely, x_{N} are non-basic variables.
This lets us write $A x=A_{B} x_{B}+A_{N} x_{N}$.
A basic solution (with respect to B) is a solution x where $x_{N}=0$.

To find a basic solution x_{B}, multiply both sides of the constraint $A x=b$ on the left by A_{B}^{-1}. Then, $A_{B}^{-1} A x=A_{B}^{-1} b$ and we can read the basic solution $x_{B}=A_{B}^{-1} b$.

Definition 2.1.9 (basic feasible solution)
A value \bar{x} such that $\bar{x}_{B} \geq \mathbb{D}$.

Definition 2.1.10 (canonical form)
$\mathrm{SEF} \max \left\{c^{\top} x+\bar{z}: A x=b, x \geq \mathbb{D}\right\}$ if $A_{B}=I$ and $c_{B}=\mathbb{O}$

Example 2.1.11. Write the canonical form for $B=\{2,3\}$ of $\max (3,-1,4,0,-1) x+2$ s.t.

Lecture 9
May 30
$x \geq \mathbb{1}$ and $\left(\begin{array}{ccccc}2 & 1 & -2 & 5 & -4 \\ -1 & 0 & -1 & -3 & 2\end{array}\right) x=\binom{3}{-2}$

Solution. Multiply the constraint on the left by $A_{B}^{-1}=\left(\begin{array}{cc}1 & -2 \\ 0 & -1\end{array}\right)$ to get new constraint $\left(\begin{array}{ccccc}4 & 1 & 0 & 11 & -8 \\ 1 & 0 & 1 & 3 & -2\end{array}\right) x=$ $\binom{7}{2}$ which is equivalent
Then, we need to set the entries in the objective function vector $c_{B}=\mathbb{O}$

To find an expression for $-c_{B}^{\top} x_{B}$ which can cancel, take $-c_{B}^{\top} A x=-c_{B} b$ to get $(0,1,-4,-1,0) x=$ $-1 \Longrightarrow(0,1,-4,-1,0) x+1=0$

Add this to $c^{\top} x+\bar{z}$ to get the new objective function $\max (3,0,0,-1,-1) x+3$

In general, to convert from SEF to canonical form given a basis B :

1. Amend the constraint: $A x=b \mapsto A_{B}^{-1} A x=A_{B}^{-1} b$
2. Calculate $y=\left(A_{B}^{-1}\right)^{\top} c_{B}$ (this will be used later as a certificate)
3. Amend the objective function: $c^{\top} x+\bar{z} \mapsto\left(c^{\top}-y^{\top} A\right) x+\left(\bar{z}-y^{\top} b\right)$

2.2 Simplex

Main idea: go between feasible bases, attempting to raise the objective value

1. Start with a feasible basis B.

Use "2-phase simplex" to find one if there is not a trivial feasible basis
2. Convert the LP to canonical form with respect to B.

If $c_{N} \leq \mathbb{D}$, then the optimal solution is the basic feasible solution. Stop.
3. Pick a non-basic entering variable x_{k} where $c_{k}>0$.
(Bland's rule) Pick the variable with lowest index k.
If $A_{k} \leq \mathbb{D}$, then the linear program is unbounded. Stop.
Increase $x_{k}=t$ while reducing x_{B} to increase the objective value, i.e., maximize t subject to $x_{B}=b-A_{k} t$ and $x \geq \mathbb{D}$. That is, $t=\min \left\{\frac{b_{i}}{A_{i k}}: A_{i k}>0\right\}$
4. Pick a leaving variable x_{ℓ}.

Let x_{ℓ} be the index used for the minimum above. Then, $x_{\ell}=0$ after setting $x_{k}=t$ making x_{ℓ} non-basic.
Repeat step 2 with the new basis $B=B \cup\{k\} \backslash\{\ell\}$
Example 2.2.1. Maximize $(0,2,1,0,0,0) x$ such that $x \geq \mathbb{C}$ and

$$
\left(\begin{array}{cccccc}
1 & -1 & 1 & 1 & 0 & 0 \\
-2 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 & 0 & 1
\end{array}\right) x=\left(\begin{array}{l}
5 \\
3 \\
5
\end{array}\right)
$$

Solution. Perform simplex:

1. Entering variable x_{2} since $c_{2}=2>0$

Set $x_{2}=t=\min \left\{-, \frac{3}{1}, \frac{5}{1}\right\}=3$
Leaving variable is x_{5}, new basis $B=\{2,4,6\}$
New canonical form $\max (4,0,1,0,-2,0) x+6$ with $x \geq \mathbb{D}$ and

$$
\left(\begin{array}{cccccc}
-2 & 1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 1 & 1 & 1 & 0 \\
2 & 0 & 2 & 0 & -1 & 1
\end{array}\right) x=\left(\begin{array}{l}
3 \\
8 \\
2
\end{array}\right)
$$

2. Entering variable x_{1}. Set $x_{1}=t=\min \left\{-,-, \frac{2}{2}\right\}=1$.

Leaving variable x_{6}. New basis $B=\{1,2,4\}$
New canonical form $\max (0,0,5,0,0,-2) x+10$ with $x \geq \mathbb{D}$ and

$$
\left(\begin{array}{cccccc}
1 & 0 & -1 & 0 & -\frac{1}{2} & \frac{1}{2} \\
0 & 1 & -2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2}
\end{array}\right) x=\left(\begin{array}{l}
1 \\
5 \\
9
\end{array}\right)
$$

3. Entering variable x_{3}. Set $x_{3}=t=\min \{-,-,-\}=\infty$. No bound on t, so this LP is unbounded.

Iteration 3 entered x_{3}, and $A_{3} \leq 0$. Then, t had no bounds, so the LP is unbounded. Find a certificate of unboundedness:

Current basic feasible solution: $\bar{x}=(1,5,0,9,0,0)^{\top}$
Set $x_{3}=t$. New solution is $x(t)=(1+t, 5+2 t, t, 9,0,0)^{\top}=\bar{x}+t d$ where $d=(1,2,1,0,0,0)^{\top}$.
Then, $x(t)$ is feasible for all $t \geq 0$ and $c^{\top} x(t)=5 t-10 \rightarrow \infty$. This is all we need to show that (\bar{x}, t) form a certificate of unboundedness.

Recall: simplex iterates over feasible bases to optimize one variable at a time and set coefficients to zero, eventually finding an optimal solution or showing unboundedness

Does simplex always terminate? Intuitively it should, since each iteration increases the objective value. However, this is not true in general

Definition 2.2.2 (degenerate iteration)
Iteration where the objective value is held constant. That is, only the basis is changed.

Example 2.2.3. Maximize $(1,0,0,0) x$ subject to $x \geq \mathbb{C}$ and $\left(\begin{array}{llll}3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right) x=(0,2)^{\top}$.
The start basis is clearly $\{1,4\}$ The only entering variable is x_{1}. Let $t=x_{1}$ and $t=\min \left\{\frac{2}{1}, \frac{0}{3}\right\}=$ 0 We pick x_{4} for a leaving variable, giving $B^{\prime}=\{1,4\}$, which is the same.

Definition 2.2.4 (cycling)
Repeating bases with the same basic feasible solution.

This happens when there is a series of degenerate iterations that repeat bases already used. Bland's Rule, when applied, prevents cycling and guarantees simplex terminates. That is, when there is a choice for the entering or leaving variable, pick the one with the lowest index.

Tableau method (easier to perform by hand) Use a matrix to encode the entire state of the algorithm, allowing row reductions to replace taking inverses

Example 2.2.5. Maximize $z=(3,-2,0,0,0) x+0$ subject to $x \geq \mathbb{O}$ and

$$
\left(\begin{array}{ccccc}
4 & -1 & 1 & 0 & 0 \\
3 & -3 & 0 & 1 & 0 \\
-2 & 2 & 0 & 0 & 1
\end{array}\right) x=\left(\begin{array}{l}
8 \\
9 \\
1
\end{array}\right)
$$

Solution. Create a tableau $\left(\begin{array}{c|c|c}1 & -c & \bar{z} \\ \hline(\mathbb{1} & A & A\end{array}\right)=\left(\begin{array}{c|ccccc|c}1 & -3 & 2 & 0 & 0 & 0 & 0 \\ \hline 0 & 4 & -1 & 1 & 0 & 0 & 8 \\ 0 & 3 & -3 & 0 & 1 & 0 & 9 \\ 0 & -2 & 2 & 0 & 0 & 1 & 1\end{array}\right)$
Entering variable: look for negative coefficient in objective row x_{k} (in this case x_{1})
Leaving variable: look at ratio between b and A_{k} to find row with x_{ℓ} (in this case A^{1})
Take the entry in column of x_{k} and the row of x_{ℓ} (in this case A_{11}). Use row operations to make it 1 and the rest of the column 0 .
In this case $\frac{1}{4} R_{2}, R_{1}+3 R_{2}, R_{3}-3 R_{2}, R_{4}+2 R_{2}$, to yield $\left(\begin{array}{c|ccccc|c}1 & 0 & \frac{5}{4} & \frac{3}{4} & 0 & 0 & 6 \\ \hline 0 & 1 & -\frac{1}{4} & \frac{1}{4} & 0 & 0 & 2 \\ 0 & 0 & -\frac{9}{4} & -\frac{3}{4} & 1 & 0 & 3 \\ 0 & 0 & \frac{3}{2} & \frac{1}{2} & 0 & 1 & 5\end{array}\right)$
Since top row is all positive, this means that c is all negative, so we have an optimal solution with optimal objective value 6

Since tableau method involves iterative dividing of decimals, computers will lose precision after each iteration. With canonical form, calculations are always done from the original LP, so no compounded error.

If no obvious basic feasible solution to start simplex, do two-stage simplex.

2.3 Two-phase simplex

Main idea: Form an auxiliary LP with an obvious BFS, then solve with simplex to help find a BFS or prove that no BFS exists

- Negate constraints with negative right-hand sides
- Arbitrarily add auxiliary variables to append an identity matrix to A
- Apply simplex to the new LP: there is a solution to the original LP if and only if this LP has solutions with the auxiliary variables set to zero

Example 2.3.1. Maximize $(-3,2,0,0,0) x$ subject to $x \geq \mathbb{D}$ and

$$
\left(\begin{array}{ccccc}
-1 & 1 & 1 & 0 & 0 \\
-1 & -2 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right) x=\left(\begin{array}{c}
-1 \\
-4 \\
4
\end{array}\right)
$$

Solution. Notice that $B=\{3,4,5\}$ is a basis. However, the trivial basic solution $(0,0,-1,-4,4)^{\top}$
is not feasible.
Negate constraints to get $\left(\begin{array}{ccccc}1 & -1 & -1 & 0 & 0 \\ 1 & 2 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right) x=\left(\begin{array}{l}1 \\ 4 \\ 4\end{array}\right)$.
Add auxiliary variables to get $\left(\begin{array}{cccccccc}1 & -1 & -1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}\right) x=\left(\begin{array}{l}1 \\ 4 \\ 4\end{array}\right)$.
This LP has a $\operatorname{BFS}(0,0,0,0,0,1,4,4)^{\top}$.
Start with $B=\{6,7,8\}$ with $\operatorname{BFS} \bar{x}=(0,0,0,0,0,1,4,4)^{\top}$.

Lecture 11 June 6

Minimize the sum of auxiliary variables: $\min (0,0,0,0,0,1,1,1) x$ subject to same constraints.
Same as saying $\max (0,0,0,0,0,-1,-1,-1) x$, which we can solve with simplex.
If optimal value is 0 , then auxiliary variables must be 0 . If optimal value is negative, no feasible solution exists.

Based on canonical form, multiply constraint on left by $(1,1,1)$ to get $(2,1,-1,-1,1,1,1,1) x-9=$ 0 .

Add to objective function to get new objective function $(2,1,-1,-1,1,0,0,0) x-9$.
Run simplex to get basis $\{1,3,5\}$ and $\operatorname{BFS}(4,0,3,0,4,0,0,0)^{\top}$.
Now that we have a $\operatorname{BFS}(4,0,3,0,4)^{\top}$, run simplex.

If auxiliary LP does not have a solution, then $y=A_{B}^{-T} x_{B}$ is a certificate of infeasibility for the original LP.

Optimal solution must exist: it is feasible by construction and not unbounded because the objective value cannot exceed 0 .

Therefore, two-phase simplex will always work.

2.4 Geometry of simplex

Consider $\max (1,1) x$ subject to $x \geq \mathbb{O}$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 2 & 1\end{array}\right) x \leq\left(\begin{array}{l}4 \\ 3 \\ 4\end{array}\right)$.
Equivalently, $\max (1,1,0,0,0) x$ subject to $x \geq \mathbb{D}$ and $\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1\end{array}\right) x=\left(\begin{array}{l}4 \\ 3 \\ 4\end{array}\right)$.
Equalities define lines, inequalities define halfspaces:
Lecture 12 June 8

- Non-negativity bounds $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ to the first quadrant.
- Constraints bound $x_{1} \leq 4, x_{2} \leq 3$, and $x_{1}+2 x_{2} \leq 8$.

All feasible solutions are thus contained in the convex polygon bounded by $(0,0),(0,3),(2,3)$,
$(4,2),(4,0)$.
Consider contours of the objective function $x_{1}+x_{2}=k$ starting at $k=0$. Imagine dragging the objective function line "up" along the normal vector $(1,1)^{\top}$ maintaining the slope. Last point $(4,2)^{\top}$ which touches the highest contour $k=6$ is the optimal solution.

Notice that $(4,2)^{\top}$ is generated by $x_{1}=4$ and $x_{1}+2 x_{2}=8$, i.e., setting constraints (1) and (3) to equality. Then, in $\operatorname{SEF},(4,2)^{\top} \mapsto(4,2,0,1,0)^{\top}$ is a BFS.
Likewise, consider the extreme point $(4,0)^{\top}$ generated by $x_{1}=4$ and $x_{2}=0$, i.e., constraints (1) and (5) to equality. In SEF, $(4,0)^{\top} \mapsto(4,0,0,3,4)^{\top}$ which is a BFS.

We can make some observations.
Definition 2.4.1 (boundary)
A point $p \in S$ is on the boundary of S if every open neighbourhood of p contains a point in S and a point not in S.

Remark 2.4.2. Optimal solutions must always be on the boundary.

Definition 2.4.3 (tight constraint)
An inequality satisfied with equality by a feasible solution \bar{x}.

Theorem 2.4.4

If an optimal solution exists and the rows of A are linearly independent, then there is at least one optimal "corner".

Proof. Setting inequality to equality means setting a slack variable in SEF to 0 . Every corner point is defined by n linear equalities in \mathbb{R}^{n}, i.e., n (or more) tight constraints. Therefore, a corner point's canonical form solution will have n slack variables set to zero, creating a BFS.

Geometrically, simplex walks along extreme points (BFSs) until it finds an optimal solution. Twophase simplex is required when the origin is not available as a corner to start from. Each iteration picks an adjacent extreme point, because it swaps one tight constraint for another one and maintains the other $n-1$ constraints.

Definition 2.4.5 (degenerate)
\bar{x} with more than n tight constraints, i.e., some basic variables are 0 .

This means an iteration may bounce endlessly between degenerate BFSs. Degenerate iterations are avoided by Bland's rule.

Finally, simplex requires that the feasible region be convex. It always is because it is the convex hull generated by the extreme points.

Formalize some basic geometric ideas from last lecture.
Lecture 13 June 13

Definition 2.4.6 (geometry)
A hyperplane is an equation of the form $a^{\top} x=\beta$ with normal vector a.
A halfspace is an inequality of the form $a^{\top} x \leq \beta$ with normal vector a. Note: the halfspace is always on the opposite side of the normal vector.

A polyhedron is a set of points $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$, i.e., the intersection of m halfspaces for a polytope with m facets.

Definition 2.4.7 (convexity)
Subset $S \subseteq \mathbb{R}^{n}$ such that for all $x^{1}, x^{2} \in S$ and $\lambda \in[0,1], \lambda x^{1}+(1-\lambda) x^{2} \in S$. This expression is a convex combination.

Proposition 2.4.8

A halfspce is convex.

Proof. Let $H=\left\{x \in \mathbb{R}^{n}: a^{\top} x \leq \beta\right\}$ be a halfspace and $x^{1}, x^{2} \in H$. Then, with arbitrary $\lambda \in[0,1]$, let $x=\lambda x^{1}+(1-\lambda) x^{2}$.

We have $a^{\top} x=\lambda a^{\top} x^{1}+(1-\lambda) a^{\top} x^{2}$. But since $x^{1}, x^{2} \in H$, we get $a^{\top} x \leq \lambda \beta+(1-\lambda) \beta=\beta$ as desired.

Proposition 2.4.9

The intersection of convex sets is convex.

Proof. If two points are in the intersection, they are in each convex set. The line segment joining them is then also in each convex set, meaning it is in the intersection.

Corollary 2.4.10. A polyhedron is convex.

Definition 2.4.11 (extreme point)
Point $\bar{x} \in C$ a convex set such that x is not a convex combination of two distinct points in C distinct from \bar{x}.

Theorem 2.4.12 (characterization of extreme points in polyhedra)
For $\bar{x} \in P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ a polyhedron where $A^{=} x=b^{=}$is the set of tight constraints for \bar{x}, \bar{x} is an extreme point of P if and only if $\operatorname{rank}\left(A^{=}\right)=n$.

Proof. Proceed by the contrapositive.
(\Leftarrow) Suppose \bar{x} is not an extreme point. Then, there exist distinct $x^{1}, x^{2} \in P$ such that $\bar{x}=$ $\lambda x^{2}+(1-\lambda) x^{2}$ for some $0<\lambda<1$.

We have

$$
A^{=} \bar{x}=A^{=}\left(\lambda x^{1}+(1-\lambda) x^{2}\right)=\lambda\left(A^{=} x^{1}\right)+(1-\lambda)\left(A^{=} x^{2}\right) \leq b^{=}
$$

That is, there is equality throughout the line $A^{=} x^{1}=A^{=} x^{2}=b^{=}$.
Then, since $A^{=} x=b^{=}$has at least three solutions $\left(x^{1}, x^{2}, \bar{x}\right)$, we cannot have $\operatorname{rank}\left(A^{=}\right)=n$.
(\Rightarrow) Suppose $\operatorname{rank}\left(A^{=}\right)<n$. Then, there exists non-zero d such that $A^{=} d=\mathbb{D}$.
Let $x^{1}=\bar{x}+\varepsilon d$ and $x^{2}=\bar{x}-\varepsilon d$ for some small positive ε. By construction, \bar{x} is properly contained in the line segment from x^{1} to x^{2}.

Then, we can write

$$
A^{=} x^{1}=A^{=}(\bar{x}+\varepsilon d)=A^{=} \bar{x}+\varepsilon A^{=} d=A^{=} \bar{x}=b^{=}
$$

which means x^{1} (and likewise x^{2}) satisfy the tight constraints.
For other non-tight constraints $a^{\top} x \leq \beta$, we have

$$
a^{\top} \bar{x}+\varepsilon\left(a^{\top} d\right)<\beta+\varepsilon\left(a^{\top} d\right) \leq \beta
$$

for sufficiently small ε. Therefore, x^{1} and x^{2} are in P and \bar{x} is not an extreme point.

Theorem 2.4.13 (characterization of extreme points in SEF)
Let $P=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq \mathbb{O}\right\}$ where A has full row rank and let $\bar{x} \in P$.
Then, \bar{x} is an extreme point of P if and only if \bar{x} is a BFS of $A x=b$.

Proof. Construct a polyhedron $\left(\frac{A}{\frac{-A}{-I}}\right) x \leq\left(\frac{b}{\frac{-b}{\mathbb{D}}}\right) x$.
Suppose $A \bar{x}=b$. By thm. 2.4.12, \bar{x} and extreme point if and only if the tight constraints have rank n. The top two submatrices are always tight, so we automatically get rank at least m. We need at least $n-m$ tight constraints in $-I \bar{x} \leq \mathbb{D}$. That is, $n-m$ entries of \bar{x} are zero.

Then, \bar{x} is a basic feasible solution with m basic variables and $n-m$ non-basic variables.

Chapter 4

Duality

4.1 Strong and weak duality

Example 4.1.1. Find $\max \left\{(4,-9,2,4) x:\left(\begin{array}{cccc}1 & -4 & 3 & 0 \\ -1 & 7 & -5 & 1\end{array}\right) x=\binom{7}{3}, x \geq \mathbb{O}\right\}$.

Solution. Notice that $(6,2,3,10)^{\top}$ is feasible. Objective value 52 .
$(7,0,0,10)^{\top}$ is feasible. Objective value 68. Claim this is optimal.
Notice that:

$$
\begin{aligned}
68 & =7 \cdot 8+3 \cdot 4 \\
& =8\left(x_{1}-4 x_{2}+3 x_{3}\right)+4\left(-x_{1}+7 x_{2}-5 x_{3}+x_{4}\right) \\
& =4 x_{1}-4 x_{2}+4 x_{3}+4 x_{4} \\
& \geq 4 x_{1}-9 x_{2}+2 x_{3}+4 x_{4}=c^{\top} x
\end{aligned}
$$

Since $c^{\top} x \leq 68$, ny feasible solution has objective value at most 68 . As $(7,0,0,10)^{\top}$ is one such solution, it is optimal.

In general, consider y. Then, $y^{\top} b=y^{\top} A x \geq{ }^{?} c^{\top} x$. This works when $y^{\top} A \geq c^{\top}$ or equivalently $A^{\top} y \geq c^{\top}$. Then, $y^{\top} b$ is an upper bound on the objective value. If $y^{\top} b$ is the lowest upper bound, it is the optimal objective value.

To find y, we can solve the dual LP.

Definition 4.1.2 (dual LP)
Given an LP (P) in SEF $\max \left\{c^{\top} x: A x=b, x \geq \mathbb{O}\right\}$, construct the dual (D) $\min \left\{b^{\top} y: A^{\top} y \geq c\right\}$

Each constraint $a_{i} x_{i}=b_{i}$ in (P) corresponds to a variable y_{i} in (D). Each variable x_{j} in (P) corresponds to a constraint $\left(a^{j}\right)^{\top} y_{j} \leq c_{j}$ in (D).

Notice that the feasible objective values of the dual are at most the feasible objective values of the primal.

Then, the highest (optimal) value of the primal is bounded above by the lowest (optimal) value of the dual. In fact, they meet only at optimality.

Theorem 4.1.3 (weak duality)
For an LP in SEF $(\mathrm{P}) \max \left\{c^{\top} x: A x=b, x \geq \mathbb{O}\right\}$ and its dual $(\mathrm{D}) \min \left\{b^{\top} y: A^{\top} y \geq c\right\}$, if \bar{x} and \bar{y} are feasible, then $c^{\top} \bar{x} \leq b^{\top} \bar{y}$.

Moreover, if $c^{\top} \bar{x}=b^{\top} \bar{y}$, then \bar{x} and \bar{y} are optimal.

Proof. We have $b^{\top} \bar{y}=(A \bar{x})^{\top} \bar{y}=\bar{x}^{\top} A^{\top} \bar{y} \geq \bar{x}^{\top} c=c^{\top} \bar{x}$, as desired.
Suppose $c^{\top} \bar{x}=b^{\top} \bar{y}$. Let x be arbitrary. Then, $c^{\top} x \leq b^{\top} \bar{y}=c^{\top} \bar{x}$. This is what it means for \bar{x} to be optimal. Argue symmetrically for y.

Corollary 4.1.4. To certify \bar{x} is optimal for (P), it suffices to show that: \bar{x} is feasible, \bar{y} is feasible, and $c^{\top} \bar{x}=b^{\top} \bar{y}$.

Corollary 4.1.5. If (P) is unbounded, then (D) must be infeasible. Similarly, if (D) is unbounded, then (P) is infeasible. Finally, if both (P) and (D) are feasible, then they must have optimal solutions.

Proof. Any feasible solution to (D) is an upper bound to the objective values of (P). Likewise in the other direction.

Theorem 4.1.6 (strong duality)

If (P) has an optimal solution, then (D) has an optimal solution with the same optimal values.

Proof. Perform simplex on (P) to get a basic optimal solution \bar{x} with basis B. The objective function in canonical form for B is $\left(c^{\top}-\bar{y}^{\top} A\right) x+b^{\top} \bar{y}$ where $\bar{y}=A_{B}^{-\top} c_{B}$.
Since B is optimal, $c^{\top}-\bar{y}^{\top} A \leq \mathbb{D}^{\top}$ which gives $A^{\top} y \geq c$, i.e., \bar{y} is feasible. Also, the objective value of \bar{x} is $c^{\top} x=b^{\top} y$.

Summarize the weak duality theorem results:

Lecture 16
June 22

Dual \backslash Primal	Optimal	Unbounded	Infeasible
Optimal	\checkmark	\times	\times
Unbounded	\times	\times	\checkmark
Infeasible	\times	\checkmark	\checkmark (edge case)

Proposition 4.1.7 (dual of inequality)
Dual of $\max \left\{c^{\top} x: A x \leq b, x \geq \mathbb{O}\right\}$ is $\min \left\{b^{\top} y: A^{\top} y \geq c, y \geq \mathbb{D}\right\}$.

Proof. Turn into SEF by adding slack variables: $\max \left\{c^{\top} x+\mathbb{D}^{\top} x^{\prime}: A x+I x^{\prime}=b, x \geq \mathbb{O}\right\}$.
Get the dual of that which is $\min \left\{b^{\top} y: A^{\top} y \geq c, y \geq \mathbb{D}\right\}$.
Likewise, the dual of $\max \left\{c^{\top} x: A x \geq b, x \geq \mathbb{D}\right\}$ is $\min \left\{b^{\top} y: A^{\top} y \geq c, y \leq \mathbb{O}\right\}$

Proposition 4.1.8 (dual with free variables)
Dual of $\max \left\{c^{\top} x: A x=b\right\}$ is $\min \left\{b^{\top} y: A^{\top} y=c\right\}$.
Proof. Turn into SEF: $\max \left\{c^{\top} x^{+}-c^{\top} x^{-}: A x^{+}-A x^{-}=b, x^{+} \geq \mathbb{O}, x^{-} \geq \mathbb{O}\right\}$.
Dual is $\min \left\{b^{\top} y: A^{\top} y \geq c,-A^{\top} y \geq-c\right\}=\min \left\{b^{\top} y: A^{\top} y=c\right\}$.
In fact, having $x \geq \mathbb{D}$ will give $A^{\top} y \geq c$ and $x \leq \mathbb{C}$ will give $A^{\top} y \leq c$.

Proposition 4.1.9 (dual of min)
Dual of the minimization LP $\left(\mathrm{P}^{*}\right)$ is the maximization $\operatorname{LP}\left(\mathrm{D}^{*}\right)$ whose dual is $\left(\mathrm{P}^{*}\right)$.

Proof. From max to min: constraints (swapped) \rightarrow variables, variables \rightarrow constraints.
From min to max: constraints \rightarrow variables, variables (swapped) \rightarrow constraints.

Example 4.1.10. Find the dual: Maximize $(3,1,4,1) x$ such that $\left.\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 2 & 2 & 2 & 2\end{array}\right) x \underset{=}{\geq} \underset{=}{3} \begin{array}{l}4 \\ 4\end{array}\right)$ with $x_{1}, x_{2} \geq 0, x_{3} \leq 0$, and x_{4} free.

Solution. Minimize $(3,4,5) y$ such that:

- Dual constraints max \rightarrow min kept: $\left(\begin{array}{ccc}1 & 4 & 2 \\ 2 & 3 & 2 \\ 3 & 2 & 2 \\ 4 & 1 & 2\end{array}\right) \underset{ }{\geq} \geq\left(\begin{array}{l}3 \\ 1 \\ \leq \\ 4 \\ 1\end{array}\right)$.
- Dual variables max \rightarrow min flipped: $y_{1} \leq 0, y_{2} \geq 0, y_{3}$ free.

Theorem 4.1.11 (general weak duality)

Let (P) be a maximization LP with dual (D). If \bar{x} and \bar{y} are feasible for (P) and (D), respectively, then the objective value of \bar{x} in (P) is at most the objective value of \bar{y} in (D).

If they are the same value, then they are both optimal.

Theorem 4.1.12 (general strong duality)

Let (P) be an LP with dual (D). If (P) has an optimal solution, then (D) has an optimal solution with the same optimal value.

4.2 Complementary slackness

Definition 4.2.1 (complementary slackness conditions)

For $\left(A^{\top} y\right)^{\top} x \geq c^{\top} x$ to hold with equality, we have $A_{i}^{\top} y x_{i}=c_{i} x_{i}$. Equivalently, either $A_{i}^{\top} y=c_{i}$ or $x_{i}=0$.

CS conditions are satisfied by feasible \bar{x} and \bar{y} if and only if \bar{x} and \bar{y} are optimal.
For an LP in SEF, the CS conditions are "either $x_{i}=0$ or the i-th dual constraint is tight". Equivalently, "if $x_{i}>0$, then the i-th dual constraint is tight" and "if the i-th dual constraint is

Lecture 17 June 27 not tight, $x_{i}=0$ ".

In general, given primal (P) and dual (D), their CS conditions are: (1) either $x_{i}=0$ or the i-th constraint of (D) is tight and (2) either $y_{j}=0$ or the j-th constraint of (P) is tight. If there are equality constraints, we can ignore that set of CS conditions since all constraints are tight.

Theorem 4.2.2 (complementary slackness)

Let (P) and (D) be a primal-dual pair with feasible solutions \bar{x} and \bar{y}, respectively. Then, \bar{x} and \bar{y} are optimal if and only if all CS conditions hold.

To show \bar{x} is optimal for (P), we can provide \bar{y} and check that (1) \bar{x} is feasible, (2) \bar{y} is feasible, (3) CS conditions.

Example 4.2.3. Find an optimal solution for $\max \left\{(1,-2) x:\left(\begin{array}{cc}1 & -1 \\ 2 & 1 \\ 0 & 1\end{array}\right) x \geq\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right), x_{1} \geq 0\right\}$ with dual $\min \left\{(2,1,4) y:\left(\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 1\end{array}\right) y \underset{=}{\geq} \geq\binom{ 1}{-2}: y_{2} \leq 0, y_{3} \geq 0\right\}$

Solution. CS conditions:

- $x_{1}=0$ or $y_{1}+2 y_{2}=1$
- (always true) $x_{2}=0$ or $-y_{1}+y_{2}+y_{3}=-2$
- (always true) $y_{1}=0$ or $x_{1}-x_{2}=2$
- $y_{2}=0$ or $2 x_{1}+x_{2}=1$
- $y_{3}=0$ or $x_{2}=4$

Suppose we think that $\bar{x}=(1,-1)^{\top}$ is optimal. By inspection, \bar{x} feasible. Since $\bar{x}_{1} \neq 0$, we require $\bar{y}_{1}+2 \bar{y}_{2}=1$. The second condition is satisfied. Also, $\bar{x}_{2} \neq 4$, so $\bar{y}_{3}=0$.

Adding on the requirement that \bar{y} feasible, we can solve for $\bar{y}=\left(\frac{5}{3},-\frac{1}{3}, 0\right)^{\top}$.
Then, \bar{y} is feasible and satisfies CS conditions, so \bar{x} and \bar{y} are optimal.
If we try the above example with $\bar{x}=(4,2)^{\top}$, we get CS conditions implying $\bar{y}=(1,0,0)^{\top}$, but this is not feasible. Therefore, \bar{x} is not optimal.

The above example with simplex gives first

$$
\max \left\{(3,-2,0,0,0) x:\left(\begin{array}{ccccc}
4 & -1 & 1 & 0 & 0 \\
3 & -3 & 0 & 1 & 0 \\
-2 & 2 & 0 & 0 & 1
\end{array}\right) x=\left(\begin{array}{l}
8 \\
9 \\
1
\end{array}\right), x \geq \mathbb{0}\right\}
$$

and ends with

$$
\max \left\{\left(0,-\frac{5}{4},-\frac{1}{4}, 0,0\right) x+6:\left(\begin{array}{ccccc}
1 & -\frac{1}{4} & \frac{1}{4} & 0 & 0 \\
0 & -\frac{9}{4} & -\frac{3}{4} & 1 & 0 \\
0 & \frac{3}{2} & \frac{1}{2} & 0 & 1
\end{array}\right) x=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right), x \geq \mathbb{0}\right\}
$$

For each variable i, either $x_{i}=0$ (it is non-basic) or $c_{i}=0$ (it is basic). Recall: objective coefficients are $c^{\prime}=c-y^{\top} A$ where $y=A_{B}^{-\top} c_{B}$ is the dual solution.

Then, $c_{i}^{\prime}=0$ implies $c_{i}-y^{\top} A_{i}=0$ or $y^{\top} A_{i}=c_{i}$ or $A_{i}^{\top} y=c_{i}$. That is, the $i^{\text {th }}$ constraint in the dual is tight.

That is, either $x_{i}=0$ or the i-th constraint is tight, so all simplex BFS's satisfy the CS conditions.
Also, when picking $c_{e}>0$ for the next iteration, $A_{e}^{\top} y<c_{e}$, i.e., we picked an infeasible y to the dual (since the dual constraint is $A y \leq c$)

That is, whenever positive coefficients exist, y is infeasible for the dual. Once the coefficients are non-positive, y is feasible and we have an optimal solution.

4.3 Geometry of the dual

Example 4.3.1. For arbitrary $c, \max \left\{c^{\top} x:\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 1 & 2 \\ -1 & 0 \\ 0 & -1\end{array}\right) x \leq\left(\begin{array}{l}4 \\ 3 \\ 8 \\ 0 \\ 0\end{array}\right)\right\}$.

Solution. (imagine polyhedron bounded by $(0,0),(0,3),(2,3),(4,2)$, and $(4,0))$
$(4,2)^{\top}$ is the optimal solution whenever the slope is between the two constraints defining $(4,2)^{\top}$, i.e., $-\infty \leq m \leq-\frac{1}{2}$.

Formally, any c in the cone of $(1,0)^{\top}$ and $(1,2)^{\top}$ (the tight constraints).

Definition 4.3.2 (cone (generated by x))
The set $\left\{\lambda^{\top} x: \lambda \geq \mathbb{D}\right\}$

Lemma 4.3.3 (cone of tight constraints)
c is in the cone of tight constraints for \bar{x} if and only if \bar{x} is optimal for c.

Lecture 18
June 29

Solution. Suppose c makes $\bar{x}=(4,2)^{\top}$ optimal. Let y be the correponding optimal dual solution. The dual constraints are

$$
\binom{1}{0} y_{1}+\binom{0}{1} y_{2}+\binom{1}{2} y_{3}+\binom{-1}{0} y_{4}+\binom{0}{-1} y_{5}=\binom{c_{1}}{c_{2}}
$$

CS conditions: either $y_{j}=0$ or the j-th primal constraint is tight. Here, constraints 1 and 3 are tight. Then, $y_{2}=y_{4}=y_{5}=0$ and we have

$$
\binom{1}{0} y_{1}+\binom{1}{2} y_{3}=\binom{c_{1}}{c_{2}}
$$

with $y_{1}, y_{3} \geq 0$.
That is, c is in the cone formed by the tight constraints for \bar{x}.

Lemma 4.3.5 (Farkas' lemma)
Given A and b, either there exists x such that $A x=b$ and $x \geq \mathbb{D}$, or there exists y such that $y^{\top} A \geq \mathbb{D}^{\top}$ and $y^{\top} b<0$.

Equivalently, either a solution or certificate of infeasibility exists.

Proof. First, notice that having a certificate of infeasibility proves that there cannot be a solution to $A x=b$ with $x \geq \mathbb{D}$. Thus, both cannot hold.

Now, suppose the first condition is false. Consider $\max \left\{\mathbb{D}^{\top} x: A x=b, x \geq \mathbb{D}\right\}$.
This is infeasible by supposition. The dual is $\min \left\{b^{\top} y: A^{\top} y \geq \mathbb{D}\right\}$ which is trivially feasible since it admits $y=\mathbb{O}$, so it must be unbounded.

Then, there must exist a solution \bar{y} with negative objective value, i.e., $b^{\top} \bar{y}<0$ and $A^{\top} y \geq \mathbb{O}$, as desired.

Geometrically, consider the cone of column vectors. That is, all b such that $A x=b, x \geq \mathbb{D}$.
If b is in the cone, we are done. If b is not in the cone, then there must exist a hyperplane with normal y between the cone and b. Such a y will give by definition $y^{\top} b<0$ and $y^{\top} A>\mathbb{0}^{\top}$.

4.4 Shortest paths, revisited

Recall the formulation for shortest path problems: $\min \left\{c^{\top} x: \sum_{e \in \delta(S)} x_{e} \geq 1, x_{e} \geq 0, x_{e} \in \mathbb{Z}\right\}$

Lecture 19

Since there are $O\left(2^{n}\right)$ constraints and it is an IP, this is hard to solve.
Instead, ignore integrality and take the dual: $\max \left\{\mathbb{1}^{\top} y: \sum_{e \in \delta(S)} y_{S} \leq c, y \geq \mathbb{D}\right\}$.
There are dual variables y_{S} corresponding to each s, t-cut and dual constraints for each edge. The objective function is the sum of all y variables.

Dual constraints: One constraint for each edge e, coefficient of y_{S} is 1 if e is in the cut $\delta(S)$. That is, sum of y values is at most the length of e

Interpret a dual solution y as assigning a value y_{S} to each cut so that the "sum of cuts" across an edge is at most the edge's weight.

Since an s, t-path must cross all s, t-cuts, this means that the "sum of cuts" is at most the sum of weights of the edges in the path, i.e., the sum of cuts is at most the length of the path.

Equivalently, by weak duality, the objective value of the primal (length of the path) is at least the objective value of the dual (sum of all cuts)

Imagine y_{S} as the width of a barrier that a path must cross, so that a complete path must pass all barriers. This is the width assignment.

Since we are maximizing, the barriers will expand to fill the path.
Take the dual and consider CS conditions:

- If e is in the path, then the sum of width of all cuts containing e is equal to its length and e is tight
- If y_{S} has positive width, then exactly one edge in $\delta(S)$ is in the path

Therefore, we can construct an algorithm to raise the y-value of $\delta(U)$ to create a tight edge.
Example 4.4.1. $E=\{s a, s b, a b, a t, b t\}$ with weights $w=\{50,30,30,40,70\}$.

Lecture 20
July 6

Solution. Walk through our "algorithm":

- Initialize $y=\mathbb{O}, U=\{s\}, T=\varnothing$
- Iteration 1: $U=\{s\}, \delta(U)=\{s a, a b\}$. Can increase by 30 until $s b$ becomes tight, so set $y_{\{s\}}=30$. Append b to U.
- Iteration 2: $U=\{s, b\}, \delta(U)=\{s a, a b, b t\}$. Can increase by 20 until sa becomes tight, so set $y_{\{s, b\}}=20$. Append a to U.
- Iteration 3: $U=\{s, b, a\}, \delta(U)=\{a t, b t\}$. Can increase by 40 until at becomes tight, so set $y_{\{s, b, a\}}=40$. Append t to U.

Tight edges $T=\{s b, s a, a t\}$ so select path $x_{s a}=x_{a t}=1$ with $y_{\{s\}}=30, y_{\left\{s_{b}\right\}}=20, y_{\{s, a, b\}}=$ 40.

Now, formalize the algorithm.

Definition 4.4.2 (slack)
The length of e minus width of all cuts through e, i.e., $\operatorname{slack}(e)=c_{e}-\sum_{\{S: e \in \delta(S)\}} y_{S}$

```
Algorithm 1 Shortest path algorithm
    Set \(y=\mathbb{D}, U=\{s\}, T=\varnothing\)
    while \(t \notin U\) do
        Calculate slack of all edges in \(\delta(U)\)
        Pick edge \(u v\) with minimum slack where \(u \in U, v \notin U\)
        Set \(y_{U}:=\operatorname{slack}(u v)\)
        \(U:=U \cup\{v\}, T:=T \cup\{u v\}\)
    Output an \(s, t\)-path in \(T\). Use \(y\) as an optimal dual solution.
```

Example 4.4.3. $V=\{s, a, b, c, t\}, E=\{s a, s b, s c, a b, b c, a t, b t, c t\}$ with $w=\{20,50,30,20,10,50,40,40\}$.

Solution. Perform the algorithm:

1. $U=\{s\}, T=\varnothing, \delta(U)=\{s a, s b, s c\}$.

Slacks are 20,50 , and 30 , so set $y_{\{s\}}=20$ to get tight $s a$.
2. $U=\{s, a\}, T=\{s a\}, \delta(U)=\{a t, a b, s b, s c\}$.

Slacks are $50,20,50$, and 10 , so set $y_{\{s, a\}}=10$ to get tight $s c$.
3. $U=\{s, a, c\}, T=\{s a, s c\}, \delta(U)=\{a t, a b, s b, b c, c t\}$.

Slacks are $40,10,20,10,40$, so set $y_{\{s, a, c\}}=10$ to get tight $a b$ and $b c$. Arbitrarily pick $a b$.
4. $U=\{s, a, b, c\}, T=\{s a, s c, a b\}, \delta(U)=\{a t, b t, c t\}$.

Slacks are 30,40 , and 30 , so set $y_{\{s, a, b, c\}}=30$ to get tight at and ct. Arbitrarily pick ct.
5. $U=\{s, a, b, c, t\}, T=\{s a, s c, a b, c t\}$.

Conclude with path $\{s c, c t\}$.

Claim (proof omitted) that the algorithm produces a path that satisfies the second CS condition (i.e., every cut with positive width crosses only one edge in the path)

Sketch: To cross a cut more than once, must go back and forth. To go back, must select an edge going "backwards", i.e., selecting a node already in U to append to U. Contradiction.

Chapter 6

Solving IPs

We cannot apply fundamental theorem of LPs to IPs, since some IPs may be feasible, bounded, and still lack an optimal solution.

Example 6.0.1. $\max \left\{x_{1}-\sqrt{2} x_{2}: x_{1}-\sqrt{2} x_{2} \leq 0, x \geq \mathbb{1}, x \in \mathbb{Z}^{2}\right\}$ has a feasible solution $x=(1,1)^{\top}$, is bounded since $(1,-\sqrt{2})^{\top} x \leq 0$, but has no optimal solution.

Definition 6.0.2 (convex hull)
The smallest convex set that contains all points in a set. Formally, $\operatorname{conv}\left(x^{1}, \ldots, x^{k}\right)=\left\{\sum \lambda_{i} x^{i}\right.$: $\left.\sum \lambda_{i}=1, \lambda \geq \mathbb{O}\right\}$

Theorem 6.0.3 (Fundamental Theorem of Integer Programming)
Given a polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ with $A, b \in \mathbf{M}(\mathbb{Q})$, the convex hull $\operatorname{conv}\left(\mathbb{Z}^{n} \cap P\right)$ is another polyhedron $Q=\left\{x \in \mathbb{R}^{n}: A^{\prime} x \leq b^{\prime}\right\}$ with $A^{\prime}, b^{\prime} \in \mathbf{M}(\mathbb{Q})$.

This reduces solving an IP to solving a related LP, since the extreme points of Q are just integer points in P.

Lecture 21
Theorem 6.0.4
Given (IP) $\max \left\{c^{\top} x: A x \leq b: x \in \mathbb{Z}^{n}\right\}$, let $\left\{x: A^{\prime} x \leq b^{\prime}\right\}$ be the convex hull of solutions of (IP). Let (LP) be $\max \left\{c^{\top} x: A^{\prime} x \leq b^{\prime}\right\}$. Then:

- (IP) infeasible if and only if (LP) infeasible
- (IP) unbounded if and only if (LP) unbounded
- Every optimal solution of (IP) is an optimal solution of (LP)
- Every optimal solution of (LP) that is an extreme point is an optimal solution of (IP)

Not a great idea in general because finding the convex hull is hard.

We need to find feasible solutions in order to define the convex hull anyways and the number of constraints to define convex hull is $O\left(2^{n}\right)$ in the original constraints.

There is no finite convex hull if coefficients are irrational.

Definition 6.0.5 (LP relaxation)

An IP without the integer constraint.

Example 6.0.6. Find $\max \left\{\left(\begin{array}{cc}0 & 1 \\ 3 & -1 \\ -5.5 & -4\end{array}\right) x \leq\left(\begin{array}{c}5.5 \\ 10.5 \\ -22\end{array}\right): x \in \mathbb{Z}^{3}\right\}$

Solution. The optimal solution of the relaxation is $\left(\frac{128}{35}, \frac{33}{70}\right)^{\top}$.
To make a cutting plane, need (1) current non-integral optimal solution outside of halfspace and (2) all integral feasible solutions inside halfspace.

For example, shrink the feasible region with $x_{2} \geq 2$ to get new optimal solution $\left(\frac{28}{11}, 2\right)^{\top}$ which is "better"

To find cutting plane, note that simplex $\operatorname{BFS} \bar{x}=\left(\frac{128}{35}, \frac{33}{70}, \frac{176}{35}, 0,0\right)^{t}$ with objective value $-\frac{289}{70}$.
Take floor of coefficients on LHS, change $=$ to $\leq: x_{1}+\left\lfloor\frac{8}{35}\right\rfloor x_{4}+\left\lfloor-\frac{2}{35}\right\rfloor x_{5}=x_{1}-x_{5} \leq \frac{128}{35}$
Since $x \geq \mathbb{O}$, LHS only decreases and all solutions are preserved.
Take floor of RHS constant: $x_{1}-x_{5} \leq\left\lfloor\frac{128}{35}\right\rfloor \leq 3$.
Since x integral, coefficients integral, we can take floor without losing integral solutions. This also eliminates \bar{x} since it satisfied the original constraint with equality.

Then, we have $x_{1}-x_{5} \leq 3$ a cutting plane.
Summarize the algorithm:

Lecture 22 July 13

```
Algorithm 2 Cutting plane algorithm
    Relax the IP by removing the integrality constraint
    Run simplex on the resulting LP to get non-integral BFS \(\bar{x}\)
    Select a constraint \(\sum a_{i} x_{i}=b_{j}\) where \(b_{j} \notin \mathbb{Z}\)
    Construct cutting plane \(\sum\left\lfloor a_{i}\right\rfloor x_{i} \leq\left\lfloor b_{j}\right\rfloor\)
    Add slack variable to turn into equality and append to LP (will have to run either two-phase
    simplex or dual simplex to find a new BFS)
```


Chapter 7

Solving NLPs

```
Definition 7.0.1 (non-linear program)
min}{f(x):\mp@subsup{g}{i}{}(x)\leq0}\mathrm{ where }f,\mp@subsup{g}{i}{}:\mp@subsup{\mathbb{R}}{}{n}->\mathbb{R
```

IPs are just NLPs, so general NLP problem is even harder. The feasible regions of NLPs can be disjoint and just all around awful.

To solve, we try to limit functions to being convex. Limiting the feasible region to be convex to removes some of the awfulness. Local optimal solutions of convex regions are still globally optimal. We can apply simplex to some sort of reduction of the region.

We construct halfspaces of non-linear tight constraints based on gradients. For example, $g(x) \leq 0$ becomes $\nabla g(\bar{x}) \leq 0$.

Definition 7.0.2 (convex function)
For all $a, b \in \mathbb{R}^{n}$ and $0 \leq \lambda \leq 1, f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b)$. Equivalently, the line between points $f(a)$ and $f(b)$ lies above the curve.

Example 7.0.3. Show $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto x^{2}$ is convex.

Lecture 23
July 18

Proof. Let $a, b \in \mathbb{R}$ and $0 \leq \lambda \leq 1$.
Then, $f(\lambda a+(1-\lambda) b)=(\lambda a+(1-\lambda) b)^{2}=\lambda^{2} a^{2}+2 \lambda(1-\lambda) a b+(1-\lambda)^{2} b^{2}$.
But $(a-b)^{2}=a^{2}-2 a b+b^{2} \geq 0$, so $2 a b \geq a^{2}+b^{2}$.
So we have $f(\lambda a+(1-\lambda) b) \leq \lambda^{2} a^{2}+\lambda(1-\lambda)\left(a^{2}+b^{2}\right)+(1-\lambda)^{2} b^{2}=\lambda a^{2}+(1-\lambda) b^{2}=\lambda f(a)+(1-\lambda) f(b)$ as desired

Lemma 7.0.4
The following are convex functions:

- $k x^{n}$ for even n and positive k
- Affine functions $c^{\top} x+\bar{z}$
- Positive linear combinations of convex functions $\sum a_{i} f_{i}(x)$ with $a \geq \mathbb{C}$

Definition 7.0.5 (epigraph)
The set $\left\{(x, r)^{\top}: x \in \mathbb{R}^{n}, r \in \mathbb{R}, r \geq f(x)\right\}$ of points "above" the function.

Lemma 7.0.6

f is convex function if and only if the epigraph of f is a convex set.

Since constraints in NLPs have the form $g_{i}(x) \leq 0$, we can use convexity.

Proposition 7.0.7

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function, $S=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0\right\}$ is a convex set

Proof. Let $a, b \in S$ and $0 \leq \lambda \leq 1$. Then $g(a) \leq 0$ and $g(b) \leq 0$. Since g is convex, $g(\lambda a+(1-\lambda) b)=$ $\lambda g(a)+(1-\lambda) g(b) \leq \lambda \cdot 0+(1-\lambda) \cdot 0=0$ so the convex combination is in S and S is convex.

In a convex NLP (i.e. all constraints g_{i} are convex), the feasible region is the intersection of convex sets, which is itself convex.

Definition 7.0.8 (relaxation)
Enlargement of a feasible region, i.e., if R feasible region and R^{\prime} relaxation, $R \subset R^{\prime}$.

If optimal solution $\bar{x} \in R^{\prime}$, then it must be optimal for R.
Similar to IPs, we define halfspaces that relax the feasible region.

Definition 7.0.9 (subgradient)
$s \in \mathbb{R}^{n}$ normal vector to the boundary at a point, i.e., $g(\bar{x})+s^{\top}(x-\bar{x}) \leq g(x)$ for all $x \in \mathbb{R}^{n}$

Since the LHS is just an affine function, this is a hyperplane beneath $g(x)$ with equality at $x=\bar{x}$
Definition 7.0.10 (supporting halfspace)
$\left\{s^{\top} x \leq 0: x \in \mathbb{R}^{n}\right\} \supseteq\left\{g(x) \leq 0: x \in \mathbb{R}^{n}\right\}$ for subgradient s

Note: Supporting halfspaces only work with convex sets

Lecture 24 July 20

Example 7.0.12. Consider $g: \mathbb{R}^{2} \rightarrow \mathbb{R}: x \mapsto\left|x_{1}\right|+\left|x_{2}\right|-2$ with $\bar{x}=(2,0)^{\top}$.
Multiple subgradients exist because \bar{x} is on a sharp edge.
One is $s=(1,0)^{\top}$ with $s^{\top}(x-\bar{x})=x_{1}-2=0$. Another is $s=\left(1, \frac{1}{2}\right)^{t}$ with $s^{\top}(x-\bar{x})=$ $x_{1}+\frac{1}{2} x_{2}-2=0$.
In fact, $s=(1, t)^{\top}$ is a subgradient for $-1 \leq t \leq 1$.

Definition 7.0.13 (supporting halfspace)

For convex set $C \subseteq \mathbb{R}^{n}$ and $\bar{x} \in C, F=\left\{x \in \mathbb{R}^{n}: s^{\top} x \leq \beta\right\}$ is a supporting halfspace of C at \bar{x} if $C \subseteq F$ and $s^{\top} \bar{x}=\beta$ (\bar{x} is on the boundary of the halfspace)

Note: subgradients are normal vectors of supporting halfspaces.

Theorem 7.0.14

For convex function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}, g(\bar{x})=0$ with s a subgradient of g at \bar{x} and $C=\{g(x) \leq 0\}$, $F=\left\{s^{\top}(x-\bar{x}) \leq 0\right\}$ is a supporting halfspace of C at \bar{x}

Proof. ($C \subseteq F$) If $g\left(x^{\prime}\right) \leq 0$, then by definition of subgradients, $\underbrace{g(\bar{x})}_{=0}+s^{\top}\left(x^{\prime}-\bar{x}\right) \leq g\left(x^{\prime}\right) \leq 0$. That is, $x^{\prime} \in F$.
(boundary) Plug in $x=\bar{x}$ in $F, x^{\top}(\bar{x}-\bar{x})=0$.

Definition 7.0.15 (gradient)

For differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)^{\top}$.

Lemma 7.0.16
$\nabla f(\bar{x})$ is a subgradient of f at

Example 7.0.17. $\min \left\{-x_{1}-x_{2}: x_{1}^{2}-2 x_{2}-4 \leq 0,-7 x_{1}+x_{2}^{2}-8 \leq 0,-x_{1}-x_{2}+1 \leq 0\right\}$

Solution. Propose $\bar{x}=(4,6)^{\top}$ is optimal.
Replace tight constraints (1) and (2) by supporting halfspaces:

- $g_{1}(x)=x_{1}^{2}-2 x_{2}-4$ so $\nabla g_{1}(x)=\left(2 x_{1},-2\right)^{\top}$ and $\nabla g_{1}(\bar{x})=(8,-2)^{\top}$. Supporting halfspace $8 x_{1}-2 x_{2}-20 \leq 0$.
- $g_{2}(x)=-7 x_{1}+x_{2}^{2}-8$, so $\nabla g_{2}(x)=\left(-7,2 x_{2}\right)^{\top}$ and $\nabla g_{1}(\bar{x})=(-7,12)^{\top}$.

Supporting halfspace $-7 x_{1}+12 x_{2}-44 \leq 0$.

Consider the LP $\max \left\{(1,1) x:\left(\begin{array}{cc}8 & -2 \\ -7 & 12\end{array}\right) x \leq\binom{ 20}{44}\right\}$. Optimal if $(1,1)^{\top}$ in cone of tight constraints, which it is.

Since LP is a relaxation and it is optimal, \bar{x} is optimal for the original NLP.

Proposition 7.0.18

For a convex NLP $\min \left\{c^{\top} x: g_{i}(x) \leq 0\right\}$ and a feasible solution \bar{x}, if $-c$ is in the cone generated by the subgradients at \bar{x} of the tight constraints for \bar{x}, then \bar{x} is optimal.

The converse is almost true. Need extra condition and differentiability

Definition 7.0.19 (Slater point)
x^{\prime} where $g_{i}\left(x^{\prime}\right)<0$, i.e., points in the interior of feasible region.

Theorem 7.0.20 (Karush-Kuhn-Tucker)

For NLP $\min \left\{f(x): g_{i}(x) \leq 0\right\}$ and feasible point \bar{x}, if f, g_{i} are all convex and differentiable at \bar{x} and a Slater point exists, then \bar{x} is optimal if and only if $-\nabla f(\bar{x})$ is in the cone generated by $\nabla g_{i}(\bar{x})$ over tight constraints g_{i}

List of Named Results

2.1.2 Theorem (Fundamental Theorem of Linear Programming) 14
2.4.12 Theorem (characterization of extreme points in polyhedra) 22
2.4.13 Theorem (characterization of extreme points in SEF) 23
4.1.3 Theorem (weak duality) 25
4.1.6 Theorem (strong duality) 25
4.1.7 Proposition (dual of inequality) 26
4.1.8 Proposition (dual with free variables) 26
4.1.9 Proposition (dual of min) 26
4.1.11 Theorem (general weak duality) 26
4.1.12 Theorem (general strong duality) 27
4.2.2 Theorem (complementary slackness) 27
4.3.3 Lemma (cone of tight constraints) 29
4.3.5 Lemma (Farkas' lemma) 29
6.0.3 Theorem (Fundamental Theorem of Integer Programming) 32
7.0.20 Theorem (Karush-Kuhn-Tucker) 37

Index of Defined Terms

s, t-cut, 11
v_{1}, v_{k}-path, 10
affine function, 4
basic feasible solution, 16
basic solution, 16
basic variables, 16
boundary, 21
canonical form, 16
certificate of infeasibility, 12
complementary slackness conditions, 27
cone, 28
constraints, 4
convex combination, 22
convex function, 34
convex hull, 32
convexity, 22
cut, 11
cycling, 18
decision variables, 4
degenerate, 21
degenerate iteration, 18
dual LP, 24
edges, 9
epigraph, 35
equivalence, 15
extreme point, 22
feasible points, 4
gradient, 36
graph, 9
halfspace, 22
hyperplane, 22
incidence matrix, 9
incidence relation, 9
infeasibility, 12
linear function, 4
linear program, 4
LP relaxation, 33
matching, 9
non-basic variables, 16
non-basis, 16
non-linear program, 11, 34
normal vector, 22
objective function, 4
objective value, 4
optimization problem, 4
polyhedron, 22
relaxation, 35
slack, 31
Slater point, 37
standard equality form, 14
subgradient, 35
supporting halfspace, 35,36

Tableau method, 18
tight constraint, 21
unboundedness, 13
vertices, 9

