
CO 432 Spring 2025:
Lecture Notes

1 Introduction 2
1.1 Entropy . 2
1.2 Entropy as expected surprise . 3
1.3 Entropy as optimal lossless data compression . 4

2 Relative entropy 8
2.1 The boolean 𝑘-slice . 11
2.2 Rejection sampling . 14

3 Mutual information 21
3.1 Definition and chain rules . 21
3.2 Markov chains, data processing, and sufficient statistics 24
3.3 Communication complexity . 25
3.4 Parameter estimation . 27

Back Matter 28
List of Named Results . 28
Index of Defined Terms . 29

Lecture notes taken, unless otherwise specified, by myself during the Spring 2025 offering of CO
432, taught by Vijay Bhattiprolu.

Lectures
Lecture 1 May 6 2
Lecture 2 May 8 4
Lecture 3 May 13 6
Lecture 4 May 15 8
Lecture 5 May 20 11

Lecture 6 May 22 14
Lecture 7 May 27 16
Lecture 8 May 29 18
Lecture 9 June 3 21
Lecture 11 June 10 24
Lecture 10 June 5 25

1

Chapter 1

Introduction

Notation. I will be using my usual LATEX typesetting conventions:

• [𝑛] means the set {1, 2, … , 𝑛}
• {0, 1}∗ means the set of bitstrings of arbitrary length (i.e., the Kleene star)
• ∑𝑖 is implicitly ∑𝑛

𝑖=1
• A, B, … , Z are random variables (in sans-serif)
• X ∼ (𝑝1, 𝑝2, … , 𝑝𝑛) means X is a discrete random variable with 𝑛 outcomes such that

Pr[X = 1] = 𝑝1, Pr[X = 2] = 𝑝2, etc. (abbreviate further as X ∼ (𝑝𝑖))

1.1 Entropy

Lecture 1
May 6↓ Lecture 1 adapted from Arthur ↓

Definition 1.1.1 (entropy)
For a random variable X ∼ (𝑝𝑖), the entropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropy 𝐻(X) is

𝐻(X) = − ∑
𝑖

𝑝𝑖 log 𝑝𝑖 = ∑
𝑖

𝑝𝑖 log
1
𝑝𝑖

.

Convention. By convention, we usually use log2. Also, we define entropy such that log2(0) = 0
so that impossible values do not break the formula.

Example 1.1.2. If X takes on the values 𝑎, 𝑏, 𝑐, 𝑑 with probabilities 1, 0, 0, 0, respectively,
then 𝐻(X) = 1 log 1 = 0.

If X takes on those values instead with probabilities 1
2 , 1

4 , 1
8 , 1

8 , respectively, then 𝐻(X) = 7
4 .

2

CO 432 Spring 2025: Lecture Notes James Ah Yong

Fact 1.1.3. 𝐻(X) = 0 if and only if X is a constant.

Proof. Suppose X is constant. Then, 𝐻(X) = 1 log 1 = 0.

Suppose 𝐻(X) = 0. Probabilities are in [0, 1], so 𝑝𝑖 log 1
𝑝𝑖

≥ 0. Since 𝐻(X) = ∑𝑖 𝑝𝑖 log 1
𝑝𝑖

= 0 and
each term is non-negative, each term must be zero. Thus, each 𝑝𝑖 is either 0 or 1. We cannot have
∑ 𝑝𝑖 > 1, so exactly one 𝑝𝑖 = 1 and the rest are zero. That is, X is constant.

Theorem 1.1.4 (Jensen’s inequality)
Let 𝑓 ∶ ℝ → ℝ be concave. That is, for any 𝑎 and 𝑏 in the domain of 𝑓 and 𝜆 ∈ [0, 1),
𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) ≥ 𝜆𝑓(𝑎) + (1 − 𝜆)𝑓(𝑏). For any discrete random variable X,

𝔼[𝑓(X)] ≤ 𝑓(𝔼[X])

Proof. Consider a random variable X with two values 𝑎 and 𝑏, each with probabilities 𝜆 and 1 − 𝜆.
Then, notice that

𝔼[𝑓(X)] = 𝜆𝑓(𝑎) + (1 − 𝜆)𝑓(𝑏) ≤ 𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) = 𝑓(𝔼[X])

by convexity of 𝑓.

TODO: This can be generalized by induction.

Fact 1.1.5. Assume X is supported on [𝑛]. Then, 0 ≤ 𝐻(X) ≤ log 𝑛.

Proof. Start by claiming without proof that log 𝑛 is concave, so we can apply Jensen’s inequality.

Let X′ = 1
𝑝𝑖

with probability 𝑝𝑖. Then,

𝐻(X) = ∑
𝑖

𝑝𝑖 log
1
𝑝𝑖

= 𝔼 [log(X′)]
≤ log(𝔼[X′])

= log (∑ 𝑝𝑖
1
𝑝𝑖

)

= log 𝑛

It is not a coincidence that log2 𝑛 is the minimum number of bits to encode [𝑛].

1.2 Entropy as expected surprise

We want 𝑆 ∶ [0, 1] → [0, ∞) to capture how “surprised” we are 𝑆(𝑝) that an event with probability
𝑝 happens. We want to show that under some natural assumptions, this is the only function we
could have defined as entropy. In particular:

3

CO 432 Spring 2025: Lecture Notes James Ah Yong

1. 𝑆(1) = 0, a certainty should not be surprising

2. 𝑆(𝑞) > 𝑆(𝑝) if 𝑝 > 𝑞, less probable should be more surprising

3. 𝑆(𝑝) is continuous in 𝑝

4. 𝑆(𝑝𝑞) = 𝑆(𝑝) + 𝑆(𝑞), surprise should add for independent events. That is, if I see something
twice, I should be twice as surprised.

↑ Lecture 1 adapted from Arthur ↑ Lecture 2
May 8

Proposition 1.2.1
If 𝑆(𝑝) satisfies these 4 axioms, then 𝑆(𝑝) = 𝑐 ⋅ log2(1/𝑝) for some 𝑐 > 0.

Proof. Suppose a function 𝑆 ∶ [0, 1] → [0, ∞) exists satisfying the axioms. Let 𝑐 ∶= 𝑆(1
2) > 0.

By axiom 4 (addition), 𝑆(1
2𝑘) = 𝑘𝑆(1

2). Likewise, 𝑆(1
21/𝑘 ⋯ 1

21/𝑘) = 𝑆(1
21/𝑘)+⋯+𝑆(1

21/𝑘) = 𝑘𝑆(1
21/𝑘).

Then, 𝑆(1
2𝑚/𝑛) = 𝑚

𝑛 𝑆(1
2) = 𝑚

𝑛 ⋅ 𝑐 for any rational 𝑚/𝑛.

By axiom 3 (continuity), 𝑆(1
2𝑧) = 𝑐 ⋅ 𝑧 for all 𝑧 ∈ [0, ∞) because the rationals are dense in the reals.

In particular, for any 𝑝 ∈ [0, 1], we can write 𝑝 = 1
2𝑧 for 𝑧 = log2(1/𝑝) and we get

𝑆(𝑝) = 𝑆(
1
2𝑧) = 𝑐 ⋅ 𝑧 = 𝑐 ⋅ log2(1/𝑝)

as desired.

We can now view entropy as expected surprise. In particular,

∑
𝑖

𝑝𝑖 log2
1
𝑝𝑖

= 𝔼
𝑥∼X

[𝑆(𝑝𝑥)]

for a random variable X = 𝑖 with probability 𝑝𝑖.

1.3 Entropy as optimal lossless data compression

Suppose we are trying to compress a string consisting of 𝑛 symbols drawn from some distribution.

Problem 1.3.1
What is the expected number of bits you need to store the results of 𝑛 independent samples
of a random variable X?

We will show this is 𝑛𝐻(X).

Notice that we assume that the symbols we are drawn independently, which is violated by almost
all data we actually care about.

4

CO 432 Spring 2025: Lecture Notes James Ah Yong

Definition 1.3.2
Let 𝐶 ∶ Σ → (Σ′)∗ be a code. We say 𝐶 is a uniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodable code (UDC) if there does not
exist a collision 𝑥, 𝑦 ∈ Σ∗, with identical encoding 𝐶(𝑥1)𝐶(𝑥2) ⋯ 𝐶(𝑥𝑘) = 𝐶(𝑦1)𝐶(𝑦2) ⋯ 𝐶(𝑦𝑘′).

Also, 𝐶 is prefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-free (sometimes called instantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneous) if for any distinct 𝑥, 𝑦 ∈ Σ, 𝐶(𝑥) is not
a prefix of 𝐶(𝑦).

Proposition 1.3.3
Prefix-freeness is sufficient for unique decodability.

Example 1.3.4. Let 𝐶 ∶ {𝐴, 𝐵, 𝐶, 𝐷} → {0, 1}∗ where 𝐶(𝐴) = 11, 𝐶(𝐵) = 101, 𝐶(𝐶) = 100,
and 𝐶(𝐷) = 00. Then, 𝐶 is prefix-free and uniquely decodable.

We can easily parse 1011100001100 unambiguously as 101.11.00.00.11.00 (𝐵𝐴𝐷𝐷𝐴𝐷).

Recall from CS 240 that a prefix-free code is equivalent to a trie, and we can decode it by traversing
the trie in linear time.

Theorem 1.3.5 (Kraft’s inequality)
A prefix-free binary code 𝐶 ∶ {1, … , 𝑛} → {0, 1}∗ with codeword lengths ℓ𝑖 = |𝐶(𝑖)| exists if
and only if

𝑛
∑
𝑖=1

1
2ℓ𝑖

≤ 1.

Proof. Suppose 𝐶 ∶ {1, … , 𝑛} → {0, 1}∗ is prefix-free with codeword lengths ℓ𝑖. Let 𝑇 be its
associated binary tree and let 𝑊 be a random walk on 𝑇 where 0 and 1 have equal weight (stopping
at either a leaf or undefined branch).

Define 𝐸𝑖 as the event where 𝑊 reaches 𝑖 and 𝐸⌀ where 𝑊 falls off. Then,

1 = Pr(𝐸⌀) + ∑
𝑖

Pr(𝐸𝑖)

= Pr(𝐸⌀) + ∑
𝑖

1
2ℓ𝑖

(by independence)

≥ ∑
𝑖

1
2ℓ𝑖

(probabilities are non-negative)

Conversely, suppose the inequality holds for some ℓ𝑖. Wlog, suppose ℓ1 < ℓ2 < ⋯ < ℓ𝑛.

Start with a complete binary tree 𝑇 of depth ℓ𝑛. For each 𝑖 = 1, … , 𝑛, find any unassigned node in
𝑇 of depth ℓ𝑖, delete its children, and assign it a symbol.

Now, it remains to show that this process will not fail. That is, for any loop step 𝑖, there is still
some unassigned node at depth ℓ𝑖.

5

CO 432 Spring 2025: Lecture Notes James Ah Yong

Let 𝑃 ← 2ℓ𝑛 be the number of leaves of the complete binary tree of depth ℓ𝑛. After the 𝑖th step,
we decrease 𝑃 by 2ℓ𝑛−ℓ𝑖. That is, after 𝑛 steps,

𝑃 = 2ℓ𝑛 −
𝑛

∑
𝑖=1

2ℓ𝑛

2ℓ𝑖

= 2ℓ𝑛 − 2ℓ𝑛

𝑛
∑
𝑖=1

1
2ℓ𝑖

≥ 0

by the inequality.

Lecture 3
May 13Recall the problem we are trying to solve:

Problem 1.3.1
What is the expected number of bits you need to store the results of 𝑛 independent samples
of a random variable X?

Solution (Shannon & Faro). Consider the case where X is symbol 𝑖 with probability 𝑝𝑖. We want
to encode independent samples 𝑥𝑖 ∼ X as 𝐶(𝑥𝑖) for some code 𝐶 ∶ [𝑛] → {0, 1}∗.

Suppose for simplification that 𝑝𝑖 = 1
2ℓ𝑖

for some integers ℓ𝑖. Since ∑ 𝑝𝑖 = 1, we must have
∑ 1

2ℓ𝑖
= 1. Then, by Kraft’s inequality, there exists a prefix-free binary code 𝐶 ∶ [𝑛] → {0, 1}∗ with

codeword lengths |𝐶(𝑖)| = ℓ𝑖. Now,

𝔼
𝑥𝑖∼X

[∑
𝑖

|𝐶(𝑥𝑖)|] = ∑
𝑖

𝑝𝑖ℓ𝑖 = ∑
𝑖

𝑝𝑖 log2
1
𝑝𝑖

= 𝐻(X)

Proceed to the general case. Suppose log2
1
𝑝𝑖

are non-integral. Instead, use ℓ′
𝑖 = ⌈log2

1
𝑝𝑖

⌉. We still
satisfy Kraft since ∑𝑖

1

2ℓ′
𝑖

≤ ∑𝑖 𝑝𝑖 = 1. Then,

𝔼
𝑥𝑖∼X

[∑
𝑖

|𝐶(𝑥𝑖)|] = ∑
𝑖

𝑝𝑖ℓ′
𝑖 = ∑

𝑖
𝑝𝑖⌈log2

1
𝑝𝑖

⌉

which is bounded by

𝐻(X) = ∑
𝑖

𝑝𝑖 log2
1
𝑝𝑖

≤ ∑
𝑖

𝑝𝑖⌈log2
1
𝑝𝑖

⌉ < ∑
𝑖

𝑝𝑖(1 + log2
1
𝑝𝑖

) = 𝐻(X) + 1

We call the code 𝐶 generated by this process the Shannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro code.

We can improve on this bound [𝐻(X), 𝐻(X) + 1) by amortizing over longer batches of the string.

Solution (batching). For Y defined on [𝑛] equal to 𝑖 with probability 𝑞𝑖, define the random variable
Y(𝑘) on [𝑛]𝑘 equal to the string 𝑖1 ⋯ 𝑖𝑘 with probability 𝑞𝑖1

⋯ 𝑞𝑖𝑘
. That is, Y(𝑘) models 𝑘 independent

samples of Y.

Apply the Shannon–Fano code to Y(𝑘) to get an encoding of [𝑛]𝑘 as bitstrings of expected length ℓ

6

CO 432 Spring 2025: Lecture Notes James Ah Yong

satisfying 𝐻(Y(𝑘)) ≤ ℓ ≤ 𝐻(Y(𝑘)) + 1.

𝐻(Y(𝑘)) = 𝔼
𝑖1⋯𝑖𝑘∼Y(𝑘)

[log2
1

𝑞𝑖1
⋯ 𝑞𝑖𝑘

] (by def’n)

= 𝔼
𝑖1⋯𝑖𝑘∼Y(𝑘)

[log2
1

𝑞𝑖1

+ ⋯ + log2
1

𝑞𝑖𝑘

] (log rules)

=
𝑘

∑
𝑗=1

𝔼
𝑖1⋯𝑖𝑘∼Y(𝑘)

[log2
1

𝑞𝑖𝑗

] (linearity of expectation)

=
𝑘

∑
𝑗=1

𝔼
𝑖∼Y

[log2
1
𝑞𝑖

] (𝑞𝑖𝑗
only depends on one character)

= 𝑘𝐻(Y) (by def’n, no 𝑗-dependence in sum)

For every 𝑘 symbols, we use ℓ bits, i.e., ℓ
𝑘 bits per symbol. From the Shannon–Faro bound, we have

𝐻(Y(𝑘))
𝑘 ≤

ℓ
𝑘 <

𝐻(Y(𝑘))
𝑘 +

1
𝑘

𝐻(Y) ≤
ℓ
𝑘 < 𝐻(Y) +

1
𝑘

Then, we have a code for Y bounded by [𝐻(Y), 𝐻(Y) + 1
𝑘).

Taking a limit of some sort, we can say that we need 𝐻(Y) + 𝑜(1) bits.

7

Chapter 2

Relative entropy

Definition 2.0.1 (relative entropy)
Given two discrete distributions 𝑝 = (𝑝𝑖) and 𝑞 = (𝑞𝑖), the relative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropy

𝐷(𝑝 ∥ 𝑞) ∶= ∑ 𝑝𝑖 log2
1
𝑞𝑖

− ∑
𝑖

𝑝𝑖 log2
1
𝑝𝑖

= ∑ 𝑝𝑖 log2
𝑝𝑖
𝑞𝑖

This is also known as the KL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergence.

Lecture 4
May 15The KL divergence works vaguely like a “distance” between distributions. (In particular, KL

divergence is not a metric since it lacks symmetry and does not follow the triangle inequality, but
it can act sorta like a generalized squared distance.)

Fact 2.0.2. 𝐷(𝑝 ∥ 𝑞) ≥ 0 with equality exactly when 𝑝 = 𝑞.

Proof. Observe that
−𝐷(𝑝 ∥ 𝑞) = ∑

𝑖
𝑝𝑖(− log2

𝑝𝑖
𝑞𝑖

) = ∑
𝑖

𝑝𝑖 log2
𝑞𝑖
𝑝𝑖

and then define X′ = 𝑞𝑖
𝑝𝑖

with probability 𝑝𝑖. By construction, we get

−𝐷(𝑝 ∥ 𝑞) = 𝔼[log2 X′] ≤ log2(𝔼[X′])

by Jensen’s inequality (as 𝑓 = log2 is concave). Finally,

𝐷(𝑝 ∥ 𝑞) ≥ − log2(𝔼[X′]) = log2 (∑
𝑖

𝑝𝑖
𝑞𝑖
𝑝𝑖

) = log2 1 = 0

Proposition 2.0.3
Any prefix-free code has an expected length at least 𝐻(X).

Proof. Let X ∼ (𝑝𝑖). Suppose 𝐶 is a prefix-free code with codeword lengths ℓ𝑖.

8

CO 432 Spring 2025: Lecture Notes James Ah Yong

Then, by Kraft’s inequality, ∑𝑖 2−ℓ𝑖 ≤ 1. We want to show that ∑𝑖 𝑝𝑖ℓ𝑖 ≥ 𝐻(X), and we will prove
this by showing that ∑𝑖 𝑝𝑖ℓ𝑖 − 𝐻(X) = 𝐷(𝑝 ∥ 𝑞) for some distribution 𝑞 (then apply fact 2.0.2).

We will take 𝑞 to be the random walk distribution corresponding to the binary tree associated to
the candidate prefix-free code.

Let 𝑇 be the binary tree associated to 𝐶. Consider the process of randomly going left/right at each
node and stopping when either falling off the tree or hitting a leaf.

Let 𝑞𝑖 = 2−ℓ𝑖 be the probability that this random walk reaches the leaf for the symbol 𝑖 and let
𝑞𝑛+1 = 1 − ∑𝑖 2−ℓ𝑖 be the probability that the random walk falls off the tree. Also, to keep ranges
identical, let ̃𝑝𝑖 = 𝑝𝑖 and ̃𝑝𝑛+1 = 0. Now,

𝐷(̃𝑝 ∥ 𝑞𝐶) =
𝑛+1
∑
𝑖=1

̃𝑝𝑖 log2 𝑞−1
𝑖 −

𝑛+1
∑
𝑖=1

̃𝑝𝑖 log2
1
𝑝𝑖

=
𝑛

∑
𝑖=1

𝑝𝑖 log2 2ℓ𝑖 −
𝑛

∑
𝑖=1

𝑝𝑖 log2
1
𝑝𝑖

(̃𝑝𝑛+1 = 0)

=
𝑛

∑
𝑖=1

𝑝𝑖ℓ𝑖 − 𝐻(X)

Therefore, by fact 2.0.2, ∑𝑖 𝑝𝑖ℓ𝑖 ≥ 𝐻(X).

This proof technique generalizes. Recall the distinction between UDCs and prefix-free codes:

Definition 1.3.2
Let 𝐶 ∶ Σ → (Σ′)∗ be a code. We say 𝐶 is a uniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodable code (UDC) if there does not
exist a collision 𝑥, 𝑦 ∈ Σ∗, with identical encoding 𝐶(𝑥1)𝐶(𝑥2) ⋯ 𝐶(𝑥𝑘) = 𝐶(𝑦1)𝐶(𝑦2) ⋯ 𝐶(𝑦𝑘′).

Also, 𝐶 is prefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-free (sometimes called instantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneous) if for any distinct 𝑥, 𝑦 ∈ Σ, 𝐶(𝑥) is not
a prefix of 𝐶(𝑦).

Example 2.0.4. The code 𝐶(1, 2, 3, 4) = (10, 00, 11, 110) is a uniquely decodable code.

The code 𝐶′(1, 2, 3, 4) = (0, 10, 110, 111) is a prefix-free code.

Remark 2.0.5. A natural additional requirement for unique decodability is that for any 𝑘 ∈ ℕ,
𝑥 ∈ [𝑛]𝑘, 𝑦 ∈ [𝑛]𝑘, 𝐶(𝑥) ≠ 𝐶(𝑦).

Theorem 2.0.6
For any uniquely decodable code 𝐶 ∶ [𝑛] → {0, 1}∗ of codeword lengths ℓ𝑖, there is also a
prefix-free code 𝐶′ ∶ [𝑛] → {0, 1}∗ of lengths ℓ𝑖.

We will show that for any UDC 𝐶, the lengths ∑𝑖 2−ℓ𝑖 ≤ 1. Then, Kraft’s inequality applies and
we have a prefix-free code 𝐶′.

9

CO 432 Spring 2025: Lecture Notes James Ah Yong

Partition the code’s codomain 𝐶([𝑛]) = 𝐶1 ∪𝐶2 ∪𝐶3 ∪⋯ by the length of the codeword 𝐶𝑗 ⊆ {0, 1}𝑗.
We must instead show ∑𝑗

|𝐶𝑖|
2𝑗 ≤ 1.

Consider the easy case 𝐶([𝑛]) = 𝐶2 ∪ 𝐶3. If there are no collisions of length 5, we have

2 ⋅ |𝐶2| ⋅ |𝐶3| ≤ 25

because every string in {𝑥𝑦 ∶ 𝑥 ∈ 𝐶2, 𝑦 ∈ 𝐶3} ∪ {𝑦𝑥 ∶ 𝑥 ∈ 𝐶2, 𝑦 ∈ 𝐶3} is unique in {0, 1}5. That is,
|𝐶2| ⋅ |𝐶3| ≤ 24.

Likewise, if there are no collisions of length 5𝑘, we get

(2𝑘)!
𝑘! ⋅ 𝑘! ⋅ |𝐶2|𝑘 ⋅ |𝐶3|𝑘 ≤ 25𝑘

because the union ⋃
𝛼∈{2,3}2𝑘,

𝛼𝑖=2 for
𝑘 choices of 𝑖

𝐶𝛼𝑖
consists of only unique strings.

In the limit, by Sterling’s approximation,

22𝑘
√

𝑘
⋅ |𝐶2|𝑘 ⋅ |𝐶3|𝑘 ≤ 25𝑘

|𝐶2| ⋅ |𝐶3| ≤
25

22 (
√

𝑘)1/𝑘 ≈ 1 + 𝒪(log 𝑘/𝑘)

I have no idea where this was going.

Proof. Fix a 𝑘 ≥ 1. Let ℓ𝑚𝑎𝑥 = max ℓ𝑖. Write 𝐶(𝑘) to be the set of encoded 𝑘-length strings.

Consider the distribution: sample a length 𝑚 uniformly from the set [𝑘 ⋅ ℓ𝑚𝑎𝑥]. Also, sample a
uniformly random string 𝑠 ∈ {0, 1}𝑚. For each 𝑥 ∈ 𝐶(𝑘), let 𝐸𝑥 be the event where 𝑠 = 𝑥.

Now, we can write

∑
𝑥∈𝐶(𝑘)

Pr[𝐸𝑥] ≤ 1

because the events 𝐸𝑥 are mutually exclusive. Then,

∑
𝑥∈𝐶(𝑘)

1
𝑘 ⋅ ℓ𝑚𝑎𝑥

⋅
1

2ℓ(𝑥) ≤ 1

∑
𝑥∈𝐶(𝑘)

1
2ℓ(𝑥) ≤ 𝑘 ⋅ ℓ𝑚𝑎𝑥

where ℓ(𝑥) is the length of 𝑥. Since summing over each codeword 𝑥 ∈ 𝐶 is the same as summing

10

CO 432 Spring 2025: Lecture Notes James Ah Yong

over each codeword ℓ𝑖,

(∑
𝑖

1
2ℓ𝑖

)
𝑘

= (∑
𝑥∈𝐶

1
2ℓ(𝑥))

𝑘

= ∑
𝑥1,…,𝑥𝑘∈𝐶

1
2ℓ(𝑥1) ⋅

1
2ℓ(𝑥2) ⋯

1
2ℓ(𝑥𝑘)

= ∑
𝑥1,…,𝑥𝑘∈𝐶

1
2ℓ(𝑥1)+ℓ(𝑥2)+⋯+ℓ(𝑥𝑘)

= ∑
𝑥1,…,𝑥𝑘∈𝐶

1
2ℓ(𝑥1𝑥2⋯𝑥𝑘)

= ∑
𝑥∈𝐶(𝑘)

1
2ℓ(𝑥)

where we can take the last step by uniquely decoding 𝑥1𝑥2 ⋯ 𝑥𝑘 into 𝑥. Combining,

(∑
𝑖

1
2ℓ𝑖

)
𝑘

≤ 𝑘 ⋅ ℓ𝑚𝑎𝑥

∑
𝑖

1
2ℓ𝑖

≤ (𝑘 ⋅ ℓ𝑚𝑎𝑥)
1
𝑘

≤ 1 + 𝒪(
ℓ𝑚𝑎𝑥 ⋅ log2 𝑘

𝑘)

which tends to 1 as 𝑘 → ∞, as desired.

Lecture 5
May 20Notation. Write 𝐻(𝑝) to denote 𝐻(X) for X ∼ Bernoulli(𝑝).

That is, 𝐻(𝑝) = 𝑝 log2
1
𝑝 + (1 − 𝑝) log2

1
1−𝑝 .

Likewise, write 𝐷(𝑞 ∥ 𝑝) to be 𝐷(Y ∥ X) where Y ∼ Bernoulli(𝑞).

Recall Sterling’s approximation (which we have used before):

Theorem 2.0.7 (Sterling’s approximation)
𝑚! behaves like

√
2𝜋𝑚(𝑚

𝑒)𝑚(1 + 𝒪(1
𝑚))

2.1 The boolean 𝑘-slice

Consider the boolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-sliceboolean 𝑘-slice (also known as the Hamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-sliceHamming 𝑘-slice) of the hypercube {0, 1}𝑛 defined
by

𝐵𝑘 ∶= {𝑥 ∈ {0, 1}𝑛 ∶ 𝑥 has exactly 𝑘 ones}

11

CO 432 Spring 2025: Lecture Notes James Ah Yong

Remark 2.1.1.
|𝐵𝑘| ≈ 2𝐻(𝑘

𝑛)⋅𝑛

Proof. By Sterling’s approximation, knowing that |𝐵𝑘| = (𝑛
𝑘):

|𝐵𝑘| = (
𝑛
𝑘)

=
𝑛!

𝑛!(𝑛 − 𝑘)!

≈
√

2𝜋𝑛(𝑛
𝑒)𝑛

√
2𝜋𝑘(𝑘

𝑒)
𝑘√2𝜋(𝑛 − 𝑘)(𝑛−𝑘

𝑒)
𝑛−𝑘

= √
𝑛

2𝜋𝑘(𝑛 − 𝑘)
⋅

𝑛𝑘(𝑛
𝑛−𝑘)𝑛−𝑘

𝑘𝑘

Now, notice that (𝑛
𝑛−𝑘)𝑛−𝑘 = (1 + 𝑘

𝑛−𝑘)
𝑛−𝑘

≈ 𝑒𝑘 for 𝑘 ≪ 𝑛 − 𝑘 because 1 + 𝑥 ≈ 𝑒𝑥 for small 𝑥.

Then, (1 + 𝑘
𝑛−𝑘)

𝑛−𝑘
≈ (𝑒𝑘/(𝑛−𝑘))𝑛−𝑘 = 𝑒𝑘 and

|𝐵𝑘| ≈ (
𝑛𝑒
𝑘)

𝑘
(2.1)

= 2𝑘 log2
𝑛𝑒
𝑘

= 2𝑘 log2
𝑛
𝑘 +𝑘 log2 𝑒

= 2(𝑘
𝑛 log2

𝑛
𝑘)𝑛+𝑘 log2 𝑒

≈ 2(𝑘
𝑛 log2

𝑛
𝑘)𝑛

for 1 ≪ 𝑘 ≪ 𝑛. Then, given that same assumption,

𝐻(
𝑘
𝑛) =

𝑘
𝑛 log2

𝑛
𝑘 +

�����������:0
(1 −

𝑘
𝑛) log2

1
1 − 𝑘

𝑛

≈
𝑘
𝑛 log2

𝑛
𝑘

because if 𝑛 ≫ 𝑘, 𝑘
𝑛 → 0 and 1 log2 1 = 0. Combining these approximations yields

|𝐵𝑘| ≈ 2𝐻(𝑘
𝑛)𝑛

Let X be a uniformly chosen point in 𝐵𝑘 and X1, … , X𝑛 ∼ Bernoulli(𝑘
𝑛).

This means that 𝐻(X) ≈ 𝐻((X1, … , X𝑛)), which is remarkable because the latter could produce
points in 𝐵𝑘 or points with 𝑛 ones or points with no ones.

This seems to imply that the majority of the mass of (X1, … , X𝑛) lies within the boolean 𝑘-slice.
Formally, we make the following claim about the concentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measureconcentration of measure:1

1cf. Dvoretzky–Milman theorem

12

CO 432 Spring 2025: Lecture Notes James Ah Yong

Proposition 2.1.2
Fix any 𝜀 > 0. The probability

Pr [(X1, … , X𝑛) ∉
(𝑖+𝜀)𝑘

⋃
ℓ=(1−𝜀𝑘)

𝐵ℓ] =
1

2𝑛/𝜀2

Informally, the probability of the randomly-drawn vector lying outside of the boolean 𝑘-slice
is exponentially small.

We will prove a stronger claim:

Claim 2.1.3. Fix any 𝑝 ∈ (0, 1) and consider any 𝑞 > 𝑝. Then,

Pr[𝑤((X𝑖)) > 𝑞 ⋅ 𝑛] ≤ 2−𝐷(𝑞∥𝑝)⋅𝑛

where 𝑤((X𝑖)) is the number of ones. Likewise, consider any 𝑞 < 𝑝. Then,

Pr[𝑤((X𝑖)) < 𝑞 ⋅ 𝑛] ≤ 2−𝐷(𝑞∥𝑝)⋅𝑛

Consider a toy example first. Let X be the number of heads after 𝑛 fair coin tosses.

Then, 𝔼[X] = 𝑛
2 and

Pr[X ≥ 0.51𝑛] =
1
2𝑛

𝑛
∑

𝑘≥0.51𝑛
(

𝑛
𝑘) ≈

1
2𝑛

𝑛
∑

𝑘≥0.51𝑛
(

𝑛𝑒
𝑘)

𝑘
→ 0 very quickly

by the same magic that we did in eq. (2.1) and because 1
2𝑛 goes to 0 very quickly.

Now we can prove the claim.

Proof. Let 𝜃𝑝(𝑥) denote the probability of sampling a vector 𝑥 ∈ {0, 1}𝑛 where each bit is iid
Bernoulli(𝑝). Then,

𝜃𝑝(𝑥)
𝜃𝑞(𝑥)

=
𝑝𝑘(1 − 𝑝)𝑘

𝑞𝑘(1 − 𝑞)𝑘

=
(1 − 𝑝)𝑛

(1 − 𝑞)𝑛 (
𝑝

1−𝑝
𝑞

1−𝑞
)

𝑘

≤
(1 − 𝑝)𝑛

(1 − 𝑞)𝑛 (
𝑝

1−𝑝
𝑞

1−𝑞
)

𝑞𝑛

for any 𝑘 ≥ 𝑞𝑛 because (1) if 𝑞 ≥ 𝑝, then 𝑞
1−𝑞 ≥ 𝑝

1−𝑝 and the ugly fraction is greater than 1 and (2)
increasing the exponent increases the quantity if the base is greater than 1.

Let 𝐵≥𝑘 ∶= ⋃ℓ≥𝑘 𝐵ℓ. Then, for all 𝑥 ∈ 𝐵≥𝑞𝑛, we must show that

𝜃𝑝(𝑥) ≤
(1 − 𝑝)𝑛

(1 − 𝑞)𝑛 (
𝑝

1−𝑝
𝑞

1−𝑞
)

𝑞𝑛

⋅ 𝜃𝑞(𝑥) = 2−𝑛𝐷(𝑞∥𝑝)⋅𝜃𝑞(𝑥)

13

CO 432 Spring 2025: Lecture Notes James Ah Yong

Consider the right-hand expression:

2𝑛⋅𝐷(𝑞∥𝑝) = 2𝑛⋅(𝑞 log2
1
𝑝 +(1−𝑞) log2

1
1−𝑝 −𝑞 log2

1
𝑞 −(1−𝑞) log2

1
1−𝑞)

= (
1
𝑝𝑞 ⋅

1
(1 − 𝑝)1−𝑞 ⋅ 𝑞𝑞 ⋅ (1 − 𝑞)1−𝑞)

𝑛

and the left-hand expression:

(1 − 𝑝)𝑛

(1 − 𝑞)𝑛 (
𝑝

1−𝑝
𝑞

1−𝑞
)

𝑞𝑛

= (
(1 − 𝑝)1−𝑞𝑝𝑞

(1 − 𝑞)1−𝑞𝑞𝑞)
𝑛

= (𝑝𝑞 ⋅ (1 − 𝑝)1−𝑞 ⋅
1
𝑞𝑞 ⋅

1
(1 − 𝑞)1−𝑞)

𝑛

which is clearly the reciprocal of the right-hand expression.

Now, we know that 𝜃𝑝(𝑥) = 2−𝑛𝐷(𝑞∥𝑝)𝜃𝑞(𝑥), so

Pr
X1,…,X𝑛∼Bernoulli(𝑝)

[(X1, … , X𝑛) ∈ 𝐵≥𝑞𝑛]

= ∑
𝑥∈𝐵≥𝑞𝑛

𝜃𝑝(𝑥)

≤ 2−𝑛𝐷(𝑞∥𝑝) ∑
𝑥∈𝐵≥𝑞𝑛

𝜃𝑞(𝑥)

≤ 2−𝑛𝐷(𝑞∥𝑝)

since the sum of the probabilities of 𝑥 being any given entry in 𝐵≥𝑞𝑛 must be at most 1.

2.2 Rejection sampling

The KL divergence can give us a metric of how accurately we can sample one distribution using
another distribution.

Example 2.2.1. Suppose X = {
0 𝑝 = 1

2
1 𝑝 = 1

2
and Y = {

0 𝑝 = 1
4

1 𝑝 = 3
4

.

How can we sample Y using X?

Solution (naive). Take iid X1 and X2. Return 0 if 𝑥1 = 𝑥2 = 0 and 1 otherwise.

Solution (fancy). Take an infinite iid queue X1, X2, …

Starting at 𝑖 = 1, if X𝑖 = 0, then output 0 with probability 1
2 , otherwise increment 𝑖 until X𝑖 = 1.

↓ Lecture 6 adapted from Arthur ↓
Lecture 6
May 22Problem 2.2.2 (rejection sampling)

Given access to a distribution 𝑄 = (𝑄(𝑥))𝑥∈𝒳, how efficiently can you simulate 𝑃 = (𝑃(𝑥))𝑥∈𝒳?

14

CO 432 Spring 2025: Lecture Notes James Ah Yong

Example 2.2.3. Suppose 𝑄 = (1
3 , 1

3 , 1
3) and 𝑃 = (1

2 , 1
2). We want to obtain the 𝑃 distribution

from 𝑄.

Solution. Since 𝑄 and 𝑃 are both uniform, we can just keep sampling from 𝑄 until we get something
in 𝑃. That is, for 𝑖 = 1, … , ∞:

1. Sample X𝑖 ∼ 𝑄.

2. If X𝑖 ∈ {1, 2}, accept and output Y ← X𝑖.

3. Otherwise, 𝑖 ← 𝑖 + 1.

This works because

Pr[Y = 1] = Pr[X𝑖 = 1 ∣ X𝑖 = 1 ∨ X𝑖 = 2] =
1/3
2/3

=
1
2

for the final round 𝑖, and similarly for Y = 2.

Example 2.2.4. Consider a slightly more complex distribution 𝑃 = (1
3 , 2

3) and 𝑄 = (1
2 , 1

2).

Solution. We will create a more complex rejection sampling protocol with some cheating.

Again, iterate and draw independent X𝑖:

• If X1 = 1, accept with probability 2
3 . Otherwise, reject and continue to X2 with probability

1
3 .

• If X1 = 2, accept.

• For 𝑖 ≥ 2, accept if X𝑖 = 1 and reject if X𝑖 = 2.

Then, the probability of accepting X1 = 1 is 1
3 , X1 = 2 is 1

2 , and rejecting X1 is 1
6 .

Since later rounds only output 1, we output 1 with probability 1
3 + 1

6 = 1
2 and 2 with probability

1
2 .

Definition 2.2.5 (rejection sampler)
A rejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection samplerrejection sampler is a procedure that reads sequentially independent random samples X𝑖 ∼ 𝑄
and in each round 𝑖 either

• accepts the value of X𝑖 and terminates with an index 𝑖∗, or
• rejects and continues.

The iteration we terminated on 𝑖∗ is a random variable since it is a function of other random
variables. It satisfies X𝑖∗ ∼ 𝑃, which is weird since for all fixed 𝑖, X𝑖 ∼ 𝑄.

An interesting application is communication complexity. Suppose Alice has some hidden distribu-
tion 𝑃. Alice and Bob have access to a shared random iid sequence X𝑖 ∼ 𝑄.

15

CO 432 Spring 2025: Lecture Notes James Ah Yong

Alice can send an encoding of 𝑖∗ to Bob who outputs X𝑖∗ ∼ 𝑃. This encoding 𝑖∗ can be encoded
using log 𝑖∗ bits.

We will show that 𝔼[log 𝑖∗] ≤ 𝐷(𝑃 ∥ 𝑄) + 𝒪(1). You can also show that 𝐷(𝑃 ∥ 𝑄) ≤ 𝔼[log 𝑖∗].

For each round 𝑖 and symbol 𝑥, we need to know whether 𝑥 was sampled before round 𝑖, i.e., the
probability assigned to 𝑥 in previous rounds.

For round 𝑖 ≥ 1, define:

• 𝛼𝑖(𝑥) to denote the probability that the procedure accepts X𝑖 and that X𝑖 = 𝑥
• 𝑝𝑖(𝑥) to denote the probability that the procedure halts at round 𝑖∗ ≤ 𝑖 and X𝑖∗ = 𝑥

We want to construct our procedure such that

• for all 𝑥, 𝑃(𝑥) = ∑𝑛
𝑖=1 𝛼𝑖(𝑥)

• for all 𝑥 and 𝑖, 𝑝𝑖(𝑥) = ∑𝑖
𝑘=1 𝛼𝑘(𝑥)

• the probability that we halt on or before round 𝑖 is 𝑝∗
𝑖 ∶= ∑𝑥∈𝒳 𝑝𝑖(𝑥)

↑ Lecture 6 adapted from Arthur ↑
Lecture 7
May 27Algorithm 1 RejectionSampling(𝑃, 𝑄)

Require: ∀𝑥 ∈ 𝒳, 𝑄(𝑥) > 0 ⟺ 𝐷(𝑃 ∥ 𝑄) < ∞
1: for 𝑥 ∈ 𝒳 do 𝑝0(𝑥) ← 0
2: 𝑝∗

0 ← 0
3: for 𝑖 = 1, … , ∞ do
4: sample X𝑖 ∼ 𝑄
5: if 𝑃(X𝑖) − 𝑃𝑖−1(X𝑖) ≤ (1 − 𝑝∗

𝑖−1) ⋅ 𝑄(X𝑖) then
6: with probability 𝛽𝑖(X𝑖) = 𝑃(X𝑖)−𝑝𝑖−1(X𝑖)

(1−𝑝∗
𝑖−1)(𝑄(X𝑖)) do

7: ▷ so that the net probability of sampling X𝑖 will be 𝛼𝑖(X𝑖) = 𝑃(X𝑖) − 𝑝𝑖−1(X𝑖) ◁
8: return X𝑖
9: else

10: with probability 𝛽𝑖(X𝑖) = 1 do
11: ▷ so that the net probability of sampling X𝑖 is 𝛼𝑖(1 − 𝑝∗

𝑖−1) ⋅ 𝑄(X𝑖) ◁
12: return X𝑖

In this case, for all 𝑥 and for all 𝑖:

• the probability of accepting 𝑥 in round 𝑖 is 𝛼𝑖(𝑥) = min{𝑃(𝑥) − 𝑝𝑖−1(𝑥), (1 − 𝑝∗
𝑖−1)𝑄(𝑥)}

• the probability of accepting 𝑥 on or before round 𝑖 is 𝑝𝑖(𝑥) = 𝑝𝑖−1(𝑥) + 𝛼𝑖(𝑥)
• the probability of terminating on or before round 𝑖 is 𝑝∗

𝑖 = 𝑝∗
𝑖−1 + ∑𝑥∈𝒳 𝛼𝑖(𝑥) = ∑𝑥∈𝒳 𝑝𝑖(𝑥)

Example 2.2.6. Let 𝑃 = (1
2 , 3

8 , 1
8) and 𝑄 = (1

3 , 1
3 , 1

3). Do the procedure.

Solution. In round 1, sample X1 ∼ 𝑄.

• If X1 = 1, accept with probability 1.
• If X1 = 2, accept with probability 1.
• If X1 = 3, accept with probability 3

8 .

Then, 𝑝1(1) = 1
3 , 𝑝1(2) = 1

3 , 𝑝1(3) = 1
8 , and 𝑝∗

1 = 19
24 .

16

CO 432 Spring 2025: Lecture Notes James Ah Yong

In round 2, sample X2 ∼ 𝑄.

• If X2 = 1, accept with probability 1. There is a 5
72 chance of getting here, but deficit

probability is 1
6 , so no need to reduce.

• If X2 = 2, accept with probability 3
5 . There is a 5

72 chance of getting here and deficit
probability is 3

8 − 1
3 = 1

24 . For equality, use probability 3
5 ⋅ 5

72 = 1
24 .

• If X3 = 3, accept with probability 0. We already fulfilled 𝑃(3) = 𝑝1(3).

Then, 𝑝2(1) = 29
72 , 𝑝2(2) = 3

8 , 𝑝3(2) = 1
8 , and 𝑝∗

2 = 19
24 + 5

24 ⋅ (1
3 + 3/5

5) = 65
72 .

In round 3, sample X3 ∼ 𝑄.

• If X3 = 1, accept with probability 1.
• If X3 = 2 or 3, accept with probability 0.

Keep repeating until we accept a 1.

Proposition 2.2.7
(𝑝𝑖(𝑥))𝑥∈𝒳 converges to 𝑃(𝑥) as 𝑖 → ∞. In fact, the residual decays exponentially fast

𝑃(𝑥) − 𝑝𝑖(𝑥) ≤ 𝑃(𝑥) ⋅ (1 − 𝑄(𝑥))𝑖.

Proof. Begin with the claim that the probability of reaching round 𝑖 is at least the residual at 𝑖 for
any 𝑥:

1 − 𝑝∗
𝑖−1 ≥ 𝑃(𝑥) − 𝑝𝑖−1(𝑥) ∀𝑥

Intuitively, either you returned prior to round 𝑖 (i.e., 𝑝∗
𝑖−1) or you did not (i.e., the residual).

1 − 𝑝∗
𝑖−1 = ∑

𝑥∈𝒳
𝑃(𝑥) − ∑

𝑥∈𝒳
𝑝𝑖−1(𝑥)

= ∑
𝑥∈𝒳

(𝑃 (𝑥) − 𝑝𝑖−1(𝑥)) (2.2)

Also, claim that
𝛼𝑖 ≥ (𝑃(𝑥) − 𝑝𝑖−1(𝑥)) ⋅ 𝑄(𝑥) (2.3)

If 𝛼𝑖 = 𝑃(𝑥) − 𝑝𝑖−1(𝑥), then clearly 𝛼𝑖 ≥ 𝛼𝑖𝑄(𝑥). Otherwise, if 𝛼𝑖 = (1 − 𝑝∗
𝑖−1)𝑄(𝑥), then eq. (2.2)

applies.

Proceed by induction.

Base case: exercise.

Inductive step: suppose that 𝑃(𝑥) − 𝑝𝑖(𝑥) ≤ 𝑃(𝑥) ⋅ (1 − 𝑄(𝑥))𝑖. Then,

𝑃(𝑥) − 𝑝𝑖+1(𝑥) = 𝑃(𝑥) − 𝑝𝑖(𝑥) − 𝛼𝑖+1(𝑥)
≤ (𝑃(𝑥) − 𝑝𝑖−1(𝑥))(1 − 𝑄(𝑥)) (by eq. (2.3))
≤ (𝑃(𝑥) ⋅ (1 − 𝑄(𝑥))𝑖)(1 − 𝑄(𝑥)) (by supposition)
≤ 𝑃(𝑥) ⋅ (1 − 𝑄(𝑥))𝑖+1

Now, we will prove that this is related to relative entropy.

17

CO 432 Spring 2025: Lecture Notes James Ah Yong

Proposition 2.2.8
Let 𝑖∗ be the iteration at which the procedure returns. Then, 𝔼[log2 𝑖∗] ≤ 𝐷(𝑃 ∥ 𝑄) + 2 log2 𝑒.

Proof. First, claim that for all 𝑥 ∈ 𝒳 and any 𝑖 ≥ 2 such that 𝛼𝑖(𝑥) > 0,

𝑖 ≤
𝑃(𝑥)

(1 − 𝑝∗
𝑖−1) ⋅ 𝑄(𝑥)

+ 1 (2.4)

That is, if we reach a particular round 𝑖, the probability mass left must be sufficiently large.

We know that 𝑃(𝑥) ≥ 𝑝𝑖−1(𝑥) since we increase to 𝑃(𝑥). Then,

𝑃(𝑥) ≥ 𝑝𝑖−1(𝑥)
= 𝛼1(𝑥) + ⋯ + 𝛼𝑖−1(𝑥)
≥ (1 − 𝑝∗

1) ⋅ 𝑄(𝑥) + ⋯ + (1 − 𝑝𝑖−1) ⋅ 𝑄(𝑥)
≥ (1 − 𝑝∗

𝑖−1) ⋅ 𝑄(𝑥) + ⋯ + (1 − 𝑝𝑖−1) ⋅ 𝑄(𝑥)
= (𝑖 − 1)(1 − 𝑝∗

𝑖−1) ⋅ 𝑄(𝑥)

𝑖 ≤
𝑃(𝑥)

(1 − 𝑝∗
𝑖−1) ⋅ 𝑄(𝑥)

+ 1

as long as 𝛼𝑗−1 < 𝛼𝑗 for all 𝑗.
Lecture 8
May 29Do a gigantic algebra bash:

𝔼[log2 𝑖∗] =
∞

∑
𝑖=1

(𝑝∗
𝑖 − 𝑝∗

𝑖−1) ⋅ log2 𝑖

=
∞

∑
𝑖=1

∑
𝑥∈𝒳

𝛼𝑖(𝑥) ⋅ log2 𝑖

≤
∞

∑
𝑖=1

∑
𝑥∈𝒳

𝛼𝑖(𝑥) ⋅ log2 [
𝑃(𝑥)

(1 − 𝑝∗
𝑖−1)𝑄(𝑥)

+ 1] (by eq. (2.4))

≤
∞

∑
𝑖=1

∑
𝑥∈𝒳

𝛼𝑖(𝑥) ⋅ log2 [
1

(1 − 𝑝∗
𝑖−1)

(
𝑃(𝑥)
𝑄(𝑥)

+ 1)]

=
∞

∑
𝑖=1

∑
𝑥∈𝒳

𝛼𝑖(𝑥) log2
1

(1 − 𝑝∗
𝑖−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

+
∞

∑
𝑖=1

∑
𝑥∈𝒳

𝛼𝑖(𝑥) log2 (
𝑃(𝑥)
𝑄(𝑥)

+ 1)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

Consider the first term 𝐴:

𝐴 =
∞

∑
𝑖=1

∑
𝑥∈𝒳

𝛼𝑖(𝑥) log2
1

(1 − 𝑝∗
𝑖−1)

=
∞

∑
𝑖=1

(𝑝∗
𝑖 − 𝑝∗

𝑖−1) log2
1

(1 − 𝑝∗
𝑖−1)

Notice that this is a left-handed Riemann sum of log2
1

1−𝑥 :

𝐴 ≤ ∫
1

0
log2

1
1 − 𝑥 d𝑥

= log2 𝑒

18

CO 432 Spring 2025: Lecture Notes James Ah Yong

Now, consider the second term 𝐵:

𝐵 =
∞

∑
𝑖=1

∑
𝑥∈𝒳

𝛼𝑖(𝑥) log2 (
𝑃(𝑥)
𝑄(𝑥)

+ 1)

= ∑
𝑥∈𝒳

∞
∑
𝑖=1

𝛼𝑖(𝑥) log2 (
𝑃(𝑥)
𝑄(𝑥)

+ 1) (Fubini?)

= ∑
𝑥∈𝒳

𝑃(𝑥) log2 (
𝑃(𝑥)
𝑄(𝑥)

+ 1) (𝑃(𝑥) = ∑𝑖 𝛼𝑖(𝑥))

= ∑
𝑥∈𝒳

𝑃(𝑥) log2 (
𝑃(𝑥)
𝑄(𝑥)

⋅ (1 +
𝑄(𝑥)
𝑃(𝑥)

))

= ∑
𝑥∈𝒳

𝑃(𝑥) log2 (
𝑃(𝑥)
𝑄(𝑥)

) + ∑
𝑥∈𝒳

𝑃(𝑥) log2 (1 +
𝑄(𝑥)
𝑃(𝑥)

)

= 𝐷(𝑃 ∥ 𝑄) + ∑
𝑥∈𝒳

𝑃(𝑥) log2 (1 +
𝑄(𝑥)
𝑃(𝑥)

)

≤ 𝐷(𝑃 ∥ 𝑄) + ∑
𝑥∈𝒳

𝑃(𝑥) log2 (𝑒𝑄(𝑥)/𝑃(𝑥)) (1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 ≥ 0)

= 𝐷(𝑃 ∥ 𝑄) + ∑
𝑥∈𝒳

𝑃(𝑥)
𝑄(𝑥)
𝑃(𝑥)

log2 𝑒

= 𝐷(𝑃 ∥ 𝑄) + log2 𝑒 ∑
𝑥∈𝒳

𝑄(𝑥)

= 𝐷(𝑃 ∥ 𝑄) + log2 𝑒

Therefore,
𝔼[log2 𝑖∗] ≤ 𝐴 + 𝐵 ≤ 𝐷(𝑃 ∥ 𝑄) + 2 log2 𝑒

completing the proof.

Intuition: for any 𝑥 ∈ 𝒳, if 𝛼𝑖(𝑥) ≤ 𝑄(𝑥) ⋘ 𝑃(𝑥), then you need an expected amount of 𝑃(𝑥)
𝑄(𝑥)

steps to succeed, because you just won’t roll 𝑥 that often.

Also, if 𝛼𝑖+1(𝑥) > 0 (any round prior to termination), (1 − 𝑝∗
𝑖−1(𝑥))𝑄(𝑥) ≤ 𝛼𝑖(𝑥).

Proposition 2.2.9
For any rejection sampler, let 𝑖∗ be the index where it returns. Then,

𝔼[ℓ(𝑖∗)] ≥ 𝐷(𝑃 ∥ 𝑄)

Proof. For convenience, redefine 𝛼𝑖(𝑥) ≔ Pr[𝑖∗ = 𝑖 ∧ X𝑖 = 𝑥].

First, observe that for any 𝑥 ∈ 𝒳, a rejection sampler must have

𝛼𝑖(𝑥) ≤ 𝑄(𝑥)

because we only have a 𝑄(𝑥) chance of rolling 𝑥 to accept it in round 𝑖.

19

CO 432 Spring 2025: Lecture Notes James Ah Yong

Now, fix 𝑥 ∈ 𝒳. Consider the random variable 𝑖∗|X𝑖∗=𝑥. Then, by Kraft’s inequality,

𝔼[ℓ(𝑖∗) ∣ X𝑖∗ = 𝑥] ≥ 𝐻(𝑖∗ ∣ X𝑖∗ = 𝑥)

=
∞

∑
𝑖=1

Pr[𝑖∗ = 𝑖 ∣ X𝑖∗ = 𝑥] log2
1

Pr[𝑖∗ = 𝑖 ∣ X𝑖∗ = 𝑥]

=
∞

∑
𝑖=1

𝛼𝑖(𝑥)
𝑃 (𝑥)

log2
𝑃(𝑥)
𝛼𝑖(𝑥)

≥
∞

∑
𝑖=1

𝛼𝑖(𝑥)
𝑃 (𝑥)

log2
𝑃(𝑥)
𝑄(𝑥)

= log2
𝑃(𝑥)
𝑄(𝑥)

⋅
∞

∑
𝑖=1

𝛼𝑖(𝑥)
𝑃 (𝑥)

= log2
𝑃(𝑥)
𝑄(𝑥)

because ∑∞
𝑖=1 𝛼𝑖(𝑥) = 𝑃(𝑥). Apply the law of total probability:

𝔼[ℓ(𝑖∗)] = ∑
𝑥∈𝒳

Pr[X𝑖∗ = 𝑥] 𝔼[ℓ(𝑖∗) ∣ X𝑖∗ = 𝑥]

= ∑
𝑥∈𝒳

𝑃(𝑥) 𝔼[ℓ(𝑖∗) ∣ X𝑖∗ = 𝑥]

≥ ∑
𝑥∈𝒳

𝑃(𝑥) log2
𝑃(𝑥)
𝑄(𝑥)

= 𝐷(𝑃 ∥ 𝑄)

as desired.

20

Chapter 3

Mutual information

3.1 Definition and chain rules

Lecture 9
June 3

Notation. Given two jointly distributed random variables (X, Y) over sample space 𝒳 × 𝒴,
write 𝑝𝑥𝑦 for Pr[X = 𝑥, Y = 𝑦].

Definition 3.1.1
Given two jointly distributed random variables (X, Y) over sample space 𝒳 × 𝒴, define the
mutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual informationmutual information 𝐼(X ∶ Y) by

𝐼(X ∶ Y) = 𝐻(X) + 𝐻(Y) − 𝐻((X, Y))
= 𝐻(X) − 𝐻(X ∣ Y)
= 𝐻(Y) − 𝐻(Y ∣ X)

where the conditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropyconditional entropy 𝐻(X ∣ Y) is

∑
𝑦∈𝒴

𝑝𝑦 ⋅ 𝐻((X|Y=𝑦))

This is entirely analogous to saying that |𝐴 ∩ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∪ 𝐵| = |𝐴| − |𝐴 −𝐵|.

Theorem 3.1.2 (chain rule for entropy)
Given two jointly distributed random variables (X, Y) over a discrete sample space 𝒳 × 𝒴,

𝐻((X, Y)) = 𝐻(X) + 𝐻(Y ∣ X)

21

CO 432 Spring 2025: Lecture Notes James Ah Yong

Proof. Do a bunch of algebra:

𝐻(X) + 𝐻(Y ∣ X) = ∑
𝑥∈𝒳

𝑝𝑥 log
1
𝑝𝑥

+ ∑
𝑥∈𝒳

𝑝𝑥 ∑
𝑦∈𝒴

Pr[Y = 𝑦 ∣ X = 𝑥] log
1

Pr[Y = 𝑦 ∣ X = 𝑥]

= ∑
𝑥∈𝒳

𝑝𝑥 log
1
𝑝𝑥

+ ∑
𝑥∈𝒳

��𝑝𝑥 ∑
𝑦∈𝒴

𝑝𝑥𝑦

��𝑝𝑥
log

𝑝𝑥
𝑝𝑥𝑦

= ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
1
𝑝𝑥

+ ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
𝑝𝑥
𝑝𝑥𝑦

= ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦(log
1
𝑝𝑥

+ log
𝑝𝑥
𝑝𝑥𝑦

)

= ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
1

𝑝𝑥𝑦

= 𝐻((X, Y))

Corollary 3.1.3. For two independent variables, since (Y ∣ X) = Y, we have 𝐻((X, Y)) =
𝐻(X) + 𝐻(Y) as expected.

Corollary 3.1.4. 𝐻((X1, X2, X3)) = 𝐻(X1) + 𝐻(X2 ∣ X1) + 𝐻(X3 ∣ (X1, X2))

Proof. Consider (X1, X2, X3) = ((X1, X2), X3). Then, by the chain rule for entropy,

𝐻(((X1, X2), X3)) = 𝐻((X1, X2)) + 𝐻(X3 ∣ (X1, X2))

and then by another application,

𝐻(((X1, X2), X3)) = 𝐻(X1) + 𝐻(X2 ∣ X1) + 𝐻(X3 ∣ (X1, X2))

as desired.

Theorem 3.1.5 (general chain rule for entropy)
For 𝑘 random variables X1, … , X𝑘,

𝐻((X1, … , X𝑘)) =
𝑘

∑
𝑖=1

𝐻(X𝑖 ∣ (X1, ⋯ , X𝑖−1))

Proof. By induction on the chain rule for entropy.

Notation. Although relative entropy is defined only on distributions, write 𝐷(X ∥ Y) to be
𝐷(𝑓X ∥ 𝑓Y).

22

CO 432 Spring 2025: Lecture Notes James Ah Yong

Theorem 3.1.6 (chain rule for relative entropy)
Let 𝑝 and 𝑞 ∶ 𝒳 × 𝒴 → [0, 1] be distributions. Let 𝑝(𝑥) ≔ ∑𝑦∈𝒴 𝑝(𝑥, 𝑦) denote marginals of 𝑝
and 𝑝(𝑦|𝑥) ≔ 𝑝(𝑥,𝑦)

𝑝(𝑥) denote conditionals of 𝑝. Then,

𝐷(𝑝(𝑥, 𝑦) ∥ 𝑞(𝑥, 𝑦)) = 𝐷(𝑝(𝑥) ∥ 𝑞(𝑥)) + 𝐷(𝑝(𝑦|𝑥) ∥ 𝑞(𝑦|𝑥))
= 𝐷(𝑝(𝑥) ∥ 𝑞(𝑥)) + ∑

𝑥∈𝒳
𝑝(𝑥) ⋅ 𝐷((𝑝(𝑦|𝑥))𝑦∈𝒴 ∥ (𝑞(𝑦|𝑥))𝑦∈𝒴)

where 𝐷(𝑝(𝑦|𝑥) ∥ 𝑞(𝑦|𝑥)) is the conditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropyconditional relative entropy.

Equivalently, let (X1, Y1) and (X2, Y2) be two joint random variables. Then,

𝐷((X1, Y1) ∥ (X2, Y2)) = 𝐷(X1 ∥ X2) + ∑
𝑥∈𝒳

Pr[X1 = 𝑥] ⋅ 𝐷(Y1|X1=𝑥 ∥ Y2|X2=𝑥)

Proof (for distributions). Do algebra:

𝐷(𝑝(𝑥) ∥ 𝑞(𝑥)) + 𝐷(𝑝(𝑦 ∣ 𝑥) ∥ 𝑞(𝑦 ∣ 𝑥))

= ∑
𝑥∈𝒳

𝑝𝑥 log
𝑝𝑥
𝑞𝑥

+ ∑
𝑥∈𝒳

𝑝𝑥 ∑
𝑦∈𝒴

𝑝(𝑦 ∣ 𝑥) log
𝑝(𝑦 ∣ 𝑥)
𝑞(𝑦 ∣ 𝑥)

= ∑
𝑥∈𝒳

𝑝𝑥 log
𝑝𝑥
𝑞𝑥

+ ∑
𝑥∈𝒳

𝑝𝑥 ∑
𝑦∈𝒴

𝑝𝑥𝑦

𝑝𝑥
log

𝑝𝑥𝑦𝑞𝑥

𝑞𝑥𝑦𝑝𝑥

= ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
𝑝𝑥
𝑞𝑥

+ ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
𝑝𝑥𝑦𝑞𝑥

𝑞𝑥𝑦𝑝𝑥

= ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦(log
𝑝𝑥
𝑞𝑥

+ log
𝑝𝑥𝑦𝑞𝑥

𝑞𝑥𝑦𝑝𝑥
)

= ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
𝑝𝑥𝑦

𝑞𝑥𝑦

= 𝐷(𝑝(𝑥, 𝑦) ∥ 𝑞(𝑥, 𝑦))

as in the proof of chain rule for entropy.

Fact 3.1.7.
𝐼[X ∶ Y] = 𝔼

𝑥←X
[𝐷(Y|X=𝑥 ∥ Y)] = ∑

𝑥∈𝒳
𝑝𝑥𝐷(Y|X=𝑥 ∥ Y)

Proof. First, claim that
𝐼[X ∶ Y] = 𝐷((X, Y) ∥ ̃X ⊗ ̃Y) (3.1)

where X̃ ⊗ ̃Y denotes a random variable consisting of ̃X (resp. Ỹ) independently sampled according

23

CO 432 Spring 2025: Lecture Notes James Ah Yong

to the distribution of X (resp. Y) so that Pr[X̃ = 𝑥, Ỹ = 𝑦] = 𝑝𝑥𝑝𝑦. Expand the left-hand side:

𝐼[X ∶ Y] = ∑
𝑥∈𝒳

𝑝𝑥 log
1
𝑝𝑥

+ ∑
𝑦∈𝒴

𝑝𝑦 log
1
𝑝𝑦

− ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
1

𝑝𝑥𝑦

= ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝𝑥𝑦 log
1
𝑝𝑥

+ ∑
𝑦

∑
𝑥

𝑝𝑥𝑦 log
1
𝑝𝑦

− ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
1

𝑝𝑥𝑦

= ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝𝑥𝑦(log
1
𝑝𝑥

+ log
1
𝑝𝑦

− log
1

𝑝𝑥𝑦
)

= ∑
𝑥∈𝒳
𝑦∈𝒴

𝑝𝑥𝑦 log
𝑝𝑥𝑦

𝑝𝑥𝑝𝑦

= 𝐷((X, Y) ∥ X̃ ⊗ Ỹ)

Now, apply the chain rule for relative entropy:

𝐷((X, Y) ∥ X̃ ⊗ Ỹ) = 𝐷(X ∥ X̃) + 𝐷((X, Y) ∣ (X, X̃) ∥ (̃X ⊕ ̃Y) ∣ (X, ̃X))
= 0 + ∑

𝑥
𝑝𝑥𝐷(Y|X=𝑥 ∥ Y)

= 𝔼
𝑥←X

𝐷(Y|X=𝑥 ∥ Y)

Lecture 11
June 10Theorem 3.1.8 (chain rule for mutual information)

Let X1, X2, and Y be random variables. Then,

𝐼((X1, X2) ∶ Y) = 𝐼(X1 ∶ 𝑌) + 𝐼(X2 ∶ (𝑌 ∣ X1))

and in general
𝐼((X1, … , X𝑛) ∶ Y) =

𝑛
∑
𝑖=1

𝐼(X1 ∶ (Y ∣ (X1, … , X𝑖−1)))

3.2 Markov chains, data processing, and sufficient statistics

Definition 3.2.1
The random variables X, Y, and Z form a Markov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chainMarkov chain if the conditional distribution of Z
depends only on Y and is conditionally independent of X. Equivalently,

Pr[X = 𝑥, Y = 𝑦, Z = 𝑧] = Pr[X = 𝑥] ⋅ Pr[Y = 𝑦 ∣ X = 𝑥] ⋅ Pr[Z = 𝑧 ∣ Y = 𝑦]

Then, we write X → Y → Z.

24

CO 432 Spring 2025: Lecture Notes James Ah Yong

Example 3.2.2 (Legend of the Drunken Master). In Ω = ℝ2, Jackie Chan is drunk and takes
steps in random directions. He starts at J0 = (0, 0). Then, J1 = J0 + 𝑑1 where 𝑑1 is an
independent random unit vector in ℝ2, and J2 = J1 + 𝑑2 and so on.

First, J3 and J1 are not independent. But if we fix J2 = 𝑗2 ∈ ℝ2, then J1 ∣ J2 = 𝑗2 and J3 ∣ J2 = 𝑗2
are independent. In fact, they are uniformly distributed random points on the circle of radius 1
centred at 𝑗2.

Proposition 3.2.3
Let X, Y, and Z be random variables. Tfae:

1. X → Y → Z

2. X and Z are conditionally independent given Y. That is,

Pr[X = 𝑥, Z = 𝑧 ∣ Y = 𝑦] = Pr[X = 𝑥 ∣ Y = 𝑦] ⋅ Pr[Z = 𝑧 ∣ Y = 𝑦]

3. Z is distributed according to 𝑓(Y, R) for some R independent of X and Y.

Exercise 3.2.4. Prove the definitions are equivalent.

Theorem 3.2.5 (data-processing inequality)
If X → Y → Z, then 𝐼(X ∶ Z) ≤ 𝐼(X ∶ Y).

Equality happens if and only if X → Z → Y.

Proof. By the chain rule,

𝐼(X ∶ (Y, Z)) = 𝐼(X ∶ Y) +������:0
𝐼(X ∶ Z ∣ Y) = 𝐼(X ∶ Z) + 𝐼(X ∶ Y ∣ Z)

so that
𝐼(X ∶ Y) = 𝐼(X ∶ Z) + 𝐼(X ∶ Y ∣ Z)

One may show that the mutual information is always non-negative, so we have 𝐼(X ∶ Y) ≥ 𝐼(X ∶ Z)
as desired.

3.3 Communication complexity

Lecture 10
June 5

Problem 3.3.1
Suppose there is a joint distribution (X, Y) that Alice and Bob wish to jointly compute. Alice
and Bob have access to a shared random string R = (R𝑖). Alice is given 𝑥 ∈ 𝒳 and wants to
send Bob a prefix-free message of minimum length so that Bob can compute a sample from
Y ∣ X = 𝑥.

25

CO 432 Spring 2025: Lecture Notes James Ah Yong

Definition 3.3.2
A protocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocolprotocol Π is a pair of functions (𝑀, 𝑦) where 𝑀 ∶ 𝒳 × ΩR → {0, 1}∗ is the message Alice
sends to Bob and 𝑦 ∶ {0, 1}∗ × ΩR → 𝒴 is Bob’s output.

The performanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformanceperformance of Π is 𝔼X,R |𝑀(X, R)|

Suppose X and Y are independent. Then, Bob needs no information so we can use the trivial
protocol 𝑀(X, R) = ⌀ with performance 0.

Otherwise, we can use a strategy of prefix-free encoding 𝑥 so that 𝔼 |𝑀(X, R)| ≈ 𝐻(X).

Theorem 3.3.3
There exists a protocol Π = (𝑀, 𝑦) such that expected message length

𝔼 |𝑀(X, R)| ≤ 𝐼(X ∶ Y) + 𝒪(log 𝐼(X ∶ Y))

For all other protocols Π′ = (𝑀 ′, 𝑦′),

𝔼 |𝑀 ′(X, R)| ≥ 𝐼(X ∶ Y)

Proof. Let X be a random point on the hypercube {±1}𝑛. Let Y be a random point on {±1}𝑛 that
is 𝜀-correlated with X. That is, Y𝑖 = X𝑖 with probability 𝜀 and is uniformly random otherwise.

Observe that, individually, X and Y have the same distribution. In particular, in the 𝜀 case, then
Y𝑖 = X𝑖 is Uniform{±1}. In the 1 − 𝜀 case, Y𝑖 ∼ Uniform{±1} by definition.

We can calculate 𝐻(X) = 𝐻(Y) = 𝑛.

Also, 𝐻(Y ∣ X) = ∑𝑥 𝑝𝑥𝐻(Y ∣ X = 𝑥) ≈ (1 − 𝜀)𝑛. One can show that Y ∣ X = 𝑥 is approximately
uniformly distributed over the vectors of length 𝑛 that agree on 𝜀𝑛 coordinates with 𝑥. This sample
space has size 2(1−𝜀)𝑛.

Therefore, 𝐼(X ∶ Y) = 𝐻(Y) − 𝐻(Y ∣ X) ≈ 𝜀𝑛.

By prop. 2.2.8, there exists a rejection sampler such that 𝔼[ℓ(𝑖∗)] ≤ 𝐷(𝑃 ∥ 𝑄) + 𝒪(log 𝐷(𝑃 ∥ 𝑄)).

Recall from STAT 230 that we can transform R into any distribution with the change of variable
bullshit. In particular, transform R𝑖 to iid Y𝑖 ∼ Y and the biased coins.

Alice will run RejectionSampler(Y|X=𝑥, Y) to find a random index 𝑖∗ such that Y𝑖∗ has distribu-
tion Y|X=𝑥.

Alice sends a prefix-free encoding of 𝑖∗. Bob outputs Y𝑖∗. The performance is:

𝔼
X,R

|𝑀(X, R)| = ∑
𝑥∈𝒳

𝑝𝑥 𝔼
𝑖∗,Y1,Y2,…

[ℓ(𝑖∗)]

≤ ∑
𝑥∈𝒳

𝑝𝑥(𝐷(Y|X=𝑥 ∥ Y) + 𝒪(log 𝐷(Y|X=𝑥 ∥ Y)))

= 𝐼(X ∶ Y) + ∑
𝑥∈𝒳

𝑝𝑥𝒪(log 𝐷(Y|X=𝑥 ∥ Y))

≤ 𝐼(X ∶ Y) + 𝒪(log 𝐼(X ∶ Y))

26

CO 432 Spring 2025: Lecture Notes James Ah Yong

where the last step is by Jensen’s inequality.

Now, let Π be any protocol. Lecture 11
June 10
cont.

We will apply the data-processing inequality.

Notice that X → (𝑀(X, R), R) → Y if and only if Π is a valid protocol. If we sample 𝑥 ∼ X and
Alice sends 𝑀(𝑥, R), then Bob outputs something distributed according to Y ∣ X = 𝑥, i.e., just Y
since 𝑥 was arbitrary. Then,

𝐼(X ∶ Y) ≤ 𝐼(X ∶ (𝑀(X, R), R)) (data processing inequality)
= 𝐼(X ∶ R) + ∑

𝑟∈ΩR

𝑝𝑟𝐼(X|R=𝑟 ∶ 𝑀(X, R)|R=𝑟) (chain rule)

= 0 + 𝐼(X ∶ 𝑀(X, R) ∣ R) (independence)
≤ 𝐻(𝑀(X, R) ∣ R) (𝐼(A ∶ B) ≤ min{𝐻(A), 𝐻(B)})
≤ 𝐻(𝑀(X, R)) (𝐻(A ∣ B) ≤ 𝐻(A))
≤ 𝔼 |𝑀(X, R)| (Kraft inequality)

completing the proof.

3.4 Parameter estimation

27

List of Named Results

1.1.4 Theorem (Jensen’s inequality) . 3
1.3.5 Theorem (Kraft’s inequality) . 5

2.0.7 Theorem (Sterling’s approximation) . 11

3.1.2 Theorem (chain rule for entropy) . 21
3.1.5 Theorem (general chain rule for entropy) . 22
3.1.6 Theorem (chain rule for relative entropy) . 23
3.1.8 Theorem (chain rule for mutual information) . 24
3.2.5 Theorem (data-processing inequality) . 25

28

Index of Defined Terms

boolean 𝑘-slice, 11

code
prefix-free, 5, 9
Shannon–Faro, 6
uniquely decodable, 5,

9

concentration of measure,
12

entropy, 2
conditional, 21
relative, 8

conditional, 23

Hamming 𝑘-slice, 11

KL divergence, 8

Markov chain, 24
mutual information, 21

rejection sampler, 15

29

	1 Introduction
	1.1 Entropy
	1.2 Entropy as expected surprise
	1.3 Entropy as optimal lossless data compression

	2 Relative entropy
	2.1 The boolean k-slice
	2.2 Rejection sampling

	3 Mutual information
	3.1 Definition and chain rules
	3.2 Markov chains, data processing, and sufficient statistics
	3.3 Communication complexity
	3.4 Parameter estimation

	Back Matter
	List of Named Results
	Index of Defined Terms

