CO 432 Spring 2025: Lecture Notes

1	Intr 1.1 1.2 1.3	oduction Entropy Entropy as expected surprise Entropy as optimal lossless data comprese	ssion	 	· · · ·	• • •	•	 		 		2 2 3 4
Back Matter List of Named Results							•	9 9 10				
Le 432	cture 2, tau	notes taken, unless otherwise specified, ight by Vijay Bhattiprolu.	by myself du	ring the S	Spring	g 202	25 o	offe	riı	ng	of	СО
Lectures		ires	Lecture 2 Lecture 3	May 8 May 13	· · ·	· ·	 	 	•	•		$4 \\ 6$

Lecture 1 May 6 2

Chapter 1

Introduction

Notation. I will be using my usual LATEX typesetting conventions:

- [n] means the set $\{1, 2, ..., n\}$
- $\{0,1\}^*$ means the set of bitstrings of arbitrary length (i.e., the Kleene star)
- A, B, ..., Z are random variables (in sans-serif)
- $X = (p_1, p_2, \dots, p_k)$ means X is a discrete random variable such that $\Pr[X = 1] = p_1$, $\Pr[X = 2] = p_2$, etc. (abbreviate further as $X = (p_i)$)

1.1 Entropy

 \longrightarrow \downarrow Lecture 1 adapted from Arthur \downarrow \longrightarrow

Definition 1.1.1 (entropy)

For a random variable $X = (p_i)$, the <u>entropy</u> H(X) is

$$H(\mathsf{X}) = -\sum_i p_i \log p_i = \sum_i p_i \log \frac{1}{p_i}.$$

Convention. By convention, we usually use \log_2 . Also, we define entropy such that $\log_2(0) = 0$ so that impossible values do not break the formula.

Example 1.1.2. If X takes on the values a, b, c, d with probabilities 1, 0, 0, 0, respectively, then $H(X) = 1 \log 1 = 0$.

If X takes on those values instead with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{8}$, respectively, then $H(\mathsf{X}) = \frac{7}{4}$.

Fact 1.1.3. H(X) = 0 if and only if X is a constant.

Lecture 1 May 6 *Proof.* Suppose X is constant. Then, $H(X) = 1 \log 1 = 0$.

Suppose H(X) = 0. Probabilities are in [0, 1], so $p_i \log \frac{1}{p_i} \ge 0$. Since $H(X) = \sum_i p_i \log \frac{1}{p_i} = 0$ and each term is non-negative, each term must be zero. Thus, each p_i is either 0 or 1. We cannot have $\sum p_i > 1$, so exactly one $p_i = 1$ and the rest are zero. That is, X is constant.

Theorem 1.1.4 (Jensen's inequality) Let $f : \mathbb{R} \to \mathbb{R}$ be concave. That is, for any a and b in the domain of f and $\lambda \in [0,1)$, $f(\lambda a + (1 - \lambda)b) \ge \lambda f(a) + (1 - \lambda)f(b)$. For any discrete random variable X,

$$\mathbb{E}[f(\mathsf{X})] \le f(\mathbb{E}[\mathsf{X}])$$

Proof. Consider a random variable X with two values a and b, each with probabilities λ and $1 - \lambda$. Then, notice that

$$\mathbb{E}[f(\mathsf{X})] = \lambda f(a) + (1 - \lambda)f(b) \le f(\lambda a + (1 - \lambda)b) = f(\mathbb{E}[\mathsf{X}])$$

by convexity of f.

TODO: This can be generalized by induction.

Fact 1.1.5. Assume X is supported on [n]. Then, $0 \le H(X) \le \log n$.

Proof. Start by claiming without proof that $\log n$ is concave, so we can apply Jensen's inequality. Let $X' = \frac{1}{p_i}$ with probability p_i . Then,

$$\begin{split} H(\mathsf{X}) &= \sum_{i} p_{i} \log \frac{1}{p_{i}} \\ &= \mathbb{E} \left[\log(\mathsf{X}') \right] \\ &\leq \log(\mathbb{E}[\mathsf{X}']) \\ &= \log \left(\sum p_{i} \frac{1}{p_{i}} \right) \\ &= \log n \end{split}$$

It is not a coincidence that $\log_2 n$ is the minimum number of bits to encode [n].

1.2 Entropy as expected surprise

We want $S : [0,1] \to [0,\infty)$ to capture how "surprised" we are S(p) that an event with probability p happens. We want to show that under some natural assumptions, this is the only function we could have defined as entropy. In particular:

- 1. S(1) = 0, a certainty should not be surprising
- 2. S(q) > S(p) if p > q, less probable should be more surprising

- 3. S(p) is continuous in p
- 4. S(pq) = S(p) + S(q), surprise should add for independent events. That is, if I see something twice, I should be twice as surprised.

 \uparrow Lecture 1 adapted from Arthur \uparrow

Proposition 1.2.1

If S(p) satisfies these 4 axioms, then $S(p) = c \cdot \log_2(1/p)$ for some c > 0.

 $\begin{array}{l} \textit{Proof. Suppose a function } S:[0,1] \rightarrow [0,\infty) \text{ exists satisfying the axioms. Let } c:=S(\frac{1}{2}) > 0.\\\\ \text{By axiom 4 (addition), } S(\frac{1}{2^k}) = kS(\frac{1}{2}). \text{ Likewise, } S(\frac{1}{2^{1/k}}\cdots\frac{1}{2^{1/k}}) = S(\frac{1}{2^{1/k}}) + \cdots + S(\frac{1}{2^{1/k}}) = kS(\frac{1}{2^{1/k}}).\\\\ \text{Then, } S(\frac{1}{2^{m/n}}) = \frac{m}{n}S(\frac{1}{2}) = \frac{m}{n} \cdot c \text{ for any rational } m/n. \end{array}$

By axiom 3 (continuity), $S(\frac{1}{2^z}) = c \cdot z$ for all $z \in [0, \infty)$ because the rationals are dense in the reals. In particular, for any $p \in [0, 1]$, we can write $p = \frac{1}{2^z}$ for $z = \log_2(1/p)$ and we get

$$S(p) = S\left(\frac{1}{2^z}\right) = c \cdot z = c \cdot \log_2(1/p)$$

as desired.

We can now view entropy as expected surprise. In particular,

$$\sum_i p_i \log_2 \frac{1}{p_i} = \mathop{\mathbb{E}}_{x \sim \mathsf{X}} [S(p_x)]$$

for a random variable X = i with probability p_i .

1.3 Entropy as optimal lossless data compression

Suppose we are trying to compress a string consisting of n symbols drawn from some distribution.

Problem 1.3.1

What is the expected number of bits you need to store the results of n independent samples of a random variable X?

We will show this is nH(X).

Notice that we assume that the symbols we are drawn <u>independently</u>, which is violated by almost all data we actually care about.

Lecture 2

May 8

Definition 1.3.2

Let $C: \Sigma \to (\Sigma')^*$ be a code. We say C is <u>uniquely decodable</u> if there does not exist a collision $x, y \in \Sigma^*$, with identical encoding $C(x_1)C(x_2)\cdots C(x_k) = C(y_1)C(y_2)\cdots C(y_{k'})$.

Also, C is <u>prefix-free</u> (sometimes called <u>instantaneous</u>) if for any distinct $x, y \in \Sigma$, C(x) is not a prefix of C(y).

Proposition 1.3.3

Prefix-freeness is sufficient for unique decodability.

Example 1.3.4. Let $C : \{A, B, C, D\} \to \{0, 1\}^*$ where C(A) = 11, C(B) = 101, C(C) = 100, and C(D) = 00. Then, C is prefix-free and uniquely decodable.

We can easily parse 1011100001100 unambiguously as 101.11.00.00.11.00 (BADDAD).

Recall from CS 240 that a prefix-free code is equivalent to a trie, and we can decode it by traversing the trie in linear time.

Theorem 1.3.5 (Kraft's inequality)

A prefix-free binary code $C: \{1, ..., n\} \to \{0, 1\}^*$ with codeword lengths $\ell_i = |C(i)|$ exists if and only if

$$\sum_{i=1}^{n} \frac{1}{2^{\ell_i}} \le 1.$$

Proof. Suppose $C : \{1, ..., n\} \to \{0, 1\}^*$ is prefix-free with codeword lengths ℓ_i . Let T be its associated binary tree and let W be a random walk on T where 0 and 1 have equal weight (stopping at either a leaf or undefined branch).

Define E_i as the event where W reaches i and E_{\emptyset} where W falls off. Then,

$$\begin{split} 1 &= \Pr(E_{\varnothing}) + \sum_{i} \Pr(E_{i}) \\ &= \Pr(E_{\varnothing}) + \sum_{i} \frac{1}{2^{\ell_{i}}} & \text{(by independence)} \\ &\geq \sum_{i} \frac{1}{2^{\ell_{i}}} & \text{(probabilities are non-negative)} \end{split}$$

Conversely, suppose the inequality holds for some ℓ_i . WLOG, suppose $\ell_1 < \ell_2 < \cdots < \ell_n$.

Start with a complete binary tree T of depth ℓ_n . For each i = 1, ..., n, find any unassigned node in T of depth ℓ_i , delete its children, and assign it a symbol.

Now, it remains to show that this process will not fail. That is, for any loop step i, there is still some unassigned node at depth ℓ_i .

Let $P \leftarrow 2^{\ell_n}$ be the number of leaves of the complete binary tree of depth ℓ_n . After the i^{th} step, we decrease P by $2^{\ell_n - \ell_i}$. That is, after n steps,

$$P = 2^{\ell_n} - \sum_{i=1}^n \frac{2^{\ell_n}}{2^{\ell_i}}$$

= $2^{\ell_n} - 2^{\ell_n} \sum_{i=1}^n \frac{1}{2^{\ell_i}}$
 ≥ 0

by the inequality.

Recall the problem we are trying to solve:

Problem 1.3.1

What is the expected number of bits you need to store the results of n independent samples of a random variable X?

Solution (Shannon & Faro). Consider the case where X is symbol *i* with probability p_i . We want to encode independent samples $x_i \sim X$ as $C(x_i)$ for some code $C : [n] \to \{0, 1\}^*$.

Suppose for simplification that $p_i = \frac{1}{2^{\ell_i}}$ for some integers ℓ_i . Since $\sum p_i = 1$, we must have $\sum \frac{1}{2^{\ell_i}} = 1$. Then, by Kraft's inequality, there exists a prefix-free binary code $C : [n] \to \{0, 1\}^*$ with codeword lengths $|C(i)| = \ell_i$. Now,

$$\mathbb{E}_{x_i \sim \mathsf{X}}\left[\sum_i |C(x_i)|\right] = \sum_i p_i \ell_i = \sum_i p_i \log_2 \frac{1}{p_i} = H(\mathsf{X})$$

Proceed to the general case. Suppose $\log_2 \frac{1}{p_i}$ are non-integral. Instead, use $\ell'_i = \left\lceil \log_2 \frac{1}{p_i} \right\rceil$. We still satisfy Kraft since $\sum_i \frac{1}{2^{\ell'_i}} \leq \sum_i p_i = 1$. Then,

$$\mathop{\mathbb{E}}_{x_i \sim \mathsf{X}} \left[\sum_i |C(x_i)| \right] = \sum_i p_i \ell'_i = \sum_i p_i \left\lceil \log_2 \frac{1}{p_i} \right\rceil$$

which is bounded by

$$H(\mathsf{X}) = \sum_{i} p_i \log_2 \frac{1}{p_i} \le \sum_{i} p_i \left\lceil \log_2 \frac{1}{p_i} \right\rceil < \sum_{i} p_i \left(1 + \log_2 \frac{1}{p_i} \right) = H(\mathsf{X}) + 1$$

We call the code C generated by this process the <u>Shannon–Faro code</u>.

We can improve on this bound [H(X), H(X) + 1) by amortizing over longer batches of the string.

Solution (batching). For Y defined on [n] equal to i with probability q_i , define the random variable $\mathsf{Y}^{(k)}$ on $[n]^k$ equal to the string $i_1 \cdots i_k$ with probability $q_{i_1} \cdots q_{i_k}$. That is, $\mathsf{Y}^{(k)}$ models k independent samples of Y .

Apply the Shannon–Fano code to $\mathbf{Y}^{(k)}$ to get an encoding of $[n]^k$ as bitstrings of expected length ℓ

May 13

satisfying $H(\mathsf{Y}^{(k)}) \leq \ell \leq H(\mathsf{Y}^{(k)}) + 1.$

$$H(\mathbf{Y}^{(k)}) = \mathop{\mathbb{E}}_{i_1 \cdots i_k \sim \mathbf{Y}^{(k)}} \left[\log_2 \frac{1}{q_{i_1} \cdots q_{i_k}} \right]$$
(by def'n)

$$\begin{split} &= \mathop{\mathbb{E}}_{i_1 \cdots i_k \sim \mathsf{Y}^{(k)}} \left[\log_2 \frac{1}{q_{i_1}} + \cdots + \log_2 \frac{1}{q_{i_k}} \right] & \text{(log rules)} \\ &= \sum_{j=1}^k \mathop{\mathbb{E}}_{i_1 \cdots i_k \sim \mathsf{Y}^{(k)}} \left[\log_2 \frac{1}{q_{i_j}} \right] & \text{(linearity of expectation)} \\ &= \sum_{j=1}^k \mathop{\mathbb{E}}_{i \sim \mathsf{Y}} \left[\log_2 \frac{1}{q_i} \right] & \text{(q}_{i_j} \text{ only depends on one character)} \end{split}$$

 $(q_{i_j}$ only depends on one character)

(by def'n, no *j*-dependence in sum)

For every k symbols, we use ℓ bits, i.e., $\frac{\ell}{k}$ bits per symbol. From the Shannon–Faro bound, we have

$$\begin{split} \frac{H(\mathsf{Y}^{(k)})}{k} &\leq \frac{\ell}{k} < \frac{H(\mathsf{Y}^{(k)})}{k} + \frac{1}{k} \\ H(\mathsf{Y}) &\leq \frac{\ell}{k} < H(\mathsf{Y}) + \frac{1}{k} \end{split}$$

Then, we have a code for Y bounded by $[H(Y), H(Y) + \frac{1}{k})$.

 $= kH(\mathbf{Y})$

Taking a limit of some sort, we can say that we need H(Y) + o(1) bits.

Definition 1.3.6 (relative entropy) Given two discrete distributions $p = (p_i)$ and $q = (q_i)$, the <u>relative entropy</u>

$$D(p \parallel q) := \sum p_i \log_2 \frac{1}{q_i} - \sum_i p_i \log_2 \frac{1}{p_i} = \sum p_i \log_2 \frac{p_i}{q_i}$$

This is also known as the KL divergence.

Fact 1.3.7. $D(p \parallel q) \ge 0$ with equality exactly when p = q.

Proof. Define $X' = \frac{p_i}{q_i}$ with probability p_i . Then,

$$D(p \parallel q) = \mathbb{E}[-\log_2 \mathsf{X}'] \geq -\log_2 E[\mathsf{X}']$$

by Jensen's inequality (as $f(x) = -\log_2 x$ is convex), and then

$$D(p \parallel q) \geq -\log_2 \sum p_i \frac{q_i}{p_i} = -\log_2 1 = 0 \qquad \qquad \Box$$

Proposition 1.3.8

Any prefix-free code has an expected length at least H(X).

Proof. We can show this by interpreting the expected length H(X) as $D(p \parallel q)$ for some q.

We will take q to be the random walk distribution corresponding to the binary tree associated to the candidate prefix-free code.

List of Named Results

1.1.4	$\Gamma heorem (Jensen's inequality) \dots \dots$	3
1.3.5	$\Gamma heorem (Kraft's inequality) \dots \dots$	5

Index of Defined Terms

 code

uniquely decodable, 5

relative, 7

prefix-free, 5 Shannon–Faro, 6

entropy, 2

KL divergence, 7