
CO 432 Spring 2025:
Lecture Notes

1 Introduction 2
1.1 Entropy . 2
1.2 Entropy as expected surprise . 3
1.3 Entropy as optimal lossless data compression . 4

Back Matter 9
List of Named Results . 9
Index of Defined Terms . 10

Lecture notes taken, unless otherwise specified, by myself during the Spring 2025 offering of CO
432, taught by Vijay Bhattiprolu.

Lectures
Lecture 1 May 6 2

Lecture 2 May 8 4
Lecture 3 May 13 6

1

Chapter 1

Introduction

Notation. I will be using my usual LATEX typesetting conventions:

• [𝑛] means the set {1, 2, … , 𝑛}
• {0, 1}∗ means the set of bitstrings of arbitrary length (i.e., the Kleene star)
• A, B, … , Z are random variables (in sans-serif)
• X = (𝑝1, 𝑝2, … , 𝑝𝑘) means X is a discrete random variable such that Pr[X = 1] = 𝑝1,

Pr[X = 2] = 𝑝2, etc. (abbreviate further as X = (𝑝𝑖))

1.1 Entropy

Lecture 1
May 6↓ Lecture 1 adapted from Arthur ↓

Definition 1.1.1 (entropy)
For a random variable X = (𝑝𝑖), the entropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropy 𝐻(X) is

𝐻(X) = − ∑
𝑖

𝑝𝑖 log 𝑝𝑖 = ∑
𝑖

𝑝𝑖 log
1
𝑝𝑖

.

Convention. By convention, we usually use log2. Also, we define entropy such that log2(0) = 0
so that impossible values do not break the formula.

Example 1.1.2. If X takes on the values 𝑎, 𝑏, 𝑐, 𝑑 with probabilities 1, 0, 0, 0, respectively,
then 𝐻(X) = 1 log 1 = 0.

If X takes on those values instead with probabilities 1
2 , 1

4 , 1
8 , 1

8 , respectively, then 𝐻(X) = 7
4 .

Fact 1.1.3. 𝐻(X) = 0 if and only if X is a constant.

2

CO 432 Spring 2025: Lecture Notes James Ah Yong

Proof. Suppose X is constant. Then, 𝐻(X) = 1 log 1 = 0.

Suppose 𝐻(X) = 0. Probabilities are in [0, 1], so 𝑝𝑖 log 1
𝑝𝑖

≥ 0. Since 𝐻(X) = ∑𝑖 𝑝𝑖 log 1
𝑝𝑖

= 0 and
each term is non-negative, each term must be zero. Thus, each 𝑝𝑖 is either 0 or 1. We cannot have
∑ 𝑝𝑖 > 1, so exactly one 𝑝𝑖 = 1 and the rest are zero. That is, X is constant.

Theorem 1.1.4 (Jensen’s inequality)
Let 𝑓 ∶ ℝ → ℝ be concave. That is, for any 𝑎 and 𝑏 in the domain of 𝑓 and 𝜆 ∈ [0, 1),
𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) ≥ 𝜆𝑓(𝑎) + (1 − 𝜆)𝑓(𝑏). For any discrete random variable X,

𝔼[𝑓(X)] ≤ 𝑓(𝔼[X])

Proof. Consider a random variable X with two values 𝑎 and 𝑏, each with probabilities 𝜆 and 1 − 𝜆.
Then, notice that

𝔼[𝑓(X)] = 𝜆𝑓(𝑎) + (1 − 𝜆)𝑓(𝑏) ≤ 𝑓(𝜆𝑎 + (1 − 𝜆)𝑏) = 𝑓(𝔼[X])

by convexity of 𝑓.

TODO: This can be generalized by induction.

Fact 1.1.5. Assume X is supported on [𝑛]. Then, 0 ≤ 𝐻(X) ≤ log 𝑛.

Proof. Start by claiming without proof that log 𝑛 is concave, so we can apply Jensen’s inequality.

Let X′ = 1
𝑝𝑖

with probability 𝑝𝑖. Then,

𝐻(X) = ∑
𝑖

𝑝𝑖 log
1
𝑝𝑖

= 𝔼 [log(X′)]
≤ log(𝔼[X′])

= log (∑ 𝑝𝑖
1
𝑝𝑖

)

= log 𝑛

It is not a coincidence that log2 𝑛 is the minimum number of bits to encode [𝑛].

1.2 Entropy as expected surprise

We want 𝑆 ∶ [0, 1] → [0, ∞) to capture how “surprised” we are 𝑆(𝑝) that an event with probability
𝑝 happens. We want to show that under some natural assumptions, this is the only function we
could have defined as entropy. In particular:

1. 𝑆(1) = 0, a certainty should not be surprising

2. 𝑆(𝑞) > 𝑆(𝑝) if 𝑝 > 𝑞, less probable should be more surprising

3

CO 432 Spring 2025: Lecture Notes James Ah Yong

3. 𝑆(𝑝) is continuous in 𝑝

4. 𝑆(𝑝𝑞) = 𝑆(𝑝) + 𝑆(𝑞), surprise should add for independent events. That is, if I see something
twice, I should be twice as surprised.

↑ Lecture 1 adapted from Arthur ↑ Lecture 2
May 8

Proposition 1.2.1
If 𝑆(𝑝) satisfies these 4 axioms, then 𝑆(𝑝) = 𝑐 ⋅ log2(1/𝑝) for some 𝑐 > 0.

Proof. Suppose a function 𝑆 ∶ [0, 1] → [0, ∞) exists satisfying the axioms. Let 𝑐 ∶= 𝑆(1
2) > 0.

By axiom 4 (addition), 𝑆(1
2𝑘) = 𝑘𝑆(1

2). Likewise, 𝑆(1
21/𝑘 ⋯ 1

21/𝑘) = 𝑆(1
21/𝑘)+⋯+𝑆(1

21/𝑘) = 𝑘𝑆(1
21/𝑘).

Then, 𝑆(1
2𝑚/𝑛) = 𝑚

𝑛 𝑆(1
2) = 𝑚

𝑛 ⋅ 𝑐 for any rational 𝑚/𝑛.

By axiom 3 (continuity), 𝑆(1
2𝑧) = 𝑐 ⋅ 𝑧 for all 𝑧 ∈ [0, ∞) because the rationals are dense in the reals.

In particular, for any 𝑝 ∈ [0, 1], we can write 𝑝 = 1
2𝑧 for 𝑧 = log2(1/𝑝) and we get

𝑆(𝑝) = 𝑆(
1
2𝑧) = 𝑐 ⋅ 𝑧 = 𝑐 ⋅ log2(1/𝑝)

as desired.

We can now view entropy as expected surprise. In particular,

∑
𝑖

𝑝𝑖 log2
1
𝑝𝑖

= 𝔼
𝑥∼X

[𝑆(𝑝𝑥)]

for a random variable X = 𝑖 with probability 𝑝𝑖.

1.3 Entropy as optimal lossless data compression

Suppose we are trying to compress a string consisting of 𝑛 symbols drawn from some distribution.

Problem 1.3.1
What is the expected number of bits you need to store the results of 𝑛 independent samples
of a random variable X?

We will show this is 𝑛𝐻(X).

Notice that we assume that the symbols we are drawn independently, which is violated by almost
all data we actually care about.

4

CO 432 Spring 2025: Lecture Notes James Ah Yong

Definition 1.3.2
Let 𝐶 ∶ Σ → (Σ′)∗ be a code. We say 𝐶 is uniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodableuniquely decodable if there does not exist a collision
𝑥, 𝑦 ∈ Σ∗, with identical encoding 𝐶(𝑥1)𝐶(𝑥2) ⋯ 𝐶(𝑥𝑘) = 𝐶(𝑦1)𝐶(𝑦2) ⋯ 𝐶(𝑦𝑘′).

Also, 𝐶 is prefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-freeprefix-free (sometimes called instantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneousinstantaneous) if for any distinct 𝑥, 𝑦 ∈ Σ, 𝐶(𝑥) is not
a prefix of 𝐶(𝑦).

Proposition 1.3.3
Prefix-freeness is sufficient for unique decodability.

Example 1.3.4. Let 𝐶 ∶ {𝐴, 𝐵, 𝐶, 𝐷} → {0, 1}∗ where 𝐶(𝐴) = 11, 𝐶(𝐵) = 101, 𝐶(𝐶) = 100,
and 𝐶(𝐷) = 00. Then, 𝐶 is prefix-free and uniquely decodable.

We can easily parse 1011100001100 unambiguously as 101.11.00.00.11.00 (𝐵𝐴𝐷𝐷𝐴𝐷).

Recall from CS 240 that a prefix-free code is equivalent to a trie, and we can decode it by traversing
the trie in linear time.

Theorem 1.3.5 (Kraft’s inequality)
A prefix-free binary code 𝐶 ∶ {1, … , 𝑛} → {0, 1}∗ with codeword lengths ℓ𝑖 = |𝐶(𝑖)| exists if
and only if

𝑛
∑
𝑖=1

1
2ℓ𝑖

≤ 1.

Proof. Suppose 𝐶 ∶ {1, … , 𝑛} → {0, 1}∗ is prefix-free with codeword lengths ℓ𝑖. Let 𝑇 be its
associated binary tree and let 𝑊 be a random walk on 𝑇 where 0 and 1 have equal weight (stopping
at either a leaf or undefined branch).

Define 𝐸𝑖 as the event where 𝑊 reaches 𝑖 and 𝐸⌀ where 𝑊 falls off. Then,

1 = Pr(𝐸⌀) + ∑
𝑖

Pr(𝐸𝑖)

= Pr(𝐸⌀) + ∑
𝑖

1
2ℓ𝑖

(by independence)

≥ ∑
𝑖

1
2ℓ𝑖

(probabilities are non-negative)

Conversely, suppose the inequality holds for some ℓ𝑖. Wlog, suppose ℓ1 < ℓ2 < ⋯ < ℓ𝑛.

Start with a complete binary tree 𝑇 of depth ℓ𝑛. For each 𝑖 = 1, … , 𝑛, find any unassigned node in
𝑇 of depth ℓ𝑖, delete its children, and assign it a symbol.

Now, it remains to show that this process will not fail. That is, for any loop step 𝑖, there is still
some unassigned node at depth ℓ𝑖.

5

CO 432 Spring 2025: Lecture Notes James Ah Yong

Let 𝑃 ← 2ℓ𝑛 be the number of leaves of the complete binary tree of depth ℓ𝑛. After the 𝑖th step,
we decrease 𝑃 by 2ℓ𝑛−ℓ𝑖. That is, after 𝑛 steps,

𝑃 = 2ℓ𝑛 −
𝑛

∑
𝑖=1

2ℓ𝑛

2ℓ𝑖

= 2ℓ𝑛 − 2ℓ𝑛

𝑛
∑
𝑖=1

1
2ℓ𝑖

≥ 0

by the inequality.

Lecture 3
May 13Recall the problem we are trying to solve:

Problem 1.3.1
What is the expected number of bits you need to store the results of 𝑛 independent samples
of a random variable X?

Solution (Shannon & Faro). Consider the case where X is symbol 𝑖 with probability 𝑝𝑖. We want
to encode independent samples 𝑥𝑖 ∼ X as 𝐶(𝑥𝑖) for some code 𝐶 ∶ [𝑛] → {0, 1}∗.

Suppose for simplification that 𝑝𝑖 = 1
2ℓ𝑖

for some integers ℓ𝑖. Since ∑ 𝑝𝑖 = 1, we must have
∑ 1

2ℓ𝑖
= 1. Then, by Kraft’s inequality, there exists a prefix-free binary code 𝐶 ∶ [𝑛] → {0, 1}∗ with

codeword lengths |𝐶(𝑖)| = ℓ𝑖. Now,

𝔼
𝑥𝑖∼X

[∑
𝑖

|𝐶(𝑥𝑖)|] = ∑
𝑖

𝑝𝑖ℓ𝑖 = ∑
𝑖

𝑝𝑖 log2
1
𝑝𝑖

= 𝐻(X)

Proceed to the general case. Suppose log2
1
𝑝𝑖

are non-integral. Instead, use ℓ′
𝑖 = ⌈log2

1
𝑝𝑖

⌉. We still
satisfy Kraft since ∑𝑖

1

2ℓ′
𝑖

≤ ∑𝑖 𝑝𝑖 = 1. Then,

𝔼
𝑥𝑖∼X

[∑
𝑖

|𝐶(𝑥𝑖)|] = ∑
𝑖

𝑝𝑖ℓ′
𝑖 = ∑

𝑖
𝑝𝑖⌈log2

1
𝑝𝑖

⌉

which is bounded by

𝐻(X) = ∑
𝑖

𝑝𝑖 log2
1
𝑝𝑖

≤ ∑
𝑖

𝑝𝑖⌈log2
1
𝑝𝑖

⌉ < ∑
𝑖

𝑝𝑖(1 + log2
1
𝑝𝑖

) = 𝐻(X) + 1

We call the code 𝐶 generated by this process the Shannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro codeShannon–Faro code.

We can improve on this bound [𝐻(X), 𝐻(X) + 1) by amortizing over longer batches of the string.

Solution (batching). For Y defined on [𝑛] equal to 𝑖 with probability 𝑞𝑖, define the random variable
Y(𝑘) on [𝑛]𝑘 equal to the string 𝑖1 ⋯ 𝑖𝑘 with probability 𝑞𝑖1

⋯ 𝑞𝑖𝑘
. That is, Y(𝑘) models 𝑘 independent

samples of Y.

Apply the Shannon–Fano code to Y(𝑘) to get an encoding of [𝑛]𝑘 as bitstrings of expected length ℓ

6

CO 432 Spring 2025: Lecture Notes James Ah Yong

satisfying 𝐻(Y(𝑘)) ≤ ℓ ≤ 𝐻(Y(𝑘)) + 1.

𝐻(Y(𝑘)) = 𝔼
𝑖1⋯𝑖𝑘∼Y(𝑘)

[log2
1

𝑞𝑖1
⋯ 𝑞𝑖𝑘

] (by def’n)

= 𝔼
𝑖1⋯𝑖𝑘∼Y(𝑘)

[log2
1

𝑞𝑖1

+ ⋯ + log2
1

𝑞𝑖𝑘

] (log rules)

=
𝑘

∑
𝑗=1

𝔼
𝑖1⋯𝑖𝑘∼Y(𝑘)

[log2
1

𝑞𝑖𝑗

] (linearity of expectation)

=
𝑘

∑
𝑗=1

𝔼
𝑖∼Y

[log2
1
𝑞𝑖

] (𝑞𝑖𝑗
only depends on one character)

= 𝑘𝐻(Y) (by def’n, no 𝑗-dependence in sum)

For every 𝑘 symbols, we use ℓ bits, i.e., ℓ
𝑘 bits per symbol. From the Shannon–Faro bound, we have

𝐻(Y(𝑘))
𝑘 ≤

ℓ
𝑘 <

𝐻(Y(𝑘))
𝑘 +

1
𝑘

𝐻(Y) ≤
ℓ
𝑘 < 𝐻(Y) +

1
𝑘

Then, we have a code for Y bounded by [𝐻(Y), 𝐻(Y) + 1
𝑘).

Taking a limit of some sort, we can say that we need 𝐻(Y) + 𝑜(1) bits.

Definition 1.3.6 (relative entropy)
Given two discrete distributions 𝑝 = (𝑝𝑖) and 𝑞 = (𝑞𝑖), the relative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropyrelative entropy

𝐷(𝑝 ∥ 𝑞) ∶= ∑ 𝑝𝑖 log2
1
𝑞𝑖

− ∑
𝑖

𝑝𝑖 log2
1
𝑝𝑖

= ∑ 𝑝𝑖 log2
𝑝𝑖
𝑞𝑖

This is also known as the KL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergenceKL divergence.

Fact 1.3.7. 𝐷(𝑝 ∥ 𝑞) ≥ 0 with equality exactly when 𝑝 = 𝑞.

Proof. Define X′ = 𝑝𝑖
𝑞𝑖

with probability 𝑝𝑖. Then,

𝐷(𝑝 ∥ 𝑞) = 𝔼[− log2 X′] ≥ − log2 𝐸[X′]

by Jensen’s inequality (as 𝑓(𝑥) = − log2 𝑥 is convex), and then

𝐷(𝑝 ∥ 𝑞) ≥ − log2 ∑ 𝑝𝑖
𝑞𝑖
𝑝𝑖

= − log2 1 = 0

Proposition 1.3.8
Any prefix-free code has an expected length at least 𝐻(X).

7

CO 432 Spring 2025: Lecture Notes James Ah Yong

Proof. We can show this by interpreting the expected length 𝐻(X) as 𝐷(𝑝 ∥ 𝑞) for some 𝑞.

We will take 𝑞 to be the random walk distribution corresponding to the binary tree associated to
the candidate prefix-free code.

8

List of Named Results

1.1.4 Theorem (Jensen’s inequality) . 3
1.3.5 Theorem (Kraft’s inequality) . 5

9

Index of Defined Terms

code
prefix-free, 5
Shannon–Faro, 6

uniquely decodable, 5

entropy, 2

relative, 7

KL divergence, 7

10

	1 Introduction
	1.1 Entropy
	1.2 Entropy as expected surprise
	1.3 Entropy as optimal lossless data compression

	Back Matter
	List of Named Results
	Index of Defined Terms

