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Chapter 1

Introduction

Lecture 1
Jan 8Cryptography is securing communications in the presence of malicious adversaries. To simplify,

consider Alice and Bob communicating with the eavesdropper Eve. Communications should be:

• Confidential: Only authorized people can read it
• Integral: Ensured that it is unmodified
• Origin authenticated: Ensured that the source is in fact Alice
• Non-repudiated: Unable to gaslight the message existing

Examples: TLS for intenet browsing, GSM for cell phone communications, Bluetooth for other
wireless devices.

Overview: Transport Layer Security The protocol used by browsers to visit websites. TLS
assures an individual user (a clientclientclientclientclientclientclientclientclientclientclientclientclientclientclientclientclient) of the authenticity of the website (a serverserverserverserverserverserverserverserverserverserverserverserverserverserverserverserverserver) and to establish a
secure communications sessionsessionsessionsessionsessionsessionsessionsessionsessionsessionsessionsessionsessionsessionsessionsessionsession.

TLS uses symmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptographysymmetric-key cryptography. Both the client and server have a shared secret 𝑘 called a
keykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykey. They can then use AES for encryption and HMAC for authentication.

To establish the shared secret, use public-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptographypublic-key cryptography. Alice can encrypt the session key 𝑘
can be encrypted with Bob’s RSA public key. Then, Bob can decrypt it with his private key.

To ensure Alice is getting an authentic copy of Bob’s public key, a certification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authoritycertification authority (CA)
signs it using the CA’s private key. The CA public key comes with Alice’s device preinstalled.

Potential vulnerabilities when using TLS:

• Weak cryptography scheme or vulnerable to quantum computing
• Weak random number generation for the session key
• Fraudulent certificates
• Implementation bugs
• Phishing attacks
• Transmission is secured, but the endpoints are not

These are mostly the purview of cybersecurity, of which cryptography is a part. Cryptography is
not typically the weakest link in the cybersecurity chain.
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Chapter 2

Symmetric key encryption

Lecture 2
Jan 102.1 Basic concepts

Definition 2.1.1 (symmetric-key encryption scheme)
A symmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption schemesymmetric-key encryption scheme (SKES) consists of:

• plaintext space 𝑀,
• ciphertext space 𝐶,
• key space 𝐾,
• family of encryption functions 𝐸𝑘 ∶ 𝑀 → 𝐶 for all keys 𝑘 ∈ 𝐾, and
• family of decryption functions 𝐷𝑘 ∶ 𝐶 → 𝑀 for all keys 𝑘 ∈ 𝐾

such that 𝐷𝑘(𝐸𝑘(𝑚)) = 𝑚 for all 𝑚 and 𝑘.

For Alice to send a message to Bob:

1. Alice and Bob agree on a secret key 𝑘 somehow (assume a secured channel)
2. Alice computes 𝑐 = 𝐸𝑘(𝑚) and sends 𝑐 to Bob
3. Bob recovers the plaintext by computing 𝑚 = 𝐷𝑘(𝑐)

Examples include the Enigma and Lorenz machines.

Cryptoscheme 2.1 (simple substitution cipher)
Let:

• 𝑀 be English messages
• 𝐶 be encrypted messages
• 𝐾 be permutations of the English alphabet
• 𝐸𝑘(𝑚) apply the permutation 𝑘 to 𝑚, one letter at a time
• 𝐷𝑘(𝑐) apply the inverse permutation 𝑘−1 to 𝑐, one letter at a time

We want a system to have:

1. Efficient algorithms should be known for computing (encryption and decryption)
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2. Small keys but large enough to render exhaustive key search infeasible
3. Security
4. Security against its designer

To determine how secure the protocol is, we have to define security.

Definition 2.1.2 (security model)
Some parameters which define the strength of the adversary, specific interaction with the
“secure” channel, and the goal of the adversary.

Some options for strength:

• Information-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic securityInformation-theoretic security: Eve has infinite resources.
• Complexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic securityComplexity-theoretic security: Eve is a polynomimal-time Turing machine.
• Computational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic securityComputational-theoretic security: Eve has a specific amount of computing power. In this

course, Eve is computationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally boundedcomputationally bounded by 6,768 Intel E5-2683 V4 cores running at 2.1 GHz
at her disposal.

For the interaction:

• Ciphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attackCiphertext-only attack: Eve only knows the ciphertext.
• Known-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attackKnown-plaintext attack: Eve knows some plaintext and the corresponding ciphertext.
• Chosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attackChosen-plaintext attack: Eve picks some plaintext and knows the corresponding ciphertext.
• Clanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attackClanedestine attack: Eve resorts to bribery, blackmail, etc.
• Side-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attackSide-channel attack: Eve has physical access to hardware and has some monitoring data.

And for the goal:

• Recovering the secret key 𝑘
• Systematically decrypt arbitrary ciphertexts without knowing 𝑘 (total securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal securitytotal security)
• Learn partial information about the plaintext (other than the length) (semantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic securitysemantic security)

Definition 2.1.3 (security)
An SKES is securesecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecure if it is semantically secure against a chosen-plaintext attack by a computa-
tionally bounded adversary.

Equivalently, an SKES is brokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbrokenbroken if:

1. Given a challenge ciphertext 𝑐 for 𝑚 generated by Alice,
2. …and access to an encryption oracle for Alice,
3. …Eve can obtain some information about 𝑚 other than its length,
4. …using only a feasible amount of computation.

Note: this is IND–CPA from CO 485.

Example 2.1.4. Is the simple substitution cipher secure? What about under a ciphertext-only
attack?

Solution. Under CPA, encrypt the entire alphabet. Then, the entire key 𝑘 is recovered.
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With a ciphertext-only attack, an exhaustive key search would take 26! ≈ 288 attempts. This would
take over 1,000 years, which is pretty infeasible, so it is secure.

Can we quantify how feasible something is?

Definition 2.1.5 (security level)
A scheme has a security levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity levelsecurity level of ℓ bits if the fastest known attack on the scheme takes approx-
imately 2ℓ operations.

Convention. In this course:

• 40 bits is very easy to break
• 56 bits is easy to break
• 64 bits is feasible to break
• 80 bits is barely feasible to break
• 128 bits is infeasible to break

Lecture 3
Jan 12The simple substitution cipher can be attacked by frequency analysis, since, for example, if “e” is

the most common English letter, we check the ciphertext for the most common letter and identify
it with “e”.

Cryptoscheme 2.2 (Vigenère cipher)
Let the key 𝐾 be an English word with no repeated letters, e.g., 𝐾 = CRYPTO.

To encrypt, add letter-wise the key modulo 26, where 𝑘 is 𝐾 repeated until it matches the
length of the message:

𝑚 = t h i s i s a m e s s a g e
+ 𝑘 = C R Y P T O C R Y P T O C R

𝑐 = V Y G H B G C D C H L O I V

To decrypt, just take 𝑐 − 𝑘.

This solves our frequency analysis problem. However, the Vigenere cipher is still totally insecure.

Exercise 2.1.6. Show that the Vigenere cipher is totally insecure under a chosen-plaintext
attack and a ciphertext-only attack.

Cryptoscheme 2.3 (one-time pad)
The key is a random string of letters with the same length as the message.

Repeat the process for Vigenere. To encode, add each letter. To decode, subtract each letter.
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Example 2.1.7. We can encrypt as follows:

𝑚 = t h i s i s a m e s s a g e
+ 𝑘 = Z F K W O G P S M F J D L G

𝑐 = S M S P W Y P F Q X C D R K

This is semantically secure as long as the key is never reused. Formally, there exist keys that can
decrypt the ciphertext into anything, so there is no way for an attacker to know the plaintext. If
it is reused, i.e., if 𝑐1 = 𝑚1 + 𝑘 and 𝑐2 = 𝑚2 + 𝑘, then 𝑐1 − 𝑐2 = (𝑚1 + 𝑘) − (𝑚2 + 𝑘) = 𝑚1 − 𝑚2.
Since this is a function only of messages, it can leak frequency information etc.

Also, since the key is never reused, this is secure against a chosen plaintext attack, since one would
only recover the already used key.

Convention. From now on, messages and keys are assumed to be binary strings.

Definition 2.1.8 (bitwise exclusive or)
For two bitstrings 𝑥, 𝑦 ∈ {0, 1}𝑛 ≅ ℤ/2ℤ𝑛, the bitwise XOR 𝑥 ⊕ 𝑦 is just addition mod 2.

Unfortunately, due to Shannon, we have this theorem:

Theorem 2.1.9
A perfectly secure symmetric-key scheme must have at least as many keys as there are messages.

2.2 Stream ciphers

Instead of using a random key in the OTP, use a pseudorandom key.

Definition 2.2.1 (pseudorandomness)
A pseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generatorpseudorandom bit generator (PBRG) is a deterministic algorithm that takes as input a seedseedseedseedseedseedseedseedseedseedseedseedseedseedseedseedseed
and outputs a pseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandompseudorandom sequence called the keystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystreamkeystream.

Then, we can construct a stream cipher by defining the key as the seed and the ciphertext as the
keystream XOR’d with the plaintext. To decrypt, use the seed to generate the same keystream and
XOR with the ciphertext.

For a stream cipher to be secure, we need:

• Indistinguishability: the keystream is indistinguishable from a truly random sequence; and

• Unpredictability: given a partial keystream, it is infeasible to learn any information from the
remainder of the keystream.
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Remark 2.2.2. Do not use built-in UNIX rand or srand for cryptography!

Now, we introduce ChaCha20, a stream cipher actually uesd in the real world. The algorithm
works entirely on words (32-bit numbers). It has no known flaws (other than people bungling the
implementation).

Cryptoscheme 2.4 (ChaCha20)
First, define a helper function 𝑄𝑅(𝑎, 𝑏, 𝑐, 𝑑) on 32-bit words:

1. 𝑎 ← 𝑎 ⊞ 𝑏, 𝑑 ← 𝑑 ⊕ 𝑎, 𝑑 ← 𝑑 ⋘ 16
2. 𝑐 ← 𝑐 ⊞ 𝑑, 𝑏 ← 𝑏 ⊕ 𝑐, 𝑏 ← 𝑏 ⋘ 12
3. 𝑎 ← 𝑎 ⊞ 𝑏, 𝑑 ← 𝑑 ⊕ 𝑎, 𝑑 ← 𝑑 ⋘ 8
4. 𝑐 ← 𝑐 ⊞ 𝑑, 𝑏 ← 𝑏 ⊕ 𝑐, 𝑏 ← 𝑏 ⋘ 7

where ⊕ is bitwise XOR, ⊞ is addition mod 232, and ⋘ is left bit-rotation.

Given a 256-bit key 𝑘 = (𝑘1, … , 𝑘8), a selected 96-bit nonce 𝑛 = (𝑛1, 𝑛2, 𝑛3), a 128-bit given
constant 𝑓 = (𝑓1, … , 𝑓4), and 32-bit counter 𝑐 ← 0, construct an initial state:

𝑆 ∶=
⎡
⎢
⎢
⎣

𝑓1 𝑓2 𝑓3 𝑓4
𝑘1 𝑘2 𝑘3 𝑘4
𝑘5 𝑘6 𝑘7 𝑘8
𝑐 𝑛1 𝑛2 𝑛3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑆1 𝑆2 𝑆3 𝑆4
𝑆5 𝑆6 𝑆7 𝑆8
𝑆9 𝑆10 𝑆11 𝑆12
𝑆13 𝑆14 𝑆15 𝑆16

⎤
⎥
⎥
⎦

Keep a copy 𝑆′ ← 𝑆, then apply:

𝑄𝑅(𝑆1, 𝑆5, 𝑆9, 𝑆13), 𝑄𝑅(𝑆2, 𝑆6, 𝑆10, 𝑆14), 𝑄𝑅(𝑆3, 𝑆7, 𝑆11, 𝑆15), 𝑄𝑅(𝑆4, 𝑆8, 𝑆12, 𝑆16)
𝑄𝑅(𝑆1, 𝑆6, 𝑆11, 𝑆16), 𝑄𝑅(𝑆2, 𝑆7, 𝑆12, 𝑆13), 𝑄𝑅(𝑆3, 𝑆8, 𝑆9, 𝑆14), 𝑄𝑅(𝑆4, 𝑆5, 𝑆10, 𝑆15)

ten times (for 80 total calls to 𝑄𝑅) and output 𝑆 ⊕ 𝑆′. This gives us 64 keystream bytes.

Increment 𝑐 ← 𝑐 + 1 and repeat as necessary to generate more keystream bytes.

To encrypt, XOR the keystream with the plaintext, then append the nonce.

To decrypt, pop off the nonce, then XOR the keystream with the ciphertext.

Lecture 4
Jan 15One must be careful never to reuse nonces, since this results in the same keystream, leading to

recoverable messages. In practice, this is hard (e.g., two devices with the same key).

Miscellaneous remarks:

• Why is ChaCha20 so good? The 𝑄𝑅 function is very fast at the hardware level and there is
wide adoption/standardization by experts.

• Why 10 rounds? If you do 1 or 2 rounds, there is a trivial attack. The latest theoretical
attacks can attack 7 rounds (currently infeasible, but still better than exhaustive key search).
So 8 rounds is secure and we do 10 to be safe.

• Is this secure forever (i.e., can we always just increase rounds)? No. Nothing in this course
is. Someone could find a super crazy PMATH theorem that shows predictability of the 𝑄𝑅
scramble.
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2.3 Block ciphers

Definition 2.3.1 (block cipher)
Like a stream cipher, but instead of processing one character at a time, we break up the
plaintext into blocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocks of equal length and encrypt block-wise.

Example 2.3.2. The Data Encryption Standard (DES) is a standard 56-bit key and 64-bit
blocks.

Aside: History and the NSA doing ratfuckery In 1972, the National Institute of Standards
and Technology (NIST)1 puts out an RfP for encryption algorithms.

IBM developed and proposed 64-bit DES, but then the NSA reduced it in 1975 to 56-bit so they can
do some spying. This made DES feasible to break by nation-states but not smaller organizations.

The National Security Agency (NSA) is the US’ signals intelligence (SIGINT; hacking foreign
intelligence) and information insurance (IA; defending domestic intelligence) agency. They have
a history of regulating how strong cryptoraphic products can be by banning the export of strong
cryptography.

Canada has an NSA equivalent: the Communications Security Establishment (CSE). Along with
the Kiwi CCSA, British GCHQ, and Australian ASD, these are the Five Eyes who spy on just
about everyone.

We only really know stuff about the NSA/Five Eyes due to the Snowden leaks. For example, the
SIGINT Enabling Project attempts to influence/blackmail companies to weaken their security with
backdoors.

Throughout the course, we will use the NSA to mean “generic nation-state level adversary”, since
if you can defeat the NSA, you can defeat basically anyone.

Anyways, weakened DES was adopted by NIST in 1977 as FIPS 46 in 1977, then as a banking
standard as ANSI X3.92 in 1982 (replaced by Triple-DES in 1988). From 1997–2001, a new contest
developed the Advanced Encryption Standard (AES), which is the current standard block cipher.

Desired properties of block ciphers (Shannon, 1949):

1. Diffusion: Each ciphertext bit should depend on all plaintext bits.
2. Confusion: The key–ciphertext relationship should be complicated.
3. Key length: Keys should be small but not too small to be searchable.
4. Simplicity: Ease of implementation and analysis.
5. Speed: Runs quickly on all reasonable hardware.
6. Platform: Can be implemented in hardware and software.
1of standardized peanut butter fame
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Cryptoscheme 2.5 (DES)
The design principles of DES are still classified, so we just treat it as a black box for this
course. We only need to know that there is a 56-bit key and 64-bit blocks.

The DES key space is not very big. Exhaustive search on DES takes 256 operations. In 1997, this
took three months. In 2012, it takes 11.5 hours.

The blocks are also not very large. By the birthday paradox, there is a collision every 232 blocks.
This is an information leak, breaking semantic security.

These are the only (known) weaknesses in DES.

Definition 2.3.3 (multiple encryption)
Re-encrypt the ciphertext more times with different keys.

This is not always more secure. For example, in the simple substitution cipher, permutations can
be composed and do not introduce more security.

Cryptoscheme 2.6 (Double-DES)
Pick a secret key 𝑘 = (𝑘1, 𝑘2) ∈𝖱 {0, 1}112.

Then, encrypt 𝐸𝑘2
(𝐸𝑘1

(𝑚)) where 𝐸 is DES encryption

Likewise, decrypt 𝐸−1
𝑘2

(𝐸−1
𝑘1

(𝑚)) where 𝐸−1 is DES decryption.

We now have an exhaustive key search of 2112 operations, which is better. However, there is an
attack which reduces this to breaking DES.

↓ Lectures 5, 6, and 7 taken directly from slides ↓ Lecture 5
Jan 17

Attack 2.7 (Meet-in-the-middle attack on Double-DES)
The main idea is that 𝑐 = 𝐸𝑘2

(𝐸𝑘1
(𝑚)) if and only if 𝐸−1

𝑘2
(𝑐) = 𝐸𝑘1

(𝑚).

Given three plaintext/ciphertext pairs (𝑚1, 𝑐1), (𝑚2, 𝑐2) and (𝑚3, 𝑐3):
1: Create a table 𝑇 of pairs sorted by first entry
2: for ℎ2 ∈ {0, 1}56 do ▷ ℎ2 is a guess for 𝑘2
3: 𝑇 .insert(𝐸−1

ℎ2
(𝑚1), ℎ2)

4: for ℎ1 ∈ {0, 1}56 do ▷ ℎ1 is a guess for 𝑘1
5: Compute 𝐸ℎ1

(𝑚1)
6: Search for entries in 𝑇 matching (𝐸ℎ1

(𝑚1), −)
7: for each match (−, ℎ2) do
8: if 𝐸ℎ2

(𝐸ℎ1
(𝑚2)) = 𝑐2 then

9: if 𝐸ℎ2
(𝐸ℎ1

(𝑚3)) = 𝑐3 then
10: return (ℎ1, ℎ2)
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In attack 2.7, we use three pairs. Why do we need that many?

Since the key space is smaller than the message space, there will be multiple keys that encrypt a
message to the same ciphertext.

Lemma 2.3.4 (number of plaintext-ciphertext pairs needed)
Let 𝐸 be a block cipher with ℓ-bit key space and 𝐿-bit plaintext/ciphertext space.

If 𝐸 is a random bijection, the expected number of false keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keysfalse keys matching 𝑡 pairs is 2ℓ−1
2𝐿𝑡 .

Proof. We assume that 𝐸 is a random bijection, so we can calculate probabilities.

Fix the true key 𝑘′. Let (𝑚𝑖, 𝑐𝑖) for 𝑖 = 1, … , 𝑡 be known plaintext-ciphertext pairs where each
plaintext is distinct.

For some 𝑘 ∈ 𝐾, 𝑘 ≠ 𝑘′, the probability that 𝐸𝑘(𝑚𝑖) = 𝑐𝑖 for all 𝑖 is 1
2𝐿 ⋅ 1

2𝐿 ⋯ 1
2𝐿⏟⏟⏟⏟⏟

𝑡 times

= 1
2𝐿𝑡 .

Therefore, across all of 𝐾 −{𝑘′}, the expected number of false keys is 2ℓ−1
2𝐿𝑡 .

For Double-DES, ℓ = 112 and 𝐿 = 64:

• For 𝑡 = 1, 𝐹𝐾 ≈ 248. That is, given (𝑚, 𝑐) the number of Double-DES keys (ℎ1, ℎ2) for which
𝐸ℎ2

(𝐸ℎ1
(𝑚)) = 𝑐 is ≈ 248.

• For 𝑡 = 2, 𝐹𝐾 ≈ 2−16. That is, the number of Double-DES keys (ℎ1, ℎ2) for which
𝐸ℎ2

(𝐸ℎ1
(𝑚1)) = 𝑐1 is ≈ 248.

Therefore, we use three plaintext-ciphertext pairs in attack 2.7.

The time requirement of the attack is 256 + 257 + 2 ⋅ 248 ≈ 257 DES encryptions/decryptions. The
size of the table is 256(64 + 56) bits or about 1 million TB.

Exercise 2.3.5. Modify attack 2.7 to decrease storage requirements at the expense of time.
We can get down to 256+𝑠 operations and 256−𝑠 rows for 1 ≤ 𝑠 ≤ 55.

We can now conclude that the security level of Double-DES is 57 bits, not much better than normal
DES’ 56 bits.

Cryptoscheme 2.8 (Triple-DES)
Pick a secret key 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈𝖱 {0, 1}168.

Then, encrypt 𝐸𝑘3
(𝐸𝑘2

(𝐸𝑘1
(𝑚))) where 𝐸 is DES encryption

Likewise, decrypt 𝐸−1
𝑘3

(𝐸−1
𝑘2

(𝐸−1
𝑘1

(𝑚))) where 𝐸−1 is DES decryption.

As for Double-DES, the 168-bit keys are infeasible to search.

11
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Exercise 2.3.6. Show that attack 2.7 on Triple-DES takes 2112 operations.

This means the security level of Triple-DES is 112 bits. We cannot prove Triple-DES is more secure
than DES, just that it empirically feels better.

2.4 Substitution-permutation networks

Lecture 6
Jan 19

Definition 2.4.1 (substitution-permutation network)
A substitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation networksubstitution-permutation network (SPN) is an iterated block cipher where each iteration
(roundroundroundroundroundroundroundroundroundroundroundroundroundroundroundroundround) is a substitution followed by a permutation.

Formally, we have:

• a block length 𝑛, key length ℓ
• number of rounds ℎ,
• substitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitutionsubstitution 𝑆 ∶ {0, 1}𝑏 → {0, 1}𝑏, an invertible function where 𝑏 ∣ 𝑛,
• permutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutationpermutation 𝑃, an invertible function {1, … , 𝑛} → {1, … , 𝑛}, and
• key scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithmkey scheduling algorithm 𝑘𝑖 that determines a round keyround keyround keyround keyround keyround keyround keyround keyround keyround keyround keyround keyround keyround keyround keyround keyround key for each round 𝑖 = 1, … , ℎ + 1

given a key 𝑘.

Note that 𝑛, ℓ, ℎ, 𝑆, 𝑃, and the key scheduling algorithm are public.

Then, we can write encryption as
𝐴 ← 𝑚
for 𝑖 = 1, … , ℎ do

𝐴 ← 𝐴 ⊕ 𝑘𝑖
𝐴 ← 𝑆(𝐴[1 ∶ 𝑏]) ∥ 𝑆(𝐴[𝑏 + 1 ∶ 2𝑏]) ∥ ⋯ ∥ 𝑆(𝐴[𝑛 − 𝑏 + 1 ∶ 𝑛]) ▷ Apply 𝑆 to each 𝑏 bits
𝐴 ← 𝑃(𝐴)

𝐴 ← 𝐴 ⊕ 𝑘ℎ+1 return 𝐴

and decryption is the reverse (since 𝑆 and 𝑃 are invertible).

The most notable SPN is the Advanced Encryption Standard (AES) which was adopted in 2001 as
FIPS 197, a U.S. government standard. It uses 128-bit blocks and either 128, 192, or 256-bit keys.

As of 2024, there are no known AES attacks that are significantly faster than exhaustive key search.

12
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Cryptoscheme 2.9 (AES)
Given a key 𝑘 and block of plaintext, initialize a 4×4 byte array State containing the plaintext.

Depending on the key size (128, 192, 256), let ℎ be (10, 12, 14). Using the key schedule, generate
ℎ + 1 round keys 𝑘0, … , 𝑘ℎ. We will need three helper functions SubBytes, ShiftRows, and
MixColumns.

Then, encryption is
State ← block of plaintext
(𝑘0, … , 𝑘ℎ) ← round keys from the key schedule
State ← State ⊕ 𝑘0
for 𝑖 = 1, … , ℎ − 1 do

State ← SubBytes(State)
State ← ShiftRows(State)
State ← MixColumns(State)
State ← State ⊕ 𝑘𝑖

State ← SubBytes(State) ▷ Note: we skip MixColumns in the last round
State ← ShiftRows(State)
State ← State ⊕ 𝑘ℎ
return State

To decrypt, do everything backwards (making calls to InvSubBytes, InvShiftRows, and
InvMixColumns).

AES does a lot of math over the Galois field GF(28).

Definition 2.4.2 (GF(28))
Consider the field ℤ/2ℤ[𝑦] of polynomials with coefficients in ℤ mod 2.

The finite field GF(28) = (ℤ/2ℤ[𝑦])/(𝑦8 + 𝑦4 + 𝑦3 + 𝑦 + 1) contains those polynomials with
degree at most 7.

Addition and multiplication are defined normally (mod 𝑦8 + 𝑦4 + 𝑦3 + 𝑦 + 1).

We notate elements 𝑎(𝑦) ∈ GF(28) as the binary string of their coefficients.

Example 2.4.3. The string 𝑎 = 11101100 = ec is identified with 𝑎(𝑦) = 𝑦7 +𝑦6 +𝑦5 +𝑦3 +𝑦2.

Since polynomial addition is coefficient-wise and ℤ/2ℤ is isomorphic with XOR, we can treat
GF(28) addition as binary string XOR.

Example 2.4.4. Let 𝑏 = 00111011 = 3b. Then, 𝑐(𝑦) = 𝑎(𝑦) + 𝑏(𝑦) = 𝑦7 + 𝑦6 + 𝑦4 + 𝑦2 + 𝑦 + 1.
We could have instead found 𝑐 = 11010111 = d7 by noticing that 𝑎 ⊕ 𝑏 = ec ⊕ 3b = d7.

Multiplication requires a long division to find the answer mod 𝑦8 + 𝑦4 + 𝑦3 + 𝑦 + 1.

13
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Example 2.4.5. Let 𝑑(𝑦) ∶= 𝑎(𝑦) ⋅ 𝑏(𝑦). Calculate:

𝑑(𝑦) = (𝑦7 + 𝑦6 + 𝑦5 + 𝑦3 + 𝑦2)(𝑦5 + 𝑦4 + 𝑦3 + 𝑦 + 1)
= 𝑦12 + 2𝑦11 + 3𝑦10 + 2𝑦9 + 3𝑦8 + 4𝑦7 + 4𝑦6 + 2𝑦5 + 𝑦4 + 2𝑦3 + 𝑦2

= 𝑦12 + 𝑦10 + 𝑦8 + 𝑦4 + 𝑦2

Then, do polynomial long division:

𝑦4 + 𝑦2

𝑦8 + 𝑦4 + 𝑦3 + 𝑦 + 1) 𝑦12 + 𝑦10 + 𝑦8 + 𝑦4 + 𝑦2

− 𝑦12 + 𝑦8 + 𝑦7 + 𝑦5 + 𝑦4

𝑦10 + 𝑦7 + 𝑦5

− 𝑦10 + 𝑦6 + 𝑦5 + 𝑦3 + 𝑦2

𝑦7 + 𝑦6 + 𝑦3

to conclude that the remainder is 𝑦7 + 𝑦6 + 𝑦3. Therefore, ec ⋅ 3b = 11001000 = c8.

But by the XOR trick from addition, we can do this faster using XOR.

Example 2.4.6. First, long multiply 11101100 by 00111011 using XOR to reduce:

11101100
11101100

11101100
11101100

⊕ 11101100
1010100010100

Then, do long division by 𝑓 = 100011011 using XOR to subtract:

1 01 00
100011011) 10 1010001 01 00

10 0011011
00 1001010

1000110 11
0001100 10 00

Therefore, ec ⋅ 3b = 11001000 = c8.

Now, we can define the helper functions. The substitution in AES is based on the inverse in GF(28).

14
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Definition 2.4.7 (AES S-box)
Let 𝑝 ∈ {0, 1}8. We define 𝑆 ∶ {0, 1}8 → {0, 1}8.

Considering 𝑝 as an element of GF(28), let 𝑞 = 𝑝−1 (which always exists except if 𝑝 = 0, in
which case let 𝑞 = 0). Treating 𝑞 as a bit vector, compute

𝑆(𝑝) = 𝑟 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑞 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1
0
0
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with scalar arithmetic in ℤ/2ℤ.

Then, SubBytes just applies 𝑆 to each byte of State. The decryption call InvSubBytes just
multiplies by the inverse of the matrix.

The permutation takes two steps: first, ShiftRows shifts the 𝑖th row left by 𝑖 bits. Then,
MixColumns treats each column as a polynomial in GF(28)[𝑥]/(𝑥4 − 1) and multiplies it by
𝑐(𝑥) = 02 + 01𝑥 + 01𝑥2 + 03𝑥3.

Example 2.4.8. Let 𝑎 = d0f112bb be a column. Multiply

𝑎(𝑥) ⋅ 𝑐(𝑥) = (d0 + f1𝑥 + 12𝑥2 + bb𝑥3)(02 + 01𝑥 + 01𝑥2 + 03𝑥3)
= (d0 ⋅ 02) + (d0 ⋅ 01 + f1 ⋅ 02)𝑥 + (d0 ⋅ 01 + f1 ⋅ 01 + 12 ⋅ 02)𝑥2

+ (d0 ⋅ 03 + f1 ⋅ 01 + 12 ⋅ 01 + bb ⋅ 02)𝑥3

+ (f1 ⋅ 03 + 12 ⋅ 01 + bb ⋅ 01)𝑥4 + (12 ⋅ 03 + bb ⋅ 01)𝑥5 + (bb ⋅ 03)𝑥6

= bb + 29𝑥 + 05𝑥2 + e5𝑥3 + a1𝑥4 + 8d𝑥5 + d6𝑥6

where coefficient arithmetic is in GF(28). Find the remainder modulo 01𝑥4 − 01 by replacing
𝑥4 ↦ 1:

𝑟(𝑥) = bb + 29𝑥 + 05𝑥2 + e5𝑥3 + a1 + 8d𝑥2 + d6𝑥3

= 1a + a4𝑥 + d3𝑥2 + e5𝑥3

Therefore, MixColumn(d0f112bb) = 1aa4d3e5.

Naturally, InvShiftRows shifts the 𝑖th row right by 𝑖 bits and InvMixColumns multiplies each
column by 𝑐−1 = 0e09d00b.

Finally, we can define the key schedule. For 128-bit keys, we need 11 round keys. The first round
key 𝑘0 = (𝑟0, 𝑟1, 𝑟2, 𝑟3) is the actual AES key. Then, each subsequent round key

𝑘𝑖 = (𝑟4𝑖, 𝑟4𝑖+1, 𝑟4𝑖+2, 𝑟4𝑖+3) = (𝑓(𝑟4𝑖−1) ⊕ 𝑟4𝑖−4, 𝑟4𝑖 ⊕ 𝑟4𝑖−3, 𝑟4𝑖+1 ⊕ 𝑟4𝑖−2, 𝑟4𝑖+2 ⊕ 𝑟4𝑖−1)
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where 𝑓𝑖 maps the four bytes (𝑎, 𝑏, 𝑐, 𝑑) to (𝑆(𝑏) ⊕ ℓ𝑖, 𝑆(𝑐), 𝑆(𝑑), 𝑠(𝑎)) for some round constants ℓ𝑖.

Aside: Implementation This section is just me doing nerd shit trying to make Assignment 2
easier. The finite fields used in AES can be replicated in Sage or Mathematica. In Sage:

aes.<y> = GF(2^8, modulus=x^8+x^4+x^3+x+1) # define AES field (ℤ/2ℤ)[𝑦]/(𝑓(𝑦))
aes_int = aes._cache.fetch_int # byte to GF(28) element
mcf.<x> = aes[] # MixColumns field GF(28)[𝑥]
hex_string = lambda x: bytes(u.integer_representation() for u in x.list()).hex()

# Example 2.4.5: multiply ec * 3b
a, b = aes_int(0xec), aes_int(0x3b)
r = a * b
print('r(x):', r)
print('a*b:', hex(r.integer_representation()))
# r(x): 𝑦7 + 𝑦6 + 𝑦3

# a*b: 0xc8

# Example 2.4.8: MixColumn(d0f112bb)
a = [0xd0,0xf1,0x12,0xbb]
ax = mcf([aes_int(u) for u in a])
cx = (y + x + x^2 + (y+1) * x^3)
bx = (ax * cx).mod(x^4+1)
print('b(x):', bx)
print('b:', hex_string(bx))
# b(x): (𝑦7 + 𝑦6 + 𝑦5 + 𝑦2 + 1)𝑥3 + (𝑦7 + 𝑦6 + 𝑦4 + 𝑦 + 1)𝑥2 + (𝑦7 + 𝑦5 + 𝑦2)𝑥 + 𝑦4 + 𝑦3 + 𝑦
# b: 1aa4d3e5

In Mathematica (version 13.3 or later):

F = FiniteField[2, #^8 + #^4 + #^3 + # + 1 &];
GF[hex_] := F[FromDigits[hex, 16]];
poly[f_] := Expand@FromDigits[Reverse@f["Coefficients"], y];
hex[f_] := IntegerString[f["Index"], 16, 2];

(* Example 2.4.5: multiply ec * 3b *)
a = GF["ec"];
b = GF["3b"];
poly[a*b] (* 𝑦3 + 𝑦6 + 𝑦7 *)
hex[a*b] (* c8 *)

(* Example 2.4.8: MixColumn(d0f112bb) *)
a = GF["d0"] + GF["f1"] x + GF["12"] x^2 + GF["bb"] x^3;
c = F[2] + F[1] x + F[1] x^2 + F[3] x^3;
b = PolynomialRemainder[a*c, x^4 - 1, x];
StringJoin[hex /@ CoefficientList[b, x]] (* 1aa4d3e5 *)

16
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2.5 Block cipher modes of operation

TODO
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Chapter 3

Hash functions

3.1 Definitions

Lecture 7
Jan 22

Definition 3.1.1 (hash function)
A mapping 𝐻 such that

1. 𝐻 ∶ {0, 1}≤𝐿 → {0, 1}𝑛 maps binary messages of arbitrary lengths ≤ 𝐿 to outputs of a
fixed length 𝑛.

2. 𝐻(𝑥) can be efficiently computed for all 𝑥 ∈ {0, 1}≤𝐿

is an 𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function𝑛-bit hash function. We call 𝐻(𝑥) the hashhashhashhashhashhashhashhashhashhashhashhashhashhashhashhashhash or digestdigestdigestdigestdigestdigestdigestdigestdigestdigestdigestdigestdigestdigestdigestdigestdigest of 𝑥.

We usually suppose that 𝐿 is large and just write 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛.

In a more general context, a hash function is an efficiently computable function.

Example 3.1.2. Let 𝐻 ∶ {0, 1}≤4 → {0, 1}2 be a hash function mapping a bitstring to its last
two digits. For example, 𝐻(1101) = 01.

We call 1001 a preimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimagepreimage of 01.

The pair (01, 1001) is a collisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollisioncollision where 01 is a second preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimagesecond preimage of 1001.

Generically, we can create a hash function given a block cipher.

18
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Cryptoscheme 3.1 (Davies–Meyer hash function)
Let 𝐸𝑘 be an 𝑚-bit block cipher with 𝑛-bit key 𝑘. Let IV be a fixed 𝑚-bit initializing value.

Then, to compute 𝐻(𝑥),

1. Break up 𝑥 ∥ 1 into 𝑛-bit blocks ̄𝑥 = 𝑥1, … , 𝑥𝑡 (padding 𝑥𝑡 with 0s if necessary)
2. 𝐻0 ← IV
3. 𝐻𝑖 ← 𝐸𝑥𝑖

(𝐻𝑖−1) ⊕ 𝐻𝑖−1 for all 𝑖 = 1, … , 𝑡
4. 𝐻(𝑥) ← 𝐻𝑡

Hash functions are used basically everywhere in cryptography, mostly just because they are stupidly
fast and introduce “scrambling” that, given a good enough hash function, cannot be reversed.

Definition 3.1.3 (preimage resistance)
A hash function 𝐻 = {0, 1}∗ → {0, 1}𝑛 is preimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistantpreimage resistant (PR) if, given a hash value
𝑦 ∈𝖱 {0, 1}𝑛, it is computationally infeasible to find any 𝑥 ∈ {0, 1}∗ with 𝐻(𝑥) = 𝑦 with
non-negligible success probability.

Note that we include disclaimers like “non-negligible success probability” since otherwise we could
just use an attack like “guess! it might just work!”

This is helpful for implementing passwords. If we store (password, 𝐻(password)) with a PR hash
𝐻, then stealing the system password file does not actually reveal the passwords.

Definition 3.1.4 (2nd preimage resistance)
A hash function 𝐻 = {0, 1}∗ → {0, 1}𝑛 is 2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant2nd preimage resistant (2PR) if, given 𝑥 ∈𝖱 {0, 1}∗,
it is computationally infeasible to find any 𝑥′ ∈ {0, 1}∗ with 𝑥′ ≠ 𝑥 and 𝐻(𝑥′) = 𝐻(𝑥) with
non-negligible success probability.

This is helpful for ensuring that a message is unchanged (Modification Detection Codes; MDCs).
To ensure a message 𝑚 is unmodified, publicize 𝐻(𝑚). Then, as long as 𝐻 is 2PR and we can
verify the hash, we can safely assume 𝑚 is unmodified.

Definition 3.1.5 (collision resistance)
A hash function 𝐻 = {0, 1}∗ → {0, 1}𝑛 is collision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistantcollision resistant (CR) if it is computationally
infeasible to find distinct 𝑥, 𝑥′ ∈ {0, 1}∗ where 𝐻(𝑥′) = 𝐻(𝑥).

This allows us to optimize message signing. Instead of signing a large file 𝑥, Alice can sign 𝐻(𝑥)
instead. Keeping all the desired properties of a signing scheme requires PR, 2PR, and CR.

↑ Lectures 5, 6, and 7 taken directly from slides ↑ Lecture 8
Jan 24
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Proposition 3.1.6
If 𝐻 is CR, then 𝐻 is 2PR.

Proof. Take the contrapositive: 𝐻 is not 2PR ⟹ 𝐻 is not CR.

Suppose 𝐻 is not 2PR, i.e., we have an efficient algorithm to find a collision 𝑥′ given 𝑥.

Select a random 𝑥. Get the collision 𝑥′ from our algorithm. Then, we have a collision (𝑥, 𝑥′) that
we found efficiently, so 𝐻 is not CR.

It will always be easier to do the contrapositive in this course, especially because most definitions
use “it is not possible”.

Proposition 3.1.7
CR does not guarantee PR.

Proof. We give a counterexample.

Suppose that 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛 is CR.

Consider the hash function �̄� = {0, 1}∗ → {0, 1}𝑛+1 defined by

�̄�(𝑥) = {
0 ∥ 𝐻(𝑥) 𝑥 ∉ {0, 1}𝑛

1 ∥ 𝑥 𝑥 ∈ {0, 1}𝑛

where ∥ denotes the concatenation operation. Then �̄� is CR because 𝐻 is.

However, �̄� is not PR for at least half of all 𝑦 ∈ {0, 1}𝑛+1 we can efficiently find the preimage (i.e.,
for all the hash values beginning with 1, we can just lop off the 1 to get the original).

Note: if we disallow pathological hash functions like this, i.e., we have some constraint on uniformity
in the size of preimages, CR does guarantee PR.

Proposition 3.1.8
Suppose 𝐻 is somewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniformsomewhat uniform, i.e., preimages are all around the same size. If 𝐻 is CR, then
𝐻 is PR.

Proof. Suppose that 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛 is not PR. We must show 𝐻 is not CR.

Select 𝑥 ∈𝖱 {0, 1}∗ and compute 𝑦 = 𝐻(𝑥). Since 𝐻 is not PR, we can efficiently find 𝑥′ ∈ {0, 1}∗

with 𝐻(𝑥′) = 𝑦. Since 𝐻 is somewhat uniform, we expect that 𝑦 has many preimages, so 𝑥′ ≠ 𝑥
with very high probability.

Therefore, (𝑥, 𝑥′) is a collision and 𝐻 is not CR.

Proposition 3.1.9
PR does not guarantee 2PR.
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Proof. Suppose that 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛 is PR.

Define �̄� ∶ {0, 1}∗ → {0, 1}𝑛 by �̄�(𝑥1𝑥2 … 𝑥𝑡) = 𝐻(0𝑥2 … 𝑥𝑡).

Then, �̄� is PR but not 2PR.

Proposition 3.1.10
Suppose 𝐻 is somewhat uniform. If 𝐻 is 2PR, then 𝐻 is PR.

Proof. Suppose that 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛 is not PR and show it is not 2PR.

Suppose we are given 𝑥{0, 1}∗. Compute 𝑦 = 𝐻(𝑥) and then find with our PR-breaking algorithm
𝑥′ with 𝐻(𝑥′) = 𝑦. Since 𝐻 is somewhat uniform, we expect 𝑥 ≠ 𝑥′.

Then, we have a collision 𝑥′ for 𝑥 and that breaks PR.

Proposition 3.1.11
2PR does not guarantee CR.

Proof. Suppose that 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛 is 2PR.

Consider �̄� ∶ {0, 1}∗ → {0, 1}𝑛 defined by �̄�(𝑥) = 𝐻(𝑥) except �̄�(1) = 𝐻(0).

Then, �̄� is not CR because (0, 1) is a collision.

However, we can show �̄� is 2PR. Suppose �̄� is not 2PR. We show 𝐻 would also not be 2PR.

Suppose we are given some 𝑥. Since �̄� is not 2PR, we can find 𝑥′ ≠ 𝑥 with �̄�(𝑥′) = �̄�(𝑥). With
almost certain probability, we can assume 𝑥 ≠ 0, 1. Then, �̄�(𝑥) = 𝐻(𝑥). If 𝑥′ ≠ 1, we have
�̄�(𝑥′) = 𝐻(𝑥′) = 𝐻(𝑥). Otherwise, �̄�(𝑥′) = �̄�(1) = 𝐻(0) = 𝐻(𝑥) We found a second preimage
𝑥′ or 0 for 𝑥, so 𝐻 is not 2PR.

Therefore, by contradiction, �̄� is 2PR.

Theorem 3.1.12 (relation between PR, 2PR, CR)
Summarize:

If 𝐻 is ↓, then it is → PR 2PR CR
PR – ⇏ ⇏

2PR ⇒∗ – ⇏
CR ⇒ ⇒∗ –

where ⇒∗ means “implies under somewhat uniformity”

3.2 Attacks

Lecture 9
Jan 26
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Definition 3.2.1 (generic attack)
An attack which does not exploit any specific properties of a hash function. That is, it works
on any generic hash function 𝐻 ∶ {0, 1}∗ → {0, 1}𝑛.

To analyze a generic attack, we assume 𝐻 is a random function in the sense that 𝑦 = 𝐻(𝑥) can be
treated as 𝑦 ∈𝖱 {0, 1}𝑛.

Attack 3.2 (generic attack for preimages)
Given 𝑦 ∈𝖱 {0, 1}𝑛, repeatedly select arbitrary 𝑥 until 𝐻(𝑥) = 𝑦.

This will take 2𝑛 attempts, so as long as 𝑛 ≥ 128 we are safe.

Attack 3.3 (generic attack for collisions)
Select arbitrary 𝑥 ∈ {0, 1}∗ and store (𝐻(𝑥), 𝑥) in a table sorted by the first entry. Repeat
until a collision is found.

By the birthday paradox, the expected number of hash operations is √𝜋2𝑛/2 ≈
√

2𝑛. Therefore,
the attack is infeasible for 𝑛 ≥ 256.

The space complexity is also 𝒪(
√

2𝑛). This is important since, for example, 𝑛 = 128 has a feasible
runtime 264 but an infeasible space requirement of 500 million TB.

We can prove that this is the optimal generic collision attack, i.e., no faster generic attack exists.

However, we can improve the space complexity.

Let 𝑁 = 2𝑛. Define a sequence (𝑥𝑖)𝑖≥0 by 𝑥0 ∈𝖱 {0, 1}𝑛 and 𝑥𝑖 = 𝐻(𝑥𝑖−1).

Since (𝑥𝑖) ⊆ {0, 1}𝑛, we will eventually get repetitions. Therefore, (𝑥𝑖) is eventually periodic, i.e.,
we will eventually get 𝑥𝑎 = 𝑥𝑏 for 𝑎 ≠ 𝑏. Then, we found a collision (𝑥𝑎−1, 𝑥𝑏−1).

More formally, let 𝑗 be the smallest index for which 𝑥𝑗 = 𝑥𝑖 for some 𝑖 < 𝑗, which must exist. Then,
𝑥𝑗+ℓ = 𝑥𝑖+ℓ for all ℓ ≥ 1.

By the birthday paradox, E[𝑗] ≈ √𝜋𝑁/2 ≈
√

𝑁. In fact, since 𝑖 is a random element from before
𝑗, we can say E[𝑖] ≈ 1

2

√
𝑁 and E[𝑗 − 𝑖] ≈ 1

2

√
𝑁.

We will store only some distinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished pointsdistinguished points, for example, elements where the top 32 bits are all
0. Let 𝜃 be the proportion of distinguished points. Here, 𝜃 = 2−32.

We can still tell detect a cycle as long as there is a distinguished point in the cycle. Once we detect
a collision, we work through the sequence near it.
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Attack 3.4 (van Oorschot–Wiener parallel collision search)
We write this attack as two stages:

1: Create a table 𝑇
2: procedure DetectCollision(𝐻)
3: Select 𝑥0 ∈𝖱 {0, 1}𝑛

4: 𝑇 [𝑥0] ← (0, −) ▷ store (index, last distinguished point)
5: 𝑐 ← 0 ▷ last distinguished point
6: for 𝑑 = 1, 2, 3 … do
7: 𝑥𝑑 ← 𝐻(𝑥𝑑−1)
8: if 𝑥𝑑 is distinguished then
9: if 𝑇 [𝑥𝑑] exists as (𝑏, 𝑥𝑎) then

10: (𝑎, −) ← 𝑇 [𝑥𝑎] ▷ need the index of 𝑥𝑎
11: return FindCollision(𝑥𝑎, 𝑥𝑐, 𝑎, 𝑏, 𝑐, 𝑑)
12: 𝑇 [𝑥𝑑] ← (𝑑, 𝑐)
13: 𝑐 ← 𝑑
14: procedure FindCollision(𝑥𝑎, 𝑥𝑐, 𝑎, 𝑏, 𝑐, 𝑑)
15: ℓ1 ← 𝑏 − 𝑎, ℓ2 ← 𝑑 − 𝑐
16: Suppose ℓ1 ≥ ℓ2 so 𝑘 ← ℓ1 − ℓ2
17: Compute 𝑥𝑎+1, … , 𝑥𝑎+𝑘
18: 𝑚 ← 1
19: repeat
20: Compute 𝑥𝑎+𝑘+𝑚, 𝑥𝑐+𝑚
21: 𝑚 ← 𝑚 + 1
22: until 𝑥𝑎+𝑘+𝑚 = 𝑥𝑐+𝑚
23: return (𝑥𝑎+𝑘+𝑚−1, 𝑥𝑐+𝑚−1) ▷ the collision is 𝐻(𝑥𝑎+𝑘+𝑚−1) = 𝐻(𝑥𝑐+𝑚−1)

In DetectCollision, we will call the hash function √𝜋𝑁/2 + 1
𝜃 times.

In FindCollision, we perform at most 3
𝜃 hashes.

In total, we expect to take
√

𝑁 + 4
𝜃 time. But this time we only need 3𝑛𝜃

√
𝑁 space.

So for our 𝑛 = 128 case with 𝜃 = 2−32, the expected runtime is 264 hashes (feasible) and the
expected storage is 192 GB (negigible).

Lecture 10
Jan 29We can parallelize VW collision search by having each processor start on a random point and report

discovered distinguished points to a central server.

For 𝑚 processors, we get an expected time of 1
𝑚

√
𝑁 + 4

𝜃 hashes and space of 3𝑛𝜃
√

𝑁 bits. That is,
we get a speedup of 𝑚 times.

This is also nice because there is no communication between processors and only occasional com-
munication with the central server (reducing the chance of race conditions and other parallelism
problems).

3.3 Iterated hash functions
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Cryptoscheme 3.5 (Merkle’s meta method)
Fix an initializing value IV ∈ {0, 1}𝑛 and pick a compression function 𝑓 ∶ {0, 1}𝑛+𝑟 → {0, 1}𝑛.

Given a 𝑏-bit message 𝑥, to compute 𝐻(𝑥):

1. Break up 𝑥 into 𝑟-bit blocks ̄𝑥 = 𝑥1, … , 𝑥𝑡 (padding the last block with 0s if necessary)
2. Define 𝑥𝑡+1 to hold the binary representation of 𝑏 (left-padding with 0s as necessary)
3. Define 𝐻0 = IV
4. Compute 𝐻𝑖 = 𝑓(𝐻𝑖−1 ∥ 𝑥𝑖) for 𝑖 = 1, … , 𝑡 + 1
5. Return 𝐻(𝑥) = 𝐻𝑡+1

Merkle also proved that collision resistance depends on 𝑓.

Theorem 3.3.1 (Merkle)
If the compression function 𝑓 is collision resistant, then the iterated hash function 𝐻 is also
collision resistant.

Note that by thm. 3.1.12, we get PR and 2PR as well.

This feels very circular, but it can be helpful to give a proof of security given certain very precise
definitions. However, the assumptions in the definitions might not be realistic.

Proof. Suppose that 𝐻 is not CR. We will show that 𝑓 is not CR.

Since 𝐻 is ont CR, we can efficiently find messages 𝑥, 𝑥′ ∈ {0, 1}∗ with 𝑥 ≠ 𝑥′ and 𝐻(𝑥) = 𝐻(𝑥′).

Define ̄𝑥 = 𝑥1, … , 𝑥𝑡, 𝑏 = |𝑥|, length block 𝑥𝑡+1, and ̄𝑥′ = 𝑥′
1, … , 𝑥′

𝑡′, 𝑏′ = |𝑥′|, length block 𝑥′
𝑡′+1.

Then, we can efficiently compute

𝐻0 = IV 𝐻0 = IV
𝐻1 = 𝑓(𝐻0, 𝑥1) 𝐻′

1 = 𝑓(𝐻0, 𝑥′
1)

𝐻2 = 𝑓(𝐻1, 𝑥2) 𝐻′
2 = 𝑓(𝐻′

1, 𝑥′
2)

𝐻3 = 𝑓(𝐻2, 𝑥1) 𝐻′
3 = 𝑓(𝐻′

2, 𝑥′
3)

⋮ ⋮
𝐻𝑡−1 = 𝑓(𝐻𝑡−2, 𝑥𝑡−1) 𝐻′

𝑡′−1 = 𝑓(𝐻′
𝑡′−2, 𝑥′

𝑡′−1)
𝐻(𝑥) = 𝐻𝑡 = 𝑓(𝐻𝑡−1, 𝑥𝑡) 𝐻(𝑥′) = 𝐻′

𝑡′ = 𝑓(𝐻′
𝑡′−1, 𝑥′

𝑡′)

Since 𝐻(𝑥) = 𝐻(𝑥′), we have 𝐻𝑡 = 𝐻′
𝑡′.

Now, if 𝑏 ≠ 𝑏′, then 𝑥𝑡+1 ≠ 𝑥′
𝑡′+1. Then, (𝐻𝑡 ∥ 𝑥𝑡+1, 𝐻′

𝑡′ ∥ 𝑥′
𝑡′+1) is a collision for 𝑓.

Otherwise, if 𝑏 = 𝑏′, then 𝑡 = 𝑡′ and 𝑥𝑡+1 = 𝑥′
𝑡+1. Let 𝑖 be the largest index for which (𝐻𝑖 ∥ 𝑥𝑖+1) ≠

(𝐻′
𝑖 ∥ 𝑥′

𝑖+1) which must exist because 𝑥 ≠ 𝑥′.

Then, 𝐻𝑖+1 = 𝑓(𝐻𝑖, 𝑥𝑖+1) = 𝑓(𝐻′
𝑖 , 𝑥′

𝑖+1) = 𝐻′
𝑖+1 and we have a collision (𝐻𝑖 ∥ 𝑥𝑖+1, 𝐻′

𝑖 ∥ 𝑥′
𝑖+1).

Since we found a collision, 𝑓 is not CR.
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Aside: MD5 is bad MDx is a family of iterated hash functions. MD4 was designed by Rivest
in 1990 with a security level against VW of 64 bits but broken by hand by Wang in 2004 with an
attack reducing the security level to 4 bits. MD4 preimages can also be found in 2102 operations,
which is infeasible but also still bad.

In 1991, Rivest designed MD5, a strengthened version of MD4. The Wang attack reduced the
security level of 39 bits, but modern attacks can find collisions in 224 operations.

In summary, MD5 should not be used if collision resistance is required but it’s probably preimage
resistant. In fact, the Flame malware used a forged MD5-based Microsoft certificate created using
an improved version of Wang’s attack.

Lecture 11
Jan 31For another example of why this is a problem, consider the fact that Crowdmark uses MD5 hashes

to verify that a submitted file is the same (in case of an upload error). A student could change
their answer and submit the “same” file after looking at the solutions after the deadline.

The SHA family of functions are designed by the NSA. Wang (our recurring character) attacked
SHA (1993) to 39 bits and SHA-1 (1994) to 63 bits. The SHA-2 family, a variable-length output
version of SHA-1, has no known weaknesses. The 224-, 256-, 384-, and 512-bit lengths are chosen so
that the security levels (against VW collision finding) line up with the security levels of Triple-DES,
AES-128, AES-192, and AES-256.

Cryptoscheme 3.6 (SHA-256)
SHA-256 is an iterated hash function with block length 𝑟 = 512, hash length 𝑛 = 256, and
compression function 𝑓 ∶ {0, 1}256+512 → {0, 1}256.

The design principles are classified, so we can treat it as a black box.

Define ℎ1, … , ℎ8 as the fractional parts of the square roots of the first eight primes and 𝑦0, … , 𝑦63
as the fractional parts of the cube roots of the first 64 primes. Finally, let

𝑓(𝐴, 𝐵, 𝐶) = 𝐴𝐵 ⊕ 𝐵𝐶 𝑔(𝐴, 𝐵, 𝐶) = 𝐴𝐵 ⊕ 𝐴𝐶 ⊕ 𝐵𝐶
𝑟1(𝐴) = (𝐴 ↪ 2) ⊕ (𝐴 ↪ 13) ⊕ (𝐴 ↪ 22) 𝑟2(𝐴) = (𝐴 ↪ 6) ⊕ (𝐴 ↪ 11) ⊕ (𝐴 ↪ 25)
𝑟3(𝐴) = (𝐴 ↪ 7) ⊕ (𝐴 ↪ 18) ⊕ (𝐴 ≫ 3) 𝑟4(𝐴) = (𝐴 ↪ 17) ⊕ (𝐴 ↪ 19) ⊕ (𝐴 ≫ 10)

To find the hash of a 𝑏-bit message 𝑥 made of 32-bit words 𝑥0, 𝑥1 … :
1: pad 𝑥 with 1 followed by 0s until the bitlength is −64 (mod 512).
2: append a 64-bit representation of 𝑏 (mod 264)
3: initialize (𝐻1, … , 𝐻8) ← (ℎ1, … , ℎ8)
4: for 𝑖 = 0, … , 𝑚 − 1 do
5: 𝑋𝑗 ← 𝑥16𝑖+𝑗 for 0 ≤ 𝑗 ≤ 15 ▷ copy 𝑖th 16-word block into temp storage
6: 𝑋𝑗 ← 𝑟4(𝑋𝑗−2) + 𝑋𝑗−7 + 𝑟3(𝑋𝑗−15) + 𝑋𝑗−16 for 16 ≤ 𝑗 ≤ 63 ▷ expand 𝑋 to 64 words
7: (𝐴, 𝐵, … , 𝐺, 𝐻) ← (𝐻1, 𝐻2, … , 𝐻7, 𝐻8) ▷ initialize working variables
8: for 𝑗 = 0, … , 63 do ▷ weird random shuffling
9: 𝑇1 ← 𝐻 + 𝑟2(𝐸) + 𝑓(𝐸, 𝐹 , 𝐺) + 𝑦𝑗 + 𝑋𝑗

10: 𝑇2 ← 𝑟1(𝐴) + 𝑔(𝐴, 𝐵, 𝐶)
11: (𝐻, 𝐺, 𝐹 , 𝐸, 𝐷, 𝐶, 𝐵, 𝐴) ← (𝐹 , 𝐺, 𝐸, 𝐷 + 𝑇1, 𝐶, 𝐵, 𝐴, 𝑇1 + 𝑇2)
12: (𝐻1, … , 𝐻8) ← (𝐻1 + 𝐴, … , 𝐻8 + 𝐻) ▷ update working variables
13: return 𝐻1 ∥ 𝐻2 ∥ ⋯ ∥ 𝐻8
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It would be very profitable to crack SHA-256 since it is used to verify proof of work for Bitcoin
mining. Finding messages with arbitrary numbers of 0s at the starts of hashes would print money.

Just to be sure Wang can’t come back and break SHA-2 (since it is still a Merkle design). SHA-3
(Keecak, based on “sponge construction”) was selected in 2012, but nobody really uses it because
SHA-256 is still better.
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Chapter 4

Message authentication codes

Lecture 12
Feb 24.1 Definitions

Definition 4.1.1 (message authentication code)
A family of functions MAC𝑘 ∶ {0, 1}∗ → {0, 1}𝑛 paramaterized by an ℓ-bit key 𝑘 where each
function MAC𝑘 can be efficiently computed.

The MACMACMACMACMACMACMACMACMACMACMACMACMACMACMACMACMAC or tagtagtagtagtagtagtagtagtagtagtagtagtagtagtagtagtag of a message 𝑥 is denoted 𝑡 = MAC𝑘(𝑥).

We use MAC schemes to provide data integrity and origin verification. To do this:

1. Alice and Bob establish a secret key 𝑘 ∈ {0, 1}ℓ.
2. Alice computes the tag 𝑡 = MAC𝑘(𝑥) of a message 𝑥 and sends (𝑥, 𝑡) to Bob.
3. Bob verifies that 𝑡 = MAC𝑘(𝑥).

To avoid a replay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attackreplay attack (Eve saves a copy of a message and resends it later), add a timestamp or
sequence number.

Like with encryption, we have to formulate a security definition.

Definition 4.1.2 (MAC security)
A MAC scheme is securesecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecure if it is existentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeableexistentially unforgeable under a chosen-message attack.

That is, for chosen messages 𝑥𝑖 and their MACs 𝑡𝑖, it is computationally infeasible to find with
non-negligible success probability a valid message-MAC pair (𝑥, 𝑡) for a new message 𝑥.

Realistically, the messages 𝑥𝑖 will have to be “harmless” messages that Alice is ordinarily willing
to tag and the forgery 𝑥 is a “harmful” message that Alice would ordinarily be unwilling to tag.

Definition 4.1.3
An idealidealidealidealidealidealidealidealidealidealidealidealidealidealidealidealideal MAC scheme is one where for each key 𝑘 ∈ {0, 1}ℓ, the function MAC𝑘 ∶ {0, 1}∗ →
{0, 1}𝑛 is a random function.
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The naive generic attack is to just guess.

Attack 4.1 (generic attack for tags)
Select 𝑦 ∈𝖱 {0, 1}𝑛 and guess that MAC𝑘(𝑥) = 𝑦. Keep guessing.

Assuming an ideal scheme, the success probability is 1
2𝑛 .

Attack 4.2 (generic attack for keys)
Perform the same attack as on an SKES.

Assuming an ideal scheme, the expected number of keys for which 𝑟 messages verify is 1 + FK =
1 + (2ℓ − 1)/2𝑟. If FK is negligible, the expected number of operations is 2ℓ−1.

4.2 Specific MACs

Cryptoscheme 4.3 (CBC-MAC)
Let 𝐸 be an 𝑛-bit block cipher with key space {0, 1}ℓ. We assume that plaintext messages all
have lengths that are multiples of 𝑛. To compute CBC-MAC𝑘(𝑥):

1: Divide 𝑥 into 𝑛-bit blocks 𝑥1, … , 𝑥𝑟.
2: 𝐻1 ← 𝐸𝑘(𝑥1)
3: for 𝑖 = 2, … , 𝑟 do
4: 𝐻𝑖 ← 𝐸𝑘(𝐻𝑖−1 ⊕ 𝑥𝑖)
5: return 𝐻𝑟

It was proven in 1994 that CBC-MAC with fixed-length messages is secure if 𝐸 is ideal (i.e.,
𝐸𝑘 ∶ {0, 1}𝑛 → {0, 1}𝑛 is random).

However, it is totally broken for variable-length messages.

Proof. Select an arbitrary 3-block message 𝑥 = (𝑥1, 𝑥2, 𝑥3). Obtain 𝑡1 = CBC-MAC𝑘(𝑥1) = 𝐸𝑘(𝑥1).
Obtain 𝑡2 = CBC-MAC𝑘((𝑡1 ⊕ 𝑡2) ∥ 𝑥3) = 𝐸𝑘(𝐸𝑘(𝑡1 ⊕ 𝑥2) ⊕ 𝑥3). Then, (𝑥, 𝑡2) is a forgery.

One way to fix this is to add one more encryption round.

Cryptoscheme 4.4 (Encrypted CBC-MAC (EMAC))
Given a second key 𝑠 for 𝐸, let EMAC𝑘,𝑠(𝑥) = 𝐸𝑠(CBC-MAC𝑘(𝑥)).

Again, it has been proven that EMAC is secure if 𝐸 is ideal.

Now, consider creating a MAC based on a hash function. Let 𝐻 be an iterated 𝑛-bit hash function
with compression function 𝑓 ∶ {0, 1}𝑛+𝑟 → {0, 1}𝑛. Pick 𝑘 ∈𝖱 {0, 1}𝑛 and let 𝐾 ∈ {0, 1}𝑟 be 𝑘
padded with 0s.
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We might propose MAC𝑘(𝑥) = 𝐻(𝐾 ∥ 𝑥). However, this is insecure under a length extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attacklength extension attack
since if we know (𝑥, MAC𝑘(𝑥)), we can calculate MAC𝑘(𝑥 ∥ 𝑦) for arbitrary 𝑦 by resuming the hash
process with the last block of 𝑥 (i.e., computing 𝑓(𝑡 ∥ 𝑦1), etc.).

Exercise 4.2.1. Show that this is also insecure if messages are of arbitrary length and a length
block is added to 𝐾 ∥ 𝑥.

Securing against this attack is as simple as adding the key to each step, giving us a secure hash-based
MAC (“HMAC”)

Cryptoscheme 4.5 (HMAC)
Let 𝐻 be a hash function. Define 𝑟-bit constants opad = 3636⋯ 36 and ipad = 5c5c⋯ 5c.

Then, HMAC𝑘(𝑥) = 𝐻(𝐾 ⊕ opad, 𝐻(𝐾 ⊕ ipad, 𝑥)).

Lecture 13
Feb 5The security analysis of HMAC is hard, but we can prove a theorem.

Theorem 4.2.2
Suppose that the 𝑓 compression function used in 𝐻 is a secure MAC with fixed-length messages
and a secret IV as the key. Then, HMAC is a secure MAC scheme.

Usually, HMAC uses SHA-256. It is widely used for internet security.

HMAC is also widely used as a key derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation functionkey derivation function. If Alice has 𝑘 and needs multiple session
keys 𝑠𝑘𝑖, she can compute 𝑠𝑘1 = HMAC𝑘(1), 𝑠𝑘2 = HMAC𝑘(2), etc. Then, since HMAC is secure,
Eve can intercept individual session keys and still know nothing about either the actual key 𝑘 or
the other session keys.

4.3 GSM

TODO
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Chapter 5

Authenticated encryption

5.1 Generic schemes

We have established ways to encrypt data (e.g., AES-CBC) and ways to authenticate data (i.e.,
MACs) but what if we need both?

Cryptoscheme 5.1 (Encrypt-and-MAC)
Alice sends (𝑐, 𝑡) = (𝐸𝑘1

(𝑚), MAC𝑘2
(𝑚)) to Bob, where 𝑚 is the plaintext and (𝑘1, 𝑘2) is a

secret key shared with Bob.

Then, Bob first decrypts 𝑐 to obtain 𝑚 = 𝐸−1
𝑘1

(𝑐) and then verifies 𝑡 = MAC𝑘2
(𝑚).

This is insecure because MAC𝑘2
(𝑚) might leak information about 𝑚 (MACs are generally not

semantically secure).

Cryptoscheme 5.2 (Encrypt-then-MAC)
Alice sends (𝑐, 𝑡) = (𝐸𝑘1

(𝑚), MAC𝑘2
(𝑐)) to Bob, where 𝑚 is the plaintext and (𝑘1, 𝑘2) is a

secret key shared with Bob.

Then, Bob first verifies that 𝑡 = MAC𝑘2
(𝑐) and decrypts 𝑐 to obtain 𝑚 = 𝐸−1

𝑘1
(𝑐).

This has been proven to be secure given that 𝐸𝑘1
and MAC𝑘2

are secure.

Definition 5.1.1 (authentication encryption security)
An authentication encryption scheme is securesecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecuresecure if

1. it is semantically secure against chosen-plaintext attacks, and
2. has ciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrityciphertext integrity, i.e., given (𝑚1, 𝑐1, 𝑡1), … , (𝑚ℓ, 𝑐ℓ, 𝑡ℓ), an attacker cannot forge a

valid (𝑚, 𝑐, 𝑡).

Lecture 14
Feb 7
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5.2 AES-GCM

The most popular AE scheme is AES-GCM which uses AES-CTR and GMAC.

Recall how ChaCha20 (scheme 2.4) used a key, nonce, and counter to generate a keystream. AES-
CTR uses AES in a similar stream cipher paradigm.

Cryptoscheme 5.3 (AES-CTR)
Let 𝑘 ∈𝖱 {0, 1}128 be a shared secret and 𝑀 = (𝑀1, … , 𝑀𝑢) be a message of 128-bit blocks. To
encrypt:

1: Select a nonce IV ∈ {0, 1}96,
2: 𝐽0 ← IV ∥ 031 ∥ 1,
3: for 𝑖 = 1, … , 𝑢 do
4: 𝐽𝑖 ← 𝐽𝑖−1 + 1
5: 𝐶𝑖 ← AES𝑘(𝐽𝑖) ⊕ 𝑀𝑖
6: return (IV, 𝐶1, … , 𝐶𝑢)

To decrypt, generate the keystream and XOR.

Since it is a counter, CTR encryption is parallelizable. We also require, as with other IV-containing
schemes, that the IV be unique and never reused.

To define GMAC, recall definition 2.4.2.

Definition 5.2.1 (GF(2128))
The field ℤ/2ℤ[𝑥] modulo 𝑓(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥7 + 𝑥128.

We associate a 128-bit block 𝑎 = 𝑎0 ⋯ 𝑎127 with the polynomial 𝑎(𝑥) = 𝑎0 +𝑎1𝑥+⋯+𝑎127𝑥127.

As in GF(28), we define 𝑎 ⋅ 𝑏 = 𝑎(𝑥) ⋅ 𝑏(𝑥) (mod 𝑓(𝑥)).

Then, we can describe GMAC:

Cryptoscheme 5.4 (Galois Message Authentication Code (GMAC))
Let 𝐴 = (𝐴1, … , 𝐴𝑣) be the message in 128-bit blocks, 𝐿 be the bitlength of 𝐴 as a 128-bit
block, and 𝑘 be a secret key.

1: 𝐽0 ← IV ∥ 031 ∥ 1
2: 𝐻 ← AES𝑘(0128)
3: Define 𝑓𝐴(𝑦) = 𝐴1𝑦𝑣+1 + 𝐴2𝑦𝑣 + ⋯ + 𝐴𝑣−1𝑦3 + 𝐴𝑣𝑦2 + 𝐿𝑦 ∈ GF(2128)[𝑦]
4: 𝑡 ← AES𝑘(𝐽0) ⊕ 𝑓𝐴(𝐻)
5: return (IV, 𝐴, 𝑡)

Proposition 5.2.2
GMAC is secure.
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Proof (outline). Consider the simplified tag 𝑡′ = 𝑓𝐴(𝐻).

Then, the adversary can guess with probability 1
2128 .

She can also guess 𝑡′ by making a guess 𝐻′ and computing 𝑓𝐴(𝐻′) with success probability 𝑣+1
2128 .

But if Eve sees a single valid message-tag pair (𝐴, 𝑡′), she can solve 𝑓𝐴(𝐻) = 𝑡′ for 𝐻.

To avoid this attack, we add a one-time pad AES𝑘(𝐽0) ⊕ 𝑡.

Finally, we can define AES-GCM. The scheme will encrypt/authenticate a message and also au-
thenticate (but not encrypt) an encryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption contextencryption context.

Cryptoscheme 5.5 (AES-GCM)
Let 𝑀 = (𝑀1, … , 𝑀𝑢) for 𝑢 ≤ 232 − 2 be the message, 𝐴 = (𝐴1, … , 𝐴𝑣) be the encryption
context, and 𝑘 ∈𝖱 {0, 1}128 be a shared secret.

To encrypt/sign:
1: 𝐿 ← |𝐴| ∥ |𝑀|
2: 𝐽0 ← IV ∥ 031 ∥ 1 for unique IV ∈ {0, 1}96

3: for 𝑖 = 1, … , 𝑢 do ▷ Encryption with AES-CTR
4: 𝐽𝑖 ← 𝐽𝑖−1 + 1
5: 𝐶𝑖 ← AES𝑘(𝐽𝑖) ⊕ 𝑀𝑖
6: 𝐻 ← AES𝑘(0128) ▷ Authentication with GMAC
7: Define 𝑓𝐴,𝐶(𝑥) = 𝐴1𝑥𝑢+𝑣+2 + ⋯ + 𝐴𝑣𝑥𝑢+2 + 𝐶1𝑥𝑢+1 + ⋯ + 𝐶𝑢𝑥2 + 𝐿𝑥
8: 𝑡 ← AES𝑘(𝐽0) ⊕ 𝑓𝐴,𝐶(𝐻)
9: return (IV, 𝐴, 𝐶, 𝑡)

To decrypt/authenticate:
1:

AES-GCM does both authentication and encryption, but it can be used to do just authentication
by passing 𝑀 = 𝜀.

There are very fast hardware implementations of AES and multiplication under GF(2128). If we use
Horner’s rule, we can evaluate an 𝑛-degree polynomial in GF(2128)[𝑥] with 𝑛 PCLMUL instructions
and 𝑛 − 1 XOR instructions.

We can also parallelize since we can assign blocks to other processors and split up the polynomial
𝑓𝐴,𝐶 into multiple parts for evaluation.

The scheme can be used in streaming mode, which is helpful.

This is also proven to be secure.
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