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Chapter 1

Introduction

1.1 Asymptotic Review

Lecture 1
(05/09)Recall from CS 240, that given a problem with instances 𝐼 of size 𝑛:

Definition 1.1.1 (runtime)
The runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼runtime of an instance 𝐼 is 𝑇 (𝐼).

The worst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtimeworst-case runtime is 𝑇 (𝑛) = max{𝐼∶|𝐼|=𝑛} 𝑇 (𝐼).

The average runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtimeaverage runtime is 𝑇avg(𝑛) =
∑{𝐼∶|𝐼|=𝑛} 𝑇 (𝐼)

|{𝐼∶|𝐼|=𝑛}|

Recall also the asymptotic comparison of functions 𝑓(𝑛) and 𝑔(𝑛) with values in ℝ>0:

Definition 1.1.2 (big-𝑂)
𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) if there exists 𝐶 > 0 and 𝑛0 such that 𝑛 ≥ 𝑛0 ⟹ 𝑓(𝑛) ≤ 𝐶𝑔(𝑛).

Definition 1.1.3 (big-Ω)
𝑓(𝑛) ∈ Ω(𝑔(𝑛)) if there exists 𝐶 > 0 and 𝑛0 such that 𝑛 ≥ 𝑛0 ⟹ 𝑓(𝑛) ≥ 𝐶𝑔(𝑛). Equivalently,
𝑔(𝑛) ∈ 𝑂(𝑓(𝑛)).

Definition 1.1.4 (big-Θ)
𝑓(𝑛) ∈ Θ(𝑔(𝑛)) if there exists 𝐶, 𝐶′ > 0 and 𝑛0 with 𝑛 ≥ 𝑛0 ⟹ 𝐶𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝐶′𝑔(𝑛).
Equivalently, 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) ∩ Ω(𝑔(𝑛)).

Recall also that if lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛) is finite, then 𝑓(𝑛) ∈ Θ(𝑔(𝑛)).
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Definition 1.1.5 (little-𝑜)
𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) if for all 𝐶 > 0, there exists 𝑛0 such that 𝑛 ≥ 𝑛0 ⟹ 𝑓(𝑛) ≤ 𝐶𝑔(𝑛).

Equivalently, lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛) = 0.

Definition 1.1.6 (little-𝜔)
𝑓(𝑛) ∈ 𝜔(𝑔(𝑛)) if for all 𝐶 > 0, there exists 𝑛0 such that 𝑛 ≥ 𝑛0 ⟹ 𝑓(𝑛) > 𝐶𝑔(𝑛).

Equivalently, lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛) = ∞ or 𝑔(𝑛) ∈ 𝑜(𝑓(𝑛)).

Also, recall that any polynomial of degree 𝑘 is in Θ(𝑛𝑘).1

We write 𝑛𝑂(1) to mean at most polynomial (i.e., 𝑂(𝑛𝑘(𝑛)) where 𝑘 ∈ 𝑂(1))

Exercise 1.1.7. Is 2𝑛−1 in Θ(2𝑛)?

Proof. Notice that 2𝑛−1 = 1
22𝑛. If we let 𝐶 = 1

2 = 𝐶′, 𝑛0 = 1, notice that for 𝑛 ≥ 𝑛0, we have
𝐶2𝑛 = 2𝑛−1 ≤ 2𝑛−1 ≤ 2𝑛−1 = 𝐶′2𝑛. That is, 2𝑛−1 ∈ Θ(2𝑛).

Exercise 1.1.8. Is (𝑛 − 1)! in Θ(𝑛!)?

Solution. No. Notice that lim𝑛→∞
(𝑛−1)!

𝑛! = lim𝑛→∞
1
𝑛 = 0. Therefore, (𝑛 − 1)! ∈ 𝑜(𝑛!), which contradicts

(𝑛 − 1)! ∈ Θ(𝑛!).

Consider now multivariate functions 𝑓(𝑛, 𝑚) and 𝑔(𝑛, 𝑚) with values in ℝ>0. Then,

Definition 1.1.9 (multivariate big-𝑂)
𝑓(𝑛, 𝑚) is in 𝑂(𝑔(𝑛, 𝑚)) if there exist 𝐶, 𝑛0, 𝑚0 such that 𝑓(𝑛, 𝑚) ≤ 𝐶𝑔(𝑛, 𝑚) for 𝑛 ≥ 𝑛0 or
𝑚 ≥ 𝑚0.

We similarly define the other asymptotic analysis functions. We could alternatively define using
𝑛 ≥ 𝑛0 and 𝑚 ≥ 𝑚0 but they both give the same results.

Lecture 2
(05/11)Notice that all basic operations are not equal. For example, multiplication may take 𝑂(𝑏) time for

a 𝑏-bit word.

Warning: big-𝑂 is only an upper bound, so 1 ∈ 𝑂(𝑛2) and 𝑛 ∈ 𝑂(𝑛), but we know that 1 ≪ 𝑛.

Asymptotic notation hides constants. Any Θ(𝑛2) algorithm will beat a Θ(𝑛3) algorithm eventually.
A galactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithmgalactic algorithm is practically irrelevant because the crossing point is stupidly large.

1As long as 𝑛 is eventually increasing, i.e., the 𝑛𝑘 term dominates.
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1.2 Types of Algorithms

Problem 1.2.1 (contiguous subarrays)
Given an array 𝐴[1..𝑛], find a contiguous subarray 𝐴[𝑖..𝑗] that maximizes the sum 𝐴[𝑖]+⋯+𝐴[𝑗].

Consider the brute-force attempt

Algorithm 1.2.2 BruteForce(𝐴)
1: 𝑜𝑝𝑡 ← 0
2: for 𝑖 ← 1, … , 𝑛 do
3: for 𝑗 ← 𝑖, … , 𝑛 do
4: 𝑠𝑢𝑚 ← 0
5: for 𝑘 ← 𝑖, … , 𝑗 do
6: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴[𝑘]
7: if 𝑠𝑢𝑚 > 𝑜𝑝𝑡 then
8: 𝑜𝑝𝑡 ← 𝑠𝑢𝑚
9: return 𝑜𝑝𝑡

which has a runtime Θ(𝑛3). This is inefficient. We are recomputing the same sum in the 𝑗 loop, so
if we instead keep the running sum:

Algorithm 1.2.3 BetterBruteForce(𝐴)
1: 𝑜𝑝𝑡 ← 0
2: for 𝑖 ← 1, … , 𝑛 do
3: 𝑠𝑢𝑚 ← 0
4: for 𝑗 ← 𝑖, … , 𝑛 do
5: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴[𝑗]
6: if 𝑠𝑢𝑚 > 𝑜𝑝𝑡 then
7: 𝑜𝑝𝑡 ← 𝑠𝑢𝑚
8: return 𝑜𝑝𝑡

we get Θ(𝑛2).

We can develop a divide-and-conquer algorithm by noticing that the optimal subarray (if not empty)
is either (1) completely in 𝐴[1..𝑛/2], (2) completely in 𝐴[𝑛/2 + 1..𝑛], or (3) contains 𝐴[𝑛/2] and
𝐴[𝑛/2 + 1].

Each of MaximizeUpperHalf and MaximizeLowerHalf have runtime Θ(𝑛), so DivideAnd-
Conquer has runtime 2𝑇 (𝑛/2) + Θ(𝑛) ∈ Θ(𝑛 log 𝑛).

Finally, notice that we can instead solve the problem in nested subarrays 𝐴[1..𝑗] of sizes 1, … , 𝑛.
The optimal subarray is either a subarray of 𝐴[1..𝑛 − 1] or contains 𝐴[𝑛].

Write 𝑀(𝑗) for the maximum sum for subarrays of 𝐴[1..𝑗]. Then,

𝑀(𝑛) = max(𝑀(𝑛 − 1), �̄�(𝑛)) = 𝐴[𝑛] + max(�̄�(𝑛 − 1), 0)
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Algorithm 1.2.4 DivideAndConquer(𝐴)
1: if 𝑛 = 1 then return max(𝐴[1], 0)
2: 𝑜𝑝𝑡𝑙𝑜 ← DivideAndConquer(𝐴[1..𝑛/2])
3: 𝑜𝑝𝑡ℎ𝑖 ← DivideAndConquer(𝐴[𝑛/2 + 1..𝑛])
4: function MaximizeLowerHalf()
5: 𝑜𝑝𝑡 ← 𝐴[𝑛/2]
6: 𝑠𝑢𝑚 ← 𝐴[𝑛/2]
7: for 𝑖 ← 𝑛/2 − 1, … , 1 do
8: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝐴[𝑖]
9: if 𝑠𝑢𝑚 > 𝑜𝑝𝑡 then 𝑜𝑝𝑡 ← 𝑠𝑢𝑚

10: return 𝑜𝑝𝑡
11: function MaximizeUpperHalf()
12: …
13: 𝑜𝑝𝑡𝑚𝑖𝑑 ← MaximizeLowerHalf() + MaximizeUpperHalf()
14: return max(𝑜𝑝𝑡𝑙𝑜, 𝑜𝑝𝑡ℎ𝑖, 𝑜𝑝𝑡𝑚𝑖𝑑).

where �̄�(𝑗) is the maximum sum for subarrays of 𝐴[1..𝑗] that include 𝑗. Notice that the optimal
subarray containing 𝐴[𝑛] is either 𝐴[𝑖..𝑛] for 𝑖 ≤ 𝑛 − 1 or exactly [𝐴[𝑛]].

Algorithm 1.2.5 DynamicProgramming(𝐴)
1: �̄� ← 𝐴[1]
2: 𝑀 ← max(�̄�, 0)
3: for 𝑖 = 2, … , 𝑛 do
4: �̄� ← 𝐴[𝑖] + max(�̄�, 0)
5: 𝑀 ← max(𝑀, �̄�)
6: return 𝑀

which has runtime Θ(𝑛). We cannot do better than this (proof beyond the scope of the course, but
intuitively notice that we cannot find a max without knowing the entire array).

1.3 Recurrence Relations

Recall merge sort.

The recurrence relation is 𝑇 (𝑛) = {
𝑇 (⌈𝑛

2 ⌉) + 𝑇 (⌊𝑛
2 ⌋) + Θ(𝑛) 𝑛 > 1

Θ(1) 𝑛 = 1

If we let 𝑐 and 𝑑 be the constants, we get 𝑇 (𝑛) = {
𝑇 (⌈𝑛

2 ⌉) + 𝑇 (⌊𝑛
2 ⌋) + 𝑐𝑛 𝑛 > 1

𝑑 𝑛 = 1

Equivalently, we can sloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppilysloppily remove floors and ceilings to get 𝑇 (𝑛) = {
2𝑇 (𝑛

2 ) + 𝑐𝑛 𝑛 > 1
𝑑 𝑛 = 1

Construct now a recursion tree, assuming 𝑛 = 2𝑗. Notice that we will end up with 𝑗 layers where
layer 𝑖 has 2𝑖 nodes where each node takes 𝑐𝑛 time (the last layer nodes take 𝑑 time).
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Theorem 1.3.1 (master theorem)
Suppose 𝑎 ≥ 1 and 𝑏 > 1. Consider the recurrence

𝑇 (𝑛) = 𝑎𝑇(
𝑛
𝑏 ) + Θ(𝑛𝑦)

in sloppy or exact form. Let 𝑥 = log𝑏(𝑎). Then,

𝑇 (𝑛) =
⎧{
⎨{⎩

Θ(𝑛𝑥) 𝑦 < 𝑥
Θ(𝑛𝑦 log 𝑛) 𝑦 = 𝑥
Θ(𝑛𝑦) 𝑦 > 𝑥

Proof. Let 𝑎 ≥ 1 and 𝑏 ≥ 2. Then, let 𝑇 (𝑛) = 𝑎𝑇 (𝑛
𝑏 ) + 𝑐𝑛𝑦 and 𝑇 (1) = 𝑑. Also, write for

convenience 𝑛 = 𝑏𝑗. We can now consider the recurrence tree.

The 𝑖th row in the tree (except the bottom) will have 𝑎𝑖 subproblems of size 𝑛/𝑏𝑖 which each have
cost 𝑐(𝑛/𝑏𝑖)𝑦 = 𝑐𝑛𝑦𝑏−𝑖𝑦. The 𝑗th row will have 𝑎𝑗 nodes with cost 𝑑. Then,

𝑇 (𝑛) = 𝑑𝑎𝑗 + 𝑐𝑛𝑦
𝑗−1

∑
𝑖=0

(
𝑎
𝑏𝑦 )

𝑖

Lecture 3
(05/16)

We know that 𝑥 = log𝑏 𝑎 which gives 𝑏𝑥 = 𝑎. Assume 𝑟 = 𝑎
𝑏𝑦 = 𝑏𝑥

𝑏𝑦 = 𝑏𝑥−𝑦. Then, we have

𝑑𝑎log𝑏 𝑛 + 𝑐𝑛𝑦
𝑗−1

∑
𝑖=0

𝑟𝑖 = 𝑑𝑛log𝑏 𝑎 + 𝑐𝑛𝑦
𝑗−1

∑
𝑖=0

𝑟𝑖

= 𝑑𝑛𝑥 + 𝑐𝑛𝑦
⎧{
⎨{⎩

𝑗 𝑟 = 1
Θ(1) 𝑟 < 1
𝑟𝑗−1
𝑟−1 ∈ Θ(𝑟𝑗) 𝑟 > 1

=
⎧{
⎨{⎩

𝑑𝑛𝑥 + 𝑐𝑛𝑦 log𝑏 𝑛 ∈ Θ(𝑛𝑦 log 𝑛) 𝑥 = 𝑦
𝑑𝑛𝑥 + 𝑐′𝑛𝑦 ∈ Θ(𝑛𝑦) 𝑥 < 𝑦
𝑑𝑛𝑥 + 𝑐″𝑛𝑥 ∈ Θ(𝑛𝑥) 𝑥 > 𝑦

noting that 𝑟𝑗 = 𝑟log𝑏 𝑛 = 𝑛log𝑏 𝑟 = 𝑛𝑥−𝑦, so in the latter case 𝑐𝑛𝑦Θ(𝑟𝑗) ∈ Θ(𝑛𝑥).

When 𝑛𝑥 dominates, we call it “heavy leaves”. When 𝑛𝑦 dominates, we call it “heavy top”. Other-
wise, we call it “balanced”.
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Chapter 2

Divide and Conquer

In general, we want to:

• divide: split a problem into subproblems;
• conquer: solve the subproblems recursively; and
• combine: use subproblem results to derive problem result

This is possible when:

• the original problem is easily decomposable into subproblems;
• combining solutions is not costly; and
• subproblems are not overly unbalanced

2.1 Examples

Problem 2.1.1 (counting inversions)
Given an unsorted array 𝐴[1..𝑛], find the number of inversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversionsinversions in it, i.e., pairs (𝑖, 𝑗) such that
𝐴[𝑖] > 𝐴[𝑗].

Example 2.1.2. Given 𝐴 = [1, 5, 2, 6, 3, 8, 7, 4], we get (2,3), (2,5), (2,8), (4,5), (4,8), (6,7),
(6,8), and (7,8).

The naive algorithm checks all pairs and takes Θ(𝑛2) time. We can do better.

Let 𝑐ℓ be the number of inversions in 𝐴[1..𝑛/2], 𝑐𝑟 be the number of inversions in 𝐴[𝑛/2 + 1..𝑛],
and 𝑐𝑡 be the number of transverse inversions, i.e., inversions where 𝑖 is on the left and 𝑗 is on the
right.

We can find 𝑐ℓ and 𝑐𝑟 by recursion.

To find 𝑐𝑡, we must count the number of left indices greater than each right index. This can be
done by sorting and then binary searching, since the binary search result index gives exactly what
we want. The sort takes 𝑂(𝑛 log 𝑛) and each of the 𝑛 binary searches takes 𝑂(log 𝑛).

8
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This gives us 𝑇 (𝑛) ≤ 2𝑇 (𝑛/2) + 𝑂(𝑛 log 𝑛) = 𝑂(𝑛 log2 𝑛).

We can instead modify MergeSort and find 𝑐𝑡 using a modified Merge:

Algorithm 2.1.3 Modified Merge(𝐴[1..𝑛]) (additions in green)
Require: both halves of 𝐴 are sorted

1: copy 𝐴 into a new array 𝑆; 𝑐 = 0
2: 𝑖 ← 1; 𝑗 ← 𝑛/2 + 1
3: for 𝑘 ← 1, … , 𝑛 do
4: if 𝑖 > 𝑛/2 then 𝐴[𝑘] ← 𝑆[𝑗++]
5: else if 𝑗 > 𝑛 then
6: 𝐴[𝑘] ← 𝑆[𝑖++]
7: 𝑐 ← 𝑐 + 𝑛

2
8: else if 𝑆[𝑖] < 𝑆[𝑗] then
9: 𝐴[𝑘] ← 𝑆[𝑖++]

10: 𝑐 ← 𝑐 + 𝑗 − (𝑛
2 + 1)

11: else 𝐴[𝑘] ← 𝑆[𝑗++]

Here, every time we merge in an element from the left, we add to 𝑐 the number of elements on the
right which are greater than it. This will run in Θ(𝑛 log 𝑛) time because the modified Merge is
still Θ(𝑛).

Problem 2.1.4 (polynomial multiplication)
Given 𝐹 = 𝑓0 + ⋯ + 𝑓𝑛−1𝑥𝑛−1 and 𝐺 = 𝑔0 + ⋯ + 𝑔𝑛−1𝑥𝑛−1, calculate 𝐻 = 𝐹𝐺.

The naive algorithm takes Θ(𝑛2) time to expand.

Notice that we can split 𝐹 = 𝐹0 + 𝐹1𝑥𝑛/2 and 𝐺 = 𝐺0 + 𝐺1𝑥𝑛/2. Then, we have 𝐻 = 𝐹0𝐺0 +
(𝐹0𝐺1 + 𝐹1𝐺0)𝑥𝑛/2 + 𝐹1𝐺1𝑥𝑛. If we divide and conquer, we make 4 recursive calls with size 𝑛/2
and Θ(𝑛) extra work for the additions.

However, 𝑇 (𝑛) = 4𝑇 (𝑛/2) + Θ(𝑛) ∈ Θ(𝑛2) which is not an improvement.

Lemma 2.1.5 (Karatsuba’s identity)
(𝑥 + 𝑦)(𝑎 + 𝑏) − 𝑥𝑎 − 𝑦𝑏 = 𝑥𝑏 + 𝑦𝑎

Lecture 4
(05/18)But if we already have 𝐹0𝐺0 and 𝐹1𝐺1, we can use Karatsuba’s identity to instead calculate

(𝐹0 + 𝐹1)(𝐺0 + 𝐺1) − 𝐹0𝐺0 − 𝐹1𝐺1 = 𝐹0𝐺1 + 𝐹1𝐺0. That is, we will calculate:

𝐻 = (𝐹0 + 𝐹1𝑥𝑛/2)(𝐺0 + 𝐺1𝑥𝑛/2)
= 𝐹0𝐺0 + ((𝐹0 + 𝐹1)(𝐺0 + 𝐺1) − 𝐹0𝐺0 − 𝐹1𝐺1)𝑥𝑛/2 + 𝐹1𝐺1𝑥𝑛

This means we only need to make 3 recursive calls instead of 4.

Then, 𝑇 (𝑛) = 3𝑇 (𝑛/2) + Θ(𝑛) ∈ Θ(𝑛lg 3) which is an improvement.

9
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Based on this observation, Toom–Cook created a family of algorithms that for 𝑘 ≥ 2 make 2𝑘 − 1
recursive calls in size 𝑛/𝑘, i.e., 𝑇 (𝑛) ∈ Θ(𝑛log𝑘(2𝑘−1)) which gets arbitrarily close to linear (but with
increasingly massive constants).

If 𝐹, 𝐺 ∈ ℂ[𝑥], then we can use FFT to get 𝑇 (𝑛) = 2𝑇 (𝑛/2) + Θ(𝑛) ∈ Θ(𝑛 log 𝑛) time.

Problem 2.1.6 (matrix multiplication)
Given 𝐴 = [𝑎𝑖,𝑗] ∈ 𝑀𝑛×𝑛 and 𝐵 = [𝑏𝑗,𝑘] ∈ 𝑀𝑛×𝑛, calculate 𝐶 = 𝐴𝐵.

The naive algorithm takes inputs of size Θ(𝑛2) in Θ(𝑛3) time.

Consider instead breaking into block matrices: 𝐴 = (𝐴1,1 𝐴2,2
𝐴2,1 𝐴2,2

) and 𝐵 = (𝐵1,1 𝐵2,2
𝐵2,1 𝐵2,2

).

Then, 𝐶 = (𝐴1,1𝐵1,1 + 𝐴1,2𝐵2,1 𝐴1,1𝐵1,2 + 𝐴1,2𝐵2,2
𝐴2,1𝐵1,1 + 𝐴2,2𝐵2,1 𝐴2,1𝐵1,2 + 𝐴2,2𝐵2,2

)

This makes 8 recursive calls of size 𝑛/2 and Θ(𝑛2) additions, which resolves to Θ(𝑛3) (no improve-
ment). However, due to Strassen, we can reduce this to 7, giving Θ(𝑛lg 7) time.

We can generalize to do 𝑘 multiplications of ℓ × ℓ matrices in Θ(𝑛logℓ 𝑘) time and 𝑘 multiplications
of ℓ × 𝑚 by 𝑚 × 𝑝 in Θ(𝑛3 logℓ𝑚𝑝 𝑘) time.

Problem 2.1.7 (closest pairs)
Given 𝑛 distinct points (𝑥𝑖, 𝑦𝑖), find a pair (𝑖, 𝑗) that minimizes the distance

𝑑𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

Equivalently, minimize 𝑑2
𝑖,𝑗 = (𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2.

Separate the space of points into 𝐿 and 𝑅 halfspaces based on the median 𝑥 value. The closest pair
is either entirely in 𝐿, entirely in 𝑅, or transverse.

We can recursively find minimum distances 𝛿𝐿 and 𝛿𝑅. Then, if we let 𝛿 = min{𝛿𝐿, 𝛿𝑅}, any closer
transverse points must be within 𝛿 units of the median 𝑥 value.

Now, if we start from the bottom point 𝑃 ∈ 𝐿 by 𝑦-value in that band, we only have to compare
𝑃 with points 𝑄 ∈ 𝑅 with 𝑦𝑃 ≤ 𝑦𝑄 < 𝑦𝑃 + 𝛿.

We can only have a maximum of 8 points inside the 2𝛿 × 𝛿 rectangle of possible 𝑄 points, because
the points must be at least 𝛿 apart.

Therefore, we are doing Θ(1) work for each 𝑃, so we do Θ(𝑛) work to find transverse pairs.

For this to work, we must first sort the points by 𝑥 and by 𝑦 (in 𝑂(𝑛 log 𝑛) time). We can find
the median in 𝑂(1) time. We split the sorted points in 𝑂(𝑛) time for the two recursive calls and
find the 𝛿 band in 𝑂(𝑛) time. Again, it takes 𝑂(𝑛) time to find transverse pairs. Therefore,
𝑇 (𝑛) = 2𝑇 (𝑛/2) + 𝑂(𝑛) = 𝑂(𝑛 log 𝑛).

10
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Problem 2.1.8 (selection)
Given 𝐴[0..𝑛 − 1], find the entry that would be at index 𝑘 if 𝐴 were sorted.

Recall from CS 240 that selection by sorting takes 𝑂(𝑛 log 𝑛) time or 𝑂(𝑛) randomized expected
time using QuickSelect(𝐴, 𝑘):

Algorithm 2.1.9 QuickSelect(𝐴, 𝑘)
1: 𝑝 ← ChoosePivot(𝐴)
2: 𝑖 ← Partition(𝐴, 𝑝) ▷ 𝑖 is the correct index of 𝑝
3: if 𝑖 = 𝑘 then return 𝐴[𝑖]
4: else if 𝑖 > 𝑘 then return QuickSelect(𝐴[0..𝑖 − 1], 𝑘)
5: else return QuickSelect(𝐴[𝑖 + 1..𝑛 − 1], 𝑘 − 𝑖 − 1)

Consider splitting 𝐴 into groups 𝐺𝑖 of size 5. Then, find the medians 𝑚𝑖 of each group. We can
choose the pivot 𝑝 as the median of medians:

𝑛/2 𝑛
∗ ∗ ⋯ ∗ ⋯ ∗ ∗≥ ≥ ≥ ≥ ≥ ≥ ≥

∗ ∗ ⋯ ∗ ⋯ ∗ ∗≥ ≥ ≥ ≥ ≥ ≥ ≥

𝑚1 ≥ 𝑚2 ≥ ⋯ ≥ 𝑝 ≥ ⋯ ≥ 𝑚𝑛/5−1 ≥ 𝑚𝑛/5
≥ ≥ ≥ ≥ ≥ ≥ ≥

∗ ∗ ⋯ ∗ ⋯ ∗ ∗≥ ≥ ≥ ≥ ≥ ≥ ≥

∗ ∗ ⋯ ∗ ⋯ ∗ ∗

Then, we are guaranteed to have 3𝑛/10 elements above and below 𝑝 = 𝐴[𝑖], so the recursive calls
to 𝐴[0..𝑖 − 1] and 𝐴[𝑖 + 1..𝑛 − 1] have size at most 7𝑛/10 (with equality when 𝑖 is exactly 3𝑛/10 or
7𝑛/10).

Therefore, 𝑇 (𝑛) ≤ 𝑇 (𝑛/5) + 𝑇 (7𝑛/10) + 𝑂(𝑛).
Lecture 5
(05/25)Claim 2.1.10. 𝑇 (𝑛/5) + 𝑇 (7𝑛/10) + 𝑂(𝑛) ∈ 𝑂(𝑛)

Proof. Proceed by induction. Note that 𝑇 (𝑛) ≤ {
𝑂(1) 𝑛 < 120
𝑇 (𝑛

5 ) + 𝑇 ( 7
10𝑛 + 6) + 𝑂(𝑛) 𝑛 ≥ 120

We will show that 𝑇 (𝑛) ≤ 𝑐𝑛 for large enough 𝑐 and all 𝑛 > 0. We know that there exists a
sufficiently large 𝑐 such that 𝑇 (𝑛) ≤ 𝑐𝑛 for 𝑛 < 120 because 𝑇 (𝑛) is just 𝑂(1) ⊊ 𝑂(𝑛).

Choose a constant 𝑎 to write 𝑂(𝑛) as 𝑎𝑛.

11



CS 341 Spring 2023: Lecture Notes James Ah Yong

Suppose 𝑇 (𝑚) ∈ 𝑂(𝑚) for all 0 < 𝑚 < 𝑛. Then,

𝑇 (𝑛) ≤
𝑐𝑛
5 + 𝑐(

7𝑛
10 + 6) + 𝑎𝑛

≤ 𝑐
𝑛
5 + 𝑐

7𝑛
10 + 6𝑐 + 𝑎𝑛

= 9𝑐
𝑛
10 + 6𝑐 + 𝑎𝑛

= 𝑐𝑛 + (−𝑐
𝑛
10 + 6𝑐 + 𝑎𝑛)

We can show that the latter term is non-positive:

−𝑐
𝑛
10 + 6𝑐 + 𝑎𝑛 ≤ 0 ⟺ 𝑐(6 −

𝑛
10) + 𝑎𝑛 ≤ 0

⟺ 𝑐(6 −
𝑛
10) ≤ −𝑎𝑛

⟺ 𝑐(
𝑛
10 − 6) ≥ 𝑎𝑛

⟺ 𝑐 ≥ 10𝑎
𝑛

𝑛 − 60

Now, if 𝑛
𝑛−60 ≤ 2, i.e., 𝑛 ≥ 120, then we can say that 𝑐 ≥ 20𝑎.

Therefore, we can say that 𝑇 (𝑛) ≤ 𝑐𝑛, i.e., 𝑇 (𝑛) ∈ 𝑂(𝑛).

Example 2.1.11. What does 𝑇 (𝑛) = 𝑇 (2
3𝑛) + 𝑇 (𝑛

3 ) + 𝑛 resolve to?

Solution. Notice that if we draw a tree, each layer sums to 𝑛 (this makes sense inductively since we
pass 2

3 of 𝑛 to the left and 1
3 of 𝑛 to the right). There will be 𝑂(log3/2 𝑛) layers in the tree, so it

should resolve to 𝑂(𝑛 log 𝑛).

12



Chapter 3

Graph Algorithms

3.1 Graph Theory Review

Recall graph theory from MATH 239, specifically: ms

Definition 3.1.1 (graph)
A graph 𝐺 is a pair (𝑉 , 𝐸) where 𝑉 is a finite set of verticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesverticesvertices and 𝐸 is a set of unordered pairs
of distinct vertices, called edgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedgesedges. By convention, we write 𝑛 = |𝑉| and 𝑚 = |𝐸|.

Now, we can define some structures on a graph:

Definition 3.1.2 (adjacency list)
An array 𝐴[1..𝑛] such that 𝐴[𝑣] is a linked list containing all edges connected to 𝑣. This contains
2𝑚 list cells with total size Θ(𝑛 + 𝑚) but takes more than 𝑂(1) time to test if an edge exists.

Definition 3.1.3 (adjacency matrix)
A matrix 𝑀 ∈ 𝑀𝑛×𝑛({0, 1}) such that 𝑀[𝑣, 𝑤] = 1 if and only if {𝑣, 𝑤} ∈ 𝐸. Size is Θ(𝑛2) but
testing if an edge exists is 𝑂(1).

Example 3.1.4. Given the graph
1

5

2

4
3 , the adjacency list is:

1 → 2 → 5
2 → 1 → 3 → 4 → 5
3 → 2 → 4
4 → 2 → 3 → 5
5 → 1 → 2 → 4

13
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and the adjacency matrix is

𝑀 =
⎡
⎢
⎢
⎢
⎣

0 1 0 0 1
1 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 1 0 1 0

⎤
⎥
⎥
⎥
⎦

Definition 3.1.5 (graph terminology)
We also recall some terms from MATH 239:

• A pathpathpathpathpathpathpathpathpathpathpathpathpathpathpathpathpath is a sequence of vertices 𝑣1, … , 𝑣𝑘 such that {𝑣𝑖, 𝑣𝑖+1} ∈ 𝐸 for all 𝑖. If a path from
𝑣 to 𝑤 exists, we write 𝑣 𝑤.

• A connected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graphconnected graph has 𝑣 𝑤 for all 𝑣, 𝑤 ∈ 𝑉.
• A cyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecyclecycle is a path 𝑣 𝑣 of length at least 3 with all elements pairwise distinct.
• A treetreetreetreetreetreetreetreetreetreetreetreetreetreetreetreetree is a graph with no cycles.
• A rooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted treerooted tree is a tree with a vertex chosen to be the rootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootroot.
• A subgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraphsubgraph of 𝐺 = (𝑉 , 𝐸) is a graph 𝐺′ = (𝑉 ′, 𝐸′) where 𝑉 ′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸, and 𝑢, 𝑣 ∈ 𝑉 ′

for all 𝑢𝑣 ∈ 𝐸′.
• A connected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected componentconnected component of 𝐺 is a connected subgraph of 𝐺 that is not a subset of any

other connected subgraph.

3.2 Breadth-First Search

Problem 3.2.1
Search a graph 𝐺 starting from a vertex 𝑠 in order of distance from 𝑠.

Algorithm 3.2.2 BFS(𝐺, 𝑠)
1: let 𝑄 be an empty queue
2: let visited be a boolean array of size 𝑛 with all entries set to ⊥
3: enqueue(𝑠, 𝑄)
4: visited[𝑠] ← ⊤
5: while 𝑄 is not empty do
6: 𝑣 ← dequeue(𝑄)
7: for 𝑤 neighbours of 𝑣 do
8: if visited[𝑤] = ⊥ then
9: enqueue(𝑤, 𝑄)

10: visited[𝑤] ← ⊤

Each vertex is enqueued at most once and dequeued at most once, which has cost 𝑂(𝑛). Therefore,
each adjacency list is read at most once. The cost for the for loop is 𝑂(∑ deg 𝑣) = 𝑂(𝑚) by the
Handshaking Lemma.

Therefore, the total cost of BFS is 𝑂(𝑛 + 𝑚).

14
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Lemma 3.2.3
visited[𝑣] is true for some vertex 𝑣 if and only if 𝑠 𝑣 in 𝐺.

Proof. Let 𝑠 = 𝑣0, … , 𝑣𝐾 be the vertices with visited𝑣𝑖 = ⊤, in order of discovery. By induction, we
show that 𝑠 𝑣𝑖.

For 𝑖 = 0, 𝑣0 = 𝑠, so trivially 𝑠 𝑠.

Otherwise, suppose 𝑠 𝑣𝑗 for all 𝑗 < 𝑖. We are currently in the for loop for some vertex 𝑤 already
visited. Therefore, by assumption, 𝑠 𝑤. But since 𝑣𝑖 is a neighbour of 𝑤, 𝑠 𝑣𝑖.

Lecture 6
(05/30)Exercise 3.2.4. For a connected graph, 𝑚 ≥ 𝑛 − 1.

Proof. Recall from MATH 239 that if a graph 𝐺 is connected, then it has a spanning tree 𝑇. The
spanning tree of 𝑛 vertices has exactly 𝑛 − 1 edges. Then, since the spanning tree is a subgraph of
𝐺, 𝑚 ≥ |𝐸(𝑇 )| = 𝑛 − 1, as desired.

3.3 Shortest Path by BFS

Problem 3.3.1
What is the shortest path from 𝑠 to 𝑣 in 𝐺?

Consider now how we can keep track of parents (predecessors) and levels (depths):

Algorithm 3.3.2 BFS(𝐺, 𝑠) with parents and levels
1: let 𝑄 be an empty queue
2: let parent be an array of size 𝑛 with all entries set to ⊥
3: let level be an array of size 𝑛 with all entries set to ∞
4: enqueue(𝑠, 𝑄)
5: parent[𝑠] ← 𝑠
6: level[𝑠] ← 0
7: while 𝑄 is not empty do
8: 𝑣 ← dequeue(𝑄)
9: for 𝑤 neighbours of 𝑣 do

10: if parent[𝑤] = ⊥ then
11: enqueue(𝑤, 𝑄)
12: parent[𝑤] ← 𝑣
13: level[𝑤] ← level[𝑣] + 1

We can define a BFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS treeBFS tree 𝑇 as the subgraph of 𝐺 made of all 𝑤 such that parent[𝑤] ≠ ⊥ and all
edges {𝑤, parent[𝑤]} between those vertices.

15
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Claim 3.3.3. The BFS tree 𝑇 is in fact a tree.

Proof. Proceed by induction on the vertices for which parent[𝑣] is not ⊥.

When we set parent[𝑠] ← 𝑠, we have one vertex and no edges.

Suppose 𝑇 is a tree and we are adding parent[𝑤] ← 𝑣. Then, 𝑣 must have already been in 𝑇 because
it came from 𝑄, so we are extending 𝑇 by adding (1) the vertex 𝑤 and (2) the edge {𝑣, 𝑤}. This
does not create a cycle because parent[𝑤] = ⊥, so 𝑇 remains a tree.

Therefore, by induction, at the end of BFS, 𝑇 is a tree.

Claim 3.3.4. The levels in the queue 𝑄 are non-decreasing.

Proof. Exercise (TODO).

Claim 3.3.5. For all vertices 𝑢 and 𝑣, if there is an edge {𝑢, 𝑣}, then level[𝑣] ≤ level[𝑢] + 1.

Proof. Suppose that 𝑢 and 𝑣 are adjacent and visited.

If we dequeue 𝑣 before 𝑢, then level[𝑣] ≤ level[𝑢] + 1 by Claim 3.3.4.

If 𝑢 is dequeued before 𝑣, then the parent of 𝑣 is either 𝑢 or something else before 𝑢. This is because
while visiting 𝑢, we must either have enqueued 𝑣 or already visited 𝑣. Therefore, 𝑣’s parent must
be at or before 𝑢. Then, by Claim 3.3.4, level[parent[𝑣]] ≤ level[𝑢].

That is, level[𝑣] = level[parent[𝑣]] + 1 ≤ level[𝑢] + 1.

Lemma 3.3.6
For all 𝑣 in 𝐺, there is a path 𝑠  𝑣 in 𝐺 if and only if there is a path 𝑠  𝑣 in 𝑇. If so, the
path in 𝑇 is a shortest path and level[𝑣] is the distance from 𝑠 to 𝑡.

Proof. By Lemma 3.2.3, 𝑠  𝐺 𝑣 if and only if 𝑣 is visited. That is, all such 𝑣 are in 𝑇. But 𝑇 is
connected as a tree, therefore 𝑠 𝐺 𝑣 ⟺ 𝑠 𝑇 𝑣.

Let 𝛿 be the distance from 𝑠 to 𝑣. We must show level[𝑣] ≤ 𝛿 and 𝛿 ≤ level[𝑣].

Trivially, 𝛿 ≤ level[𝑣] because level[𝑣] is the length of the path 𝑠 𝑇 𝑣.

We will prove by induction that for all 𝑖, if there is a path of length 𝑖 from 𝑠 to 𝑣, then level[𝑣] ≤ 𝑖.
For the base case 𝑖 = 0, there are no such paths.

Suppose this is true for 𝑖 − 1, and consider a path 𝑃 = 𝑠 ⋯ 𝑢𝑣 with length 𝑖. Then, we can
decompose 𝑃 as 𝑃 ′ = 𝑠 ⋯ 𝑢 and 𝑢𝑣. But 𝑃 ′ has length 𝑖 − 1, so level[𝑢] ≤ 𝑖 − 1. Then, by
Claim 3.3.5, level[𝑣] ≤ level[𝑢] + 1 ≤ 𝑖.

Therefore, since this is true for all 𝑖, it is true for 𝑖 = 𝛿.

Finally, we have that 𝛿 = level[𝑣] and 𝑠 𝑇 𝑣 is a shortest path.
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3.4 Bipartiteness by BFS

Definition 3.4.1 (bipartite)
A graph 𝐺 = (𝑉 , 𝐸) is bipartite if there exists a partition 𝑈1 ⊔ 𝑈2 = 𝑉 such that for every
𝑢𝑣 ∈ 𝐸, 𝑢 ∈ 𝑈1 and 𝑣 ∈ 𝑈2 (or vice versa).

Problem 3.4.2
Is 𝐺 bipartite?

Lemma 3.4.3
Suppose 𝐺 is connected and we run BFS(𝐺, 𝑠) for some 𝑠. Let 𝑉1 and 𝑉2 be vertex sets with
odd and even level respectively. Then, 𝐺 is bipartite if and only if all edges have one end in
𝑉1 and one end in 𝑉2.

Proof. Suppose all edges have one end in 𝑉1 and one end in 𝑉2. Then, 𝐺 is bipartite by definition.
Lecture 7
(06/01)Suppose 𝐺 has bipartition (𝑊1, 𝑊2). Then, wlog say that 𝑠 ∈ 𝑊2. Since 𝑠 𝑣 for all 𝑣 ∈ 𝑉 and

all paths alternate between 𝑊1 and 𝑊2, odd depth vertices will fall in 𝑊1 = 𝑉1 and even ones in
𝑊2 = 𝑉2.

This is nice because we can test in 𝑂(𝑚) time.

3.5 Depth-First Search

Analogous to BFS, but we use a stack (implicitly with recursion, or explicitly with a stack data
structure) to follow neighbours until we cannot.

Algorithm 3.5.1 DFS(𝐺)
Require: 𝐺 is a graph on 𝑛 vertices given by adjacency lists

1: visited ← array of size 𝑛 initialized to ⊥
2: procedure explore(𝑣)
3: visited[𝑣] ← ⊤
4: for 𝑤 neighbour of 𝑣 do
5: if visited[𝑣] = ⊥ then
6: explore(𝑣)
7: for 𝑣 ∈ 𝐺 do
8: if visited[𝑣] = ⊥ then
9: explore(𝑣)
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Lemma 3.5.2 (white path lemma)
When we start exploring 𝑣, any 𝑤 connected to 𝑣 by an unvisited path will be visited during
explore(𝑣).

Proof. Let 𝑣0 = 𝑣 ⋯ 𝑣𝑘 = 𝑤 be a path 𝑣  𝑤 with 𝑣1, … , 𝑣𝑘 all not visited. We prove all 𝑣𝑖 are
visited before explore(𝑣) is finished.

Obviously holds for 𝑖 = 0. Suppose it holds for 𝑖 < 𝑘. When we visit 𝑣𝑖, explore(𝑣) is not finished
and 𝑣𝑖+1 is one of the neighbours.

If visited[𝑣𝑖+1] is already true (because 𝑣 𝑣𝑖+1 by some other path), we are done. Otherwise, we
are going to visit it now, which is before explore(𝑣) is finished.

Therefore, 𝑣𝑖+1 is visited during explore(𝑣), as desired.

Corollary 3.5.3. After we call explore at 𝑣1, … , 𝑣𝑘, we have visited exactly the connected
components containing 𝑣1, … , 𝑣𝑘.

Note: we cannot find shortest paths using a DFS tree without customization. For example, the
DFS tree for a cycle will be a path even though the root and leaf are adjacent.

The runtime is still 𝑂(𝑛 + 𝑚).

Definition 3.5.4
Let 𝑇1, … , 𝑇𝑘 be a DFS forest with vertices 𝑢 and 𝑣. Then, 𝑢 is an ancestorancestorancestorancestorancestorancestorancestorancestorancestorancestorancestorancestorancestorancestorancestorancestorancestor of 𝑣 if 𝑢, 𝑣 ∈ 𝑇𝑖
for some 𝑖 and 𝑢 is on the path from the root of 𝑇𝑖 to 𝑣. Equivalently, we write that 𝑣 is a
descendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendantdescendant of 𝑢.

Lemma 3.5.5 (key property)
All edges in 𝐺 connect a vertex to one of its descendants or ancestors.

Proof. Let {𝑣, 𝑤} be an edge and suppose wlog we visit 𝑣 first.

Then, when we visit 𝑣, (𝑣, 𝑤) is an unvisited path 𝑣  𝑤, so by the white path lemma, 𝑤 must
become a descendant of 𝑣.

Definition 3.5.6 (back edge)
An edge in 𝐺 connecting an ancestor to a descendant which is not in the BFS forest.

Corollary 3.5.7. All edges are either tree edges or back edges.

Proof. Equivalent statement of the 3.5.5.
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We can extend DFS with start and finish arrays:

Algorithm 3.5.8 DFS(𝐺) with timing
Require: 𝐺 is a graph on 𝑛 vertices given by adjacency lists

1: visited ← array of size 𝑛 initialized to ⊥
2: start, finish ← array of size 𝑛
3: 𝑡 ← 1
4: procedure explore(𝑣)
5: visited[𝑣] ← ⊤
6: start[𝑣] ← 𝑡; 𝑡++
7: for 𝑤 neighbour of 𝑣 do
8: if visited[𝑣] = ⊥ then
9: explore(𝑣)

10: finish[𝑣] ← 𝑡; 𝑡++
11: for 𝑣 ∈ 𝐺 do
12: if visited[𝑣] = ⊥ then
13: explore(𝑣)

For example, we can draw a graph with [start[𝑣], finish[𝑣]] labelled:

𝑢[2,7]
𝑠

[1,8]

𝑣
[3,4]

𝑤 [5,6]

𝑠 [1,8]

𝑢 [2,7]

𝑤 [5,6]𝑣 [3,4]

Notice that the intervals shrink with depth and follow a structure similar to the well-formed paren-
thesis problem. We can in fact prove:

Lemma 3.5.9 (parentheses theorem)
If start[𝑢] < start[𝑣], then either finish[𝑢] < start[𝑣] or finish[𝑢] < finish[𝑣].

Proof. If start[𝑢] < start[𝑣], we push 𝑣 on the stack while 𝑢 is still there, so we pop 𝑣 before we pop
𝑢 since stacks are FIFO.

3.6 Cut Vertices by DFS

Lecture 8
(06/06)We define a cut vertex analogous to a bridge edge from MATH 239.

Definition 3.6.1 (cut vertex)
Given a connected graph 𝐺, a vertex 𝑣 ∈ 𝑉 (𝐺) is a cut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertexcut vertex (or articulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation pointarticulation point) if removing
𝑣 and its edges makes 𝐺 disconnected.
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Example 3.6.2. has a cut vertex in red.

Problem 3.6.3
Which of the vertices in 𝐺 are cut vertices?

Consider a rooted DFS tree 𝑇 with known parent and level.

Proposition 3.6.4
The root 𝑠 is a cut vertex if and only if it has more than one child.

Proof. Suppose 𝑠 has one child 𝑣. Then, 𝑇 − 𝑠 is a rooted DFS tree with root 𝑣 (i.e., it remains
connected).

Suppose 𝑠 has subtrees 𝑆1, … , 𝑆𝑘. Let 𝑢 ∈ 𝑆𝑖 and 𝑣 ∈ 𝑆𝑗 for 𝑖 ≠ 𝑗. Then, there does not exist a
path 𝑢  𝑣 in 𝑇 − 𝑠 by the key property since it would involve a non-tree, non-back cross edge.
Therefore, the subtrees are disconnected in 𝑇 − 𝑠.

Proposition 3.6.5
Let 𝑎(𝑣) = min{level[𝑤] ∶ 𝑣𝑤 ∈ 𝐸(𝐺)} and 𝑚(𝑣) = min{𝑎(𝑤) ∶ 𝑤 descendant of 𝑣}. Any
non-root vertex 𝑣 is a cut vertex if and only if it has a child 𝑤 with 𝑚(𝑤) ≥ level[𝑣].

Proof. Let 𝑤 be a child of 𝑣 with subtrees 𝑇𝑤 and 𝑇𝑣, respectively.

Suppose 𝑚(𝑤) < level[𝑣] and we have removed 𝑣. Then, there is a vertex 𝑤′ in 𝑇𝑤 to some vertex
𝑣′ above 𝑣. That is, for any vertex 𝑢 ∈ 𝑉 (𝑇𝑤), we have that 𝑢 𝑤 𝑤′  𝑣′  𝑠 and 𝑇𝑤 is still
connected.

Therefore, for 𝑣 to be a cut vertex, we must have 𝑚(𝑤) ≥ level[𝑣].

Suppose 𝑚(𝑤) ≥ level[𝑣]. Then, by the key property, all edges from 𝑇𝑤 end in 𝑇𝑣. They are either
the tree edge 𝑣𝑤 or a back edge going to an ancestor at or below 𝑣. Therefore, removing 𝑣 will
cause 𝑇𝑤 to be disconnected and 𝑣 is a cut vertex.

Therefore, we can solve the cut vertex problem by calculating 𝑚(𝑣) for every vertex.

We can compute 𝑎(𝑣) in 𝑂(deg 𝑣). Notice that if 𝑣 has children 𝑤1, … , 𝑤𝑘, then 𝑚(𝑣) = min{𝑎(𝑣), 𝑚(𝑤1), … , 𝑚(𝑤𝑘)}.
Then, if we have the 𝑚 of the children, we get 𝑚(𝑣) in 𝑂(deg 𝑣).

By traversing the DFS tree, we get every 𝑚(𝑣) in 𝑂(𝑛 + 𝑚) = 𝑂(𝑚) (since 𝐺 connected). Then,
we can test the cut vertex condition for each vertex 𝑣 and each of its children in 𝑂(deg 𝑣).

Therefore, we can test all vertices in 𝑂(𝑚) time.

20



CS 341 Spring 2023: Lecture Notes James Ah Yong

Algorithm 3.6.6 FindCutVertices(𝐺, 𝑠)
1: 𝑇 ← DFS(𝐺, 𝑠) ▷ DFS tree for 𝐺 with root and level
2: 𝑎, 𝑚 ← arrays of size |𝑉 (𝐺)| initialized to ∞
3: cut ← array of size |𝑉 (𝐺)| initialized to ⊥
4: procedure Explore(𝑣)
5: for 𝑤 child of 𝑣 do
6: 𝑎[𝑣] ← min{𝑎[𝑣], level[𝑤]}
7: Explore(w)
8: 𝑚[𝑣] ← min{𝑚[𝑣], 𝑎[𝑤]}
9: 𝑚[𝑣] ← min{𝑎[𝑣], 𝑚[𝑣]}

10: for 𝑤 child of 𝑣 do
11: if 𝑚[𝑤] ≥ 𝑇 .level[𝑣] then cut[𝑣] ← ⊤
12: Explore(𝑇 .root)

3.7 Directed Graphs

We can define a directed graph similar to an ordinary graph:

Definition 3.7.1 (directed graph)
A graph 𝐺 = (𝑉 , 𝐸) where edges are ordered pairs (𝑢, 𝑣).

If 𝐺 has no cycles, it is a directed acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graphdirected acyclic graph (DAG).

Note that we allow loops (𝑣, 𝑣). Paths and cycles have the ordinary meaning.

Definition 3.7.2 (topological ordering)
An ordering < of 𝑉 in a DAG such that (𝑎, 𝑏) ∈ 𝐸 implies 𝑎 < 𝑏.

Lecture 9
(06/08)Proposition 3.7.3

A directed graph is acyclic if and only if there is a topological ordering on it.

Proof. The backwards direction is clear.

Assume we have a DAG. There exists at least one vertex with in-degree 0, because otherwise there
would be a cycle. We can inductively remove the vertex with in-degree 0 to get a topological
ordering.

In fact, if run DFS and we order 𝑉 with the ordering 𝑣 < 𝑤 ⟺ finish[𝑤] < finish[𝑣], then we can
show that < is a topological order.

Suppose that (𝑣, 𝑤) ∈ 𝐸.

If we discover 𝑣 before 𝑤, then 𝑤 is a descendant of 𝑣 by the white path lemma so we must finish
exploring it before we finish 𝑣.
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Otherwise, if we discover 𝑤 before 𝑣, then there cannot exist a path 𝑤  𝑣 because otherwise
𝑤 𝑣𝑤 is a cycle. Therefore, finish[𝑤] < start[𝑣] < finish[𝑣].

Therefore, < is a topological order whose existence is necessary and sufficient for a DAG.

Definition 3.7.4 (strong connectivity)
A directed graph 𝐺 is strongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connectedstrongly connected if for all 𝑣 and 𝑤 in 𝐺, there is a path 𝑣  𝑤 (and
𝑤 𝑣)

Corollary 3.7.5. 𝐺 is strongly connected if and only if there exists 𝑠 such that for all 𝑤 there
exist paths 𝑠 𝑤 and 𝑤 𝑠.

Proof. The forwards direction is trivial. In the backwards direction, notice that for any two vertices
𝑣 and 𝑤, we have 𝑣 𝑠 𝑤 and 𝑤 𝑠 𝑣.

Problem 3.7.6
How can we test if a graph is strongly connected?

Solution. Call explore twice, starting from the same vertex 𝑠. On the second run, reverse all the
edges. Then, if every vertex 𝑣 is explored in both runs, we know that 𝑠  𝑣 and 𝑣  𝑠, i.e., the
graph is strongly connected.

We can reverse the edges using an adjacency list in 𝑂(𝑛 + 𝑚) time, so this algorithm runs in
𝑂(𝑛 + 𝑚) time.

Proposition 3.7.7
Contracting the strongly connected components of a directed graph forms a DAG.

Proof. Suppose not. Then there exists a cycle of strongly connected components. However, this
means that any vertex from any of these can be reached from any other. Therefore, the strongly
connected component is not maximal.

Lecture 10
(06/13)Problem 3.7.8

What are the strongly connected components and their respective DAG?

This has time complexity 𝑂(𝑛 + 𝑚).

Proposition 3.7.10
For any vertices 𝑣 and 𝑤, tfae: 𝑣 and 𝑤 are in the same SCC; and 𝑣 and 𝑤 are in the same
DFS tree of 𝐺⊺ (sorted by decreasing finish time).
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Algorithm 3.7.9 Kosaraju’s algorithm for strongly connected components
1: procedure SCC(𝐺)
2: run DFS(𝐺) augmented with finish times
3: sort the vertices by decreasing finish time
4: run DFS(𝐺⊺)
5: return the trees in the DFS forest of 𝐺⊺

Proof. Suppose 𝑣, 𝑤 ∈ 𝐶 ∈ 𝑆𝐶𝐶(𝐺) and let 𝑠 be the first vertex visited in 𝐶. Then, 𝑠 𝑣 within
𝐶 and the path is white when visiting 𝑠 by supposition. By the white path lemma, 𝑣 will be in the
DFS tree. Likewise for 𝑤.

Suppose 𝑣 and 𝑤 are in a DFS tree 𝑇 for 𝐺⊺ rooted at 𝑠. That is, among the vertices in 𝑇, 𝑠 has
the highest finish time. Let 𝑡 ∈ 𝑇. As a descendent, 𝑠 𝐺⊺ 𝑡, so 𝑡 𝐺 𝑠.

Claim that 𝑡 descends from 𝑠 in 𝐺, so we get a path 𝑠 𝐺 𝑡.

Proceed by structural induction on 𝑡 and its children. Let 𝑢 be a child of 𝑡 in 𝑇. Suppose start[𝑠] ≤
start[𝑡] < finish[𝑡] ≤ finish[𝑠]. Since finish[𝑢] < finish[𝑠], we have by the parentheses theorem that
either [𝑠 (𝑢)] or (𝑢) [𝑠]. But the second option is impossible because if 𝑡𝑢 ∈ 𝐸(𝑇 ) ⊆ 𝐸(𝐺⊺), then
𝑢𝑡 ∈ 𝐸(𝐺), which means that 𝑢 𝑡 and by the white path lemma, 𝑡 should be a descendant of 𝑢,
not 𝑠. Therefore, 𝑢 is a descendant of 𝑠, as desired.

Finally, because 𝑠 𝐺 𝑡 and 𝑡 𝐺 𝑠, 𝑡 is in the strongly connected component of 𝑠.

Problem 3.7.11
Does a graph 𝐺 contain a Hamiltonian path (i.e., a path 𝑃 with 𝑃(𝑉 ) = 𝑉)?

For an undirected graph 𝐺, this is one of the canonical NP-complete problems.

For a DAG 𝐺, we can do this in linear time with a topological ordering.

Proposition 3.7.12
A DAG 𝐺 has a Hamiltonian path if and only if it has a topological ordering 𝑣1 < ⋯ < 𝑣𝑘 such
that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸(𝐺) for all 𝑖.

Proof. Let 𝐺 have a Hamiltonian path 𝑃 = 𝑣1 ⋯ 𝑣𝑘. Define an ordering 𝑣1 < ⋯ < 𝑣𝑘. Suppose
𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺). If 𝑖 > 𝑗, then 𝑣𝑖𝑣𝑗𝑣𝑗+1 ⋯ 𝑣𝑖 is a cycle. However, 𝐺 is a DAG, so we must have 𝑖 < 𝑗.
Therefore, < is a topological ordering as desired.

Suppose 𝐺 has a topological ordering 𝑣1 < ⋯ < 𝑣𝑘 with 𝑣𝑖𝑣𝑖+1 ∈ 𝐸(𝐺) for all 𝑖. Then, we
immediately get a Hamiltonian path given by 𝑣1 ⋯ 𝑣𝑘.
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Chapter 4

Greedy Algorithms

4.1 Introduction

Lecture 11
(06/15)Suppose we are solving a combinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimizationcombinatorial optimization problem, i.e., a problem with a large (but

finite) domain 𝒟 such that we are trying to find an optimal solution 𝐸 ∈ 𝒟 that maximizes/mini-
mizes some sort of cost function.

We will build 𝐸 step-by-step by taking the locally best solution. Usually, it is very hard to prove
correctness/optimality but easy to find a counterexample.

For example, recall the Huffman encoding from CS 240. We build the binary code tree by joining
trees with the least frequencies. This actually minimizes the length of the encoding.

4.2 Basic Greedy Examples

Problem 4.2.1 (interval scheduling)
Suppose we have 𝑛 intervals [𝑠𝑖, 𝑓𝑖]. What is the subset of disjoint intervals with maximum
length?

We can show that a few naive greedy algorithms are wrong by drawing counterexamples:

• Choose min𝑖 𝑠𝑖:

• Choose min𝑖{𝑓𝑖 − 𝑠𝑖}:

• Choose minimum conflicts:

However, we can prove that the greedy algorithm taking the earliest finish time is optimal.
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Algorithm 4.2.2 IntervalScheduling(𝐼 = [[𝑠1, 𝑓1], … , [𝑠𝑛, 𝑓𝑛]])
1: 𝑆 ← ⌀
2: 𝐼 ← sort 𝐼 by finish time
3: for [𝑠𝑖, 𝑓𝑖] ∈ 𝐼 do
4: if [𝑠𝑖, 𝑓𝑖] has no conflicts in 𝑆 then
5: 𝑆 ← 𝑆 ∪ {[𝑠𝑖, 𝑓𝑖]}

Proposition 4.2.3
Suppose 𝑂 is optimal. Then, |𝑆| = |𝑂| where 𝑆 is generated by Algorithm 4.2.2.

Proof. Let 𝑖1, … , 𝑖𝑘 be the intervals in 𝑆 ordered by their addition and likewise 𝑗1, … , 𝑗𝑚 be the
intervals in 𝑂 ordered by increasing finish time.

We prove the claim that for all 𝑟 ≤ 𝑘, 𝑓𝑖𝑟
≤ 𝑓𝑗𝑟

. Proceed by induction on 𝑟.

For 𝑟 = 1 this is true since 𝑖1 is the interval with the earliest finish time.

Suppose 𝑟 > 1 and it is true for 𝑟 − 1. Then, 𝑓𝑖𝑟−1
≤ 𝑓𝑗𝑟−1

by assumption and 𝑓𝑗𝑟−1
< 𝑠𝑗𝑟

by the
order we set on 𝑂. Therefore, 𝑓𝑖𝑟−1

< 𝑠𝑗𝑟
.

That is, at the time the greedy algorithm chose 𝑖𝑟−1, 𝑗𝑟 was an option. Since the greedy algorithm
picks the earliest finish time, 𝑓𝑖𝑟

≤ 𝑓𝑗𝑟
.

Now, suppose for a contradiction that 𝑆 is not optimal, i.e., |𝑆| < |𝑂|. Then, there must be a 𝑗𝑘+1.
But by the above claim, 𝑓𝑖𝑘

≤ 𝑓𝑗𝑘
< 𝑠𝑗𝑘+1

. This means 𝑗𝑘+1 was an option for the greedy algorithm,
so it would not have stopped at 𝑖𝑘 and instead added 𝑗𝑘+1.

Therefore, 𝑆 must be optimal.

We call proofs of this kind, i.e., contradicting that greedy could not have chosen an optimal solution,
greedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays aheadgreedy stays ahead.

Lecture 12
(06/20)We can also greedily solve a similar problem:

Problem 4.2.4 (interval colouring)
Suppose we have 𝑛 intervals [𝑠𝑖, 𝑓𝑖]. Use the minimum number of colours to colour the intervals,
so that each interval gets one colour and any overlapping intervals get different colours.

Consider the algorithm:

Algorithm 4.2.5 IntervalColouring(𝐼 = [[𝑠1, 𝑓1], … , [𝑠𝑛, 𝑓𝑛]])
1: 𝑐 ← empty colouring
2: 𝐼 ← sort 𝐼 by start time
3: for [𝑠𝑖, 𝑓𝑖] ∈ 𝐼 do
4: 𝑐(𝑖) ← minimum 𝑐 such that there are no conflicts

which we do not bother analyzing the time complexity of. We show correctness:

25



CS 341 Spring 2023: Lecture Notes James Ah Yong

Proposition 4.2.6
Suppose that Algorithm 4.2.5 uses 𝑘 colours. There is no way to colour 𝐼 with 𝑘 − 1 colours.

Proof. Suppose interval ℓ is the first to use 𝑘. Then, the algorithm must have found 𝑘−1 overlapping
intervals with colours 1, … , 𝑘 − 1. Let these be intervals 𝑖1, … , 𝑖𝑘−1. By the initial sorting, we have
𝑠𝑖𝑗

< 𝑠ℓ for 𝑗 = 1, … , 𝑘 − 1. Also, since they overlap, we have 𝑓𝑖𝑗
> 𝑓ℓ. Therefore, 𝑠ℓ is a point with

𝑘 intervals, meaning that it is impossible to colour with 𝑘 − 1 colours.

Problem 4.2.7 (minimize total completion time)
Suppose we have 𝑛 jobs each requiring processing time 𝑝𝑖, and we are adding one job each step
(e.g., the first step runs just one job, the fifth step runs five jobs, the last step runs all jobs).
Order the jobs such that the total processing time is minimized.

The setup is a bit weird, so we can construct an example.

Example 4.2.8. For 𝑛 = 5 and p = [2, 8, 1, 10, 5], we can construct tables to find the total
processing time if we do not order the jobs and if we order the jobs by increasing processing
time:

2 8 1 10 5 Σ
2 2 2 2 2 10

8 8 8 8 24
1 1 1 3

10 10 20
5 5

2 10 11 21 26 70

1 2 5 8 10 Σ
1 1 1 1 1 5

2 2 2 2 8
5 5 5 15

8 8 16
10 10

1 3 8 16 26 54

to find that the total processing times are 70 and 54, respectively.

Proposition 4.2.9
The total processing time is minimized when 𝑒(𝑖) is a permutation of [𝑛] such that (𝑝𝑒(𝑖)) is
non-decreasing.

Proof. Suppose there is an optimal permutation 𝑒 that is not non-decreasing. That is, there exists
an 𝑖 such that 𝑝𝑒(𝑖) > 𝑝𝑒(𝑖+1).

The total processing time is:
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𝑒(1) 𝑒(2) … 𝑒(𝑖) 𝑒(𝑖 + 1) … 𝑒(𝑛) Σ
𝑝𝑒(1) 𝑝𝑒(1) 𝑝𝑒(1) 𝑝𝑒(1) 𝑝𝑒(1) 𝑛𝑝𝑒(1)

𝑝𝑒(2) 𝑝𝑒(2) 𝑝𝑒(2) 𝑝𝑒(2) (𝑛 − 1)𝑝𝑒(2)
⋮ ⋮ ⋮ ⋮

𝑝𝑒(𝑖) 𝑝𝑒(𝑖) 𝑝𝑒(𝑖) (𝑛 − 𝑖 + 1)𝑝𝑒(𝑖)
𝑝𝑒(𝑖+1) 𝑝𝑒(𝑖+1) (𝑛 − 𝑖)𝑝𝑒(𝑖+1)

⋮ ⋮
𝑝𝑒(𝑛) 𝑝𝑒(𝑛)

Suppose we swap 𝑒(𝑖) and 𝑒(𝑖 + 1). Then, we have removed one copy of 𝑝𝑒(𝑖) and added one copy
of 𝑝𝑒(𝑖+1). But by assumption, 𝑝𝑒(𝑖+1) − 𝑝𝑒(𝑖) < 0, so this swap decreases the total processing time,
and the solution was not optimal.

4.3 Shortest Paths: Dijkstra’s Algorithm

Recall that we can define a weight function on a graph. Lecture 13
(06/22)

Definition 4.3.1 (weight function)
Given a graph 𝐺 = (𝑉 , 𝐸), a function 𝑤 ∶ 𝐸 → ℝ. We call (𝐺, 𝑤) a weighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graphweighted graph.

Then, we define the weight for a path 𝑃 = 𝑣0 ⋯ 𝑣𝑘 by 𝑤(𝑃) = ∑𝑘
𝑖=1 𝑤(𝑣𝑖−1𝑣𝑖).

Remark 4.3.2. A shortest path exists in any directed weighted graph with no negative-weight
cycles.

Problem 4.3.3 (single-source shortest path)
Given 𝐺 = (𝑉 , 𝐸) with weight 𝑤 ∶ 𝐸 → ℝ≥0 and a source 𝑠 ∈ 𝑉, find a shortest path from 𝑠
to each 𝑣 ∈ 𝑉.

We denote the length of the shortest path 𝑠 𝑣 by 𝛿(𝑠, 𝑣).

Remark 4.3.4. If 𝑣0 ⋯ 𝑣𝑘 is a shortest path from 𝑣0 to 𝑣𝑘, then 𝑣0 ⋯ 𝑣𝑖 is a shortest path from
𝑣0 to 𝑣𝑖 for all 0 ≤ 𝑖 ≤ 𝑘.

Proof. Suppose not. Then, use the shorter path to get to 𝑣𝑖 and continue onward to 𝑣𝑘 to get a
shorter path to 𝑣𝑘.

Dijkstra’s algorithm is built on this observation.

For each vertex, we maintain an estimate of the distance 𝑑[𝑣] and a predecessor in that path estimate
𝜋[𝑣]. We start with all vertices in a set 𝑄 and pop vertices one at a time in order of 𝑑, adding them
to a set 𝐶. When a vertex moves from 𝑄 to 𝐶, update the distance estimates and predecessors of
its neighbours.
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Algorithm 4.3.5 Dijkstra(𝐺, 𝑤, 𝑠)
1: for each vertex 𝑣 ∈ 𝑉 do
2: 𝑑[𝑣] ← ∞
3: 𝜋[𝑣] ← ⊥
4: 𝑑[𝑠] ← 0
5: 𝐶 ← ⌀
6: 𝑄 ← 𝑉
7: while 𝑄 ≠ ⌀ do
8: 𝑢 ← ExtractMin(𝑄)
9: 𝐶 ← 𝐶 ∪ {𝑢}

10: for neighbours 𝑣 ∈ Adj[𝑢] do
11: if 𝑑[𝑣] > 𝑑[𝑢] + 𝑤(𝑢𝑣) then
12: 𝑑[𝑣] = 𝑑[𝑢] + 𝑤(𝑢𝑣)
13: 𝜋[𝑣] = 𝑢

Notice that we implement 𝑄 and 𝐶 as heaps since then we get time complexity 𝑂(|𝑉| log |𝑉| +
|𝐸| log |𝑉|) (for the extractions and the updates, respectively) instead of 𝑂(|𝑉|2 + |𝐸|) with arrays.

Lecture 14
(06/27)Claim now that Dijkstra’s is correct. Proceed by a greedy stays ahead proof.

Proposition 4.3.6
For each vertex 𝑣 ∈ 𝑉, 𝑑[𝑣] = 𝛿(𝑠, 𝑣) at the time 𝑣 is added to 𝐶.

Proof. Suppose for a contradiction that 𝑢 ∈ 𝑉 is the first vertex for which 𝑑[𝑢] ≠ 𝛿(𝑠, 𝑢) when it is
added to 𝐶. Denote the iteration when 𝑢 is added to 𝐶 as time 𝑡.

Let 𝑃 be a shortest path 𝑠 𝑢. Since 𝑠 ∈ 𝐶 and 𝑃 ∈ 𝑉 − 𝐶, there exists a pair of vertices 𝑥 ∈ 𝐶
and 𝑦 ∈ 𝑉 − 𝐶 with 𝑥𝑦 ∈ 𝑃. We claim that at time 𝑡, 𝑑[𝑦] = 𝛿(𝑠, 𝑦).

Since 𝑢 is the first vertex with 𝑑[𝑢] ≠ 𝛿(𝑠, 𝑢), for all vertices 𝑤 in 𝐶 at time 𝑡, 𝑑[𝑤] = 𝛿(𝑠, 𝑤). In
particular, 𝑑[𝑥] = 𝛿(𝑠, 𝑥). When 𝑥 was added to 𝐶, the edge 𝑥𝑦 was considered. By Remark 4.3.4,
since 𝑃 is a shortest path, the parts from 𝑠 to 𝑥 and 𝑦 are also shortest paths. Therefore, 𝛿(𝑠, 𝑦) =
𝑑[𝑥] + 𝑤(𝑥, 𝑦) which is exactly what 𝑑[𝑦] is set to during that iteration.

However, we can also say that 𝑑[𝑦] = 𝛿(𝑠, 𝑦) ≤ 𝛿(𝑠, 𝑢) ≤ 𝑑[𝑢]. But at time 𝑡, Dijkstra’s chose 𝑢
from the min-heap, so we must have 𝑑[𝑢] ≤ 𝑑[𝑦].

Therefore, 𝑑[𝑦] = 𝑑[𝑢] so we must have tight 𝑑[𝑦] = 𝛿(𝑠, 𝑦) = 𝛿(𝑠, 𝑢) = 𝑑[𝑢], which is our contradic-
tion.

4.4 Minimum Spanning Trees: Kruskal’s Algorithm

Recall again some MATH 239 content: Lecture 15
(06/29)
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Definition 4.4.1 (spanning tree in 𝐺)
Given a connected graph 𝐺 = (𝑉 , 𝐸), a tree 𝑇 = (𝑉 , 𝐴) where 𝐴 ⊆ 𝐸.

Suppose we have a weighted graph. Then,

Problem 4.4.2 (minimal spanning tree)
Given a connected graph 𝐺 with edge weights 𝑤, what is the spanning tree with minimal
weight 𝑤(𝑇 ) = ∑𝑒∈𝐴 𝑤(𝑒)?

Recall that a tree is a graph with no cycles. Kruskal’s algorithm greedily selects the lowest-weight
edge available that does not create a cycle:

Algorithm 4.4.3 GreedyMST(𝐺)
1: 𝐴 ← empty graph
2: sort edges by increasing weight
3: for 𝑒 ∈ 𝐸 do
4: if 𝑒 does not create a cycle in 𝐴 then
5: append 𝑒 to 𝐴

Now, we prove that this indeed works.

Claim 4.4.4. Let 𝐺 = (𝑉 , 𝐸) be a connected graph and 𝐴 ⊆ 𝐸. If (𝑉 , 𝐴) has no cycles and
|𝐴| < 𝑛 − 1, then there is always an edge 𝑒 ∈ 𝐸 − 𝐴 such that (𝑉 , 𝐴 ∪ {𝑒}) still has no cycles.

Proof. In any graph, |𝑉| − 𝑐 ≤ |𝐸| where 𝑐 is the number of components 𝐶𝑖 = (𝑉𝑖, 𝐸𝑖) in (𝑉 , 𝐸).
Since each component is connected, |𝐸𝑖| ≥ |𝑉𝑖| − 1. Then,

|𝑉| − 𝑐 =
𝑐

∑
𝑖=1

|𝑉𝑖| −
𝑐

∑
𝑖=1

1 =
𝑐

∑
𝑖=1

(|𝑉𝑖| − 1) ≤
𝑐

∑
𝑖=1

|𝐸𝑖| = |𝐸|

In particular, for (𝑉 , 𝐴), we have 𝑛 − 𝑐 < 𝑛 − 1 ⟹ 𝑐 > 1. This means there exists an edge 𝑒 that
connects two components of (𝑉 , 𝐴).

Since 𝑒 is a bridge of (𝑉 , 𝐴 ∪ {𝑒}), it does not add a cycle.

Claim 4.4.5. If the output of Algorithm 4.4.3 is 𝐴 = [𝑒1, … , 𝑒𝑟], then (𝑉 , 𝐴) is a spanning
tree and 𝑟 = 𝑛 − 1.

Proof. By construction, (𝑉 , 𝐴) has no cycles (i.e., it is a tree). Suppose (𝑉 , 𝐴) is not spanning.
Then, it has at least two components and there exists an edge 𝑒 ∉ 𝐴 such that (𝑉 , 𝐴 ∪ {𝑒}) has no
cycles because 𝐺 is connected. Now, either:

• 𝑤(𝑒) < 𝑤(𝑒1). This cannot happen because 𝑒1 is the edge with the smallest weight.
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• 𝑤(𝑒𝑖) < 𝑤(𝑒) < 𝑤(𝑒𝑖+1) for some 𝑖. This also does not work because if 𝑒 was considered after
inserting 𝑒𝑖 and rejected, then that means that 𝑒 creates a cycle in (𝑉 , {𝑒1, … , 𝑒𝑖}). But by
construction, 𝑒 does not create a cycle in 𝑉 (, 𝐴).

• 𝑤(𝑒) > 𝑤(𝑒𝑟). This also does not make sense, because the algorithm would have included it
in 𝐴 after selecting 𝑒𝑟.

Therefore, no such 𝑒 exists, which means that (𝑉 , 𝐴) is spanning. Since (𝑉 , 𝐴) is a spanning tree,
we also get that 𝑟 = 𝑛 − 1.

Claim 4.4.6. Let (𝑉 , 𝐴) and (𝑉 , 𝑇 ) be two spanning trees, and let 𝑒 be an edge in 𝑇 but not
in 𝐴.

Then, there exists an edge 𝑒′ in 𝐴 − 𝑇 such that (𝑉 , 𝑇 + 𝑒′ − 𝑒) is still a spanning tree. Also,
𝑒′ is on the cycle that 𝑒 creates in 𝐴.

(This is Theorem 5.2.4 from MATH 239)

Proof. Let 𝑒 = 𝑢𝑣. Then, (𝑉 , 𝐴 + 𝑒) contains a cycle 𝐶 = 𝑣𝑤 ⋯ 𝑣.

Since 𝑇 is a tree, (𝑉 , 𝑇 − 𝑒) has two connected components 𝑇1 and 𝑇2. Wlog, suppose 𝑣 ∈ 𝑇1.
Then, 𝐶 starts in 𝑉 (𝑇1), immediately crosses to 𝑉 (𝑇2), and at some point later crosses back into
𝑉 (𝑇1). Therefore, there exists an edge 𝑒′ ∈ 𝐸(𝐶) ⊆ 𝐴 + 𝑒 connecting 𝑇1 and 𝑇2 that is in 𝐴 but
not in 𝑇.

It follows that (𝑉 , 𝑇 + 𝑒′ − 𝑒) is a spanning tree by reconnecting those components.

Now, proceed by an exchange argument.

Proposition 4.4.7
Let 𝐴 be the output of Algorithm 4.4.3 and (𝑉 , 𝑇 ) be any spanning tree. Then, (𝑉 , 𝐴) is a
spanning tree with 𝑤(𝐴) ≤ 𝑤(𝑇 ).

Proof. We know that (𝑉 , 𝐴) is a spanning tree from Claim 4.4.5.

Claim that 𝑤(𝐴) ≤ 𝑤(𝑇 ). We induct on the size of 𝑇 − 𝐴. If 𝑇 − 𝐴 = ⌀, then 𝐴 = 𝑇 and naturally
𝑤(𝐴) = 𝑤(𝑇 ).

Suppose 𝐴 ≠ 𝑇. Then, let 𝑒 ∈ 𝑇 − 𝐴. By Claim 4.4.6, there exists an edge 𝑒′ ∈ 𝐴 − 𝑇 such that
(𝑉 , 𝑇 + 𝑒′ − 𝑒) is a spanning tree and 𝑒′ is on the cycle that 𝑒 creates in 𝐴.

Since we rejected 𝑒, it must have created a cycle in 𝐴. Therefore, it appeared in the sorted list
after all elements in its induced cycle, in particular, 𝑤(𝑒′) ≤ 𝑤(𝑒).

Then, if we let 𝑇 ′ = 𝑇 + 𝑒′ − 𝑒, we have 𝑤(𝑇 ′) = 𝑤(𝑇 ) + 𝑤(𝑒) − 𝑤(𝑒′) ≤ 𝑤(𝑇 ).

Also, since 𝑇 ′ has one more edge in common with 𝐴, |𝑇 ′ − 𝐴| < |𝑇 − 𝐴|. By the inductive
hypothesis, 𝑤(𝐴) ≤ 𝑤(𝑇 ′) ≤ 𝑤(𝑇 ).

Therefore, 𝐴 is optimal.
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Now, consider how we can implement this optimally. Every vertex is initially in a component of
just itself. Then, as edges are added, the components grow. To check if a cycle is formed, check if
both ends of an edge are in the same component.

We need a data structure that allows us to quickly identify a set given an element belongs to
(Find(𝑒)) and also join two sets (Union(𝑆1, 𝑆2)). With these operations, we can rewrite Kruskal’s
as:

Algorithm 4.4.8 GreedyMSTUnionFind(𝐺)
1: 𝑇 ← [ ]
2: 𝑈 ← {{𝑣1}, … , {𝑣𝑛}}
3: sort edges by increasing weight
4: for 𝑒 ∈ 𝐸(𝐺) sorted do
5: if 𝑈.Find(𝑒𝑘.1) ≠ 𝑈.Find(𝑒𝑘.2) then
6: 𝑈.Union(𝑈.Find(𝑒𝑘.1), 𝑈.Find(𝑒𝑘.2))
7: 𝑇 .Append(𝑒𝑘)

We can implement this with 𝑈 as an array of linked lists paired with an array of indices 𝑋 such
that 𝑒 ∈ 𝑈[𝑋[𝑒]]. Then, we can run Find in 𝑂(1) time and Union in 𝑂(𝑛) time.

There will be 𝑂(𝑚) Find’s and 𝑂(𝑛) Union’s. The total time complexity is then 𝑂(𝑚 log 𝑚 + 𝑛2).

We can optimize this slightly. First, only traverse the smaller list when unioning. Also, have each
linked list in 𝑈 keep track of its size and have an optional pointer to a continuation. Then, by
setting the pointer, we can get concatenation in 𝑂(1) even though the overall union is still 𝑂(𝑛)
(because of the updates to 𝑋).

However, for any vertex 𝑣, the size of the list containing 𝑣 at least doubles every time we update
𝑋[𝑣]. That means that 𝑋[𝑣] is updated 𝑂(log 𝑛) times, meaning the overall cost per union per
vertex is 𝑂(log 𝑛) for 𝑂(𝑛 log 𝑛) total.

Therefore, we can do Kruskal’s in 𝑂(𝑚 log 𝑚).
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Chapter 5

Dynamic Programming

5.1 Introduction

Lecture 16
(07/04)Recall the Fibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbersFibonacci numbers 𝐹𝑛 defined by 𝐹0 = 0, 𝐹1 = 1, 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 with the naive

algorithm

Algorithm 5.1.1 Fib(𝑛)
1: if 𝑛 = 0 then return 0
2: else if 𝑛 = 1 then return 1
3: elsereturn Fib(𝑛 − 1) + Fib(𝑛 − 2)

Assuming we count additions as unit cost, the runtime is 𝑇 (𝑛) = 𝐹𝑛+1 + 1 ∈ Θ(𝜑𝑛) which is bad.

Notice that we are recomputing small 𝐹𝑛 a bunch of times, but we actually only need each one
once. We can instead cache:

Algorithm 5.1.2 FibCached(𝑛)
Require: 𝑇 ← [0, 1, ⊥, … , ⊥] global array of size 𝑛

1: if 𝑇 [𝑛] = ⊥ then
2: 𝑇 [𝑛] ← FibCached(𝑛 − 1) + FibCached(𝑛 − 2)
3: return 𝑇 [𝑛]

Also, notice that the dependency graph of which subproblems require each other is a DAG. There-
fore, we can take an order on the dependencies and iterate: This is our dynamic programming

Algorithm 5.1.3 FibIterative(𝑛)
1: 𝑇 ← [0, 1, ⊥, … , ⊥] 0-indexed array of size 𝑛
2: for 𝑖 = 2, … , 𝑛 do
3: 𝑇 [𝑖] ← 𝑇 [𝑖 − 1] + 𝑇 [𝑖 − 2]
4: return 𝑇 [𝑛]

algorithm. In fact, we can optimize even more by noticing that we can discard all but the last two

32



CS 341 Spring 2023: Lecture Notes James Ah Yong

elements of the array, giving a constant-space algorithm:

Algorithm 5.1.4 FibOptimal(𝑛)
1: (𝑢, 𝑣) ← (0, 1)
2: for 𝑖 = 2, … , 𝑛 do
3: (𝑢, 𝑣) ← (𝑣, 𝑢 + 𝑣)

return 𝑣

All these improved algorithms run in 𝑂(𝑛) time, a significant improvement.

We can give a general recipe for dynamic programming algorithms:

1. Identify the subproblem: We are retaining solutions in an array. What are the dimensions
of the array? What does each entry represent? Where will the final answer be in the array?

2. Establish DP-recurrence: How does a subproblem contribute to a larger subproblem?
What is the dependency between cells in the array?

3. Set base cases: Initialize the array with some non-recursively defined base cases.

4. Specify the order of computation: Clarify the DAG of subproblem dependencies. How
does the algorithm maintain this order?

5. Recover the solution (if needed): What subproblem answers provide the problem solu-
tion? How, if necessary, do we traceback the solution from the subproblems?

We can often convert a DP algorithm into iterative loop(s). Distinguish divide and conquer algo-
rithms which do not always solve subproblems and are not easily rewritten iteratively.

5.2 Interval Scheduling

Problem 5.2.1 (weighted interval scheduling)
Recall Problem 4.2.1. Now, add a weight 𝑤𝑖 to each interval. We choose a subset 𝑇 ⊆ [𝑛]
which maximizes 𝑊 = ∑𝑖∈𝑇 𝑤𝑖.

Example 5.2.2. Let 𝐼 = [[2, 8], [2, 4], [5, 6], [7, 9]] with weights [6, 2, 1, 2].

Solution. By inspection, since the weight 𝑤1 = 6 > 5 = 𝑤2 + 𝑤3 + 𝑤4, the solution is 𝑇 = [1] with
𝑊 = 6.

Notice that we can split on whether we accept the last interval 𝐼𝑛 and write for example that the
optimal weight

𝑊(𝐼1, … , 𝐼𝑛) = {
𝑤𝑛 + 𝑊(𝐼𝑚1

, … , 𝐼𝑚𝑠
) if we choose 𝐼𝑛

𝑊(𝐼1, … , 𝐼𝑛−1) if we do not

where 𝐼𝑚1
, … , 𝐼𝑚𝑠

are the 𝑠 < 𝑛 intervals not intersecting 𝐼𝑛.
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Suppose we sort the intervals by finish time, i.e., 𝑓𝑖 ≤ 𝑓𝑖+1 for all 𝑖. Then, we have 𝑚1, … , 𝑚𝑠 =
1, … , 𝑗 where 𝑗 = max{𝑖 ∶ 𝑓𝑖 < 𝑠𝑛} because 𝐼𝑛 is the last interval with the latest finish time, so
we only need to compare its start time with earlier intervals’ finish times. (If 𝑗 does not exist just
return 𝑤𝑛 + 0.)

We need to calculate the 𝑗-values for every 𝑖:

Algorithm 5.2.3 FindJs(𝐴, 𝑠1, … , 𝑠𝑛, 𝑓1, … , 𝑓𝑛)
1: 𝑗 ← array of size 𝑛
2: 𝑓0 ← ∞
3: 𝑖 ← 1
4: for 𝑘 = 0, … , 𝑛 do
5: while 𝑖 ≤ 𝑛 and 𝑓𝑘 ≤ 𝑠𝐴[𝑖] < 𝑓𝑘+1 do
6: 𝑗[𝑖] ← 𝑘
7: 𝑖++
8: return 𝑗

where 𝐴 is a sorting permutation such that (𝑠𝐴[𝑖]) is non-decreasing. This runs in 𝑂(𝑛 log 𝑛) +
𝑂(𝑛) = 𝑂(𝑛 log 𝑛) time.

Now, for the main procedure, we define 𝑊[𝑖] as the maximal weight possible with the intervals
𝐼1, … , 𝐼𝑖.

Then, for 𝑊[0] = 0 and 𝑖 ≥ 1, 𝑊[𝑖] = max{𝑊[𝑖 − 1], 𝑤𝑖 + 𝑊[𝑗[𝑖]]}.

Since 𝑊[𝑖] depends only on entries in 𝑊 before it, we can just iterate on 𝑖 = 1, … , 𝑛 in 𝑂(𝑛) time.

Algorithm 5.2.4 IntervalScheduling(𝑠1, … , 𝑠𝑛, 𝑓1, … , 𝑓𝑛, 𝑤1, … , 𝑤𝑛)
Require: intervals are sorted by finish time

1: 𝐴 ← sorting permutation of 𝑠1, … , 𝑠𝑛
2: 𝑗 ← FindJs(𝐴, 𝑠1, … , 𝑠𝑛, 𝑓1, … , 𝑓𝑛)
3: 𝑊 ← 0-indexed array of size 𝑛
4: 𝑊[0] ← 0
5: for 𝑖 = 1, … , 𝑛 do
6: 𝑊[𝑖] ← max{𝑊[𝑖 − 1], 𝑤𝑖 + 𝑊[𝑗[𝑖]]}
7: return 𝑊[𝑛]

This gives a total time for the algorithm of 𝑂(𝑛 log 𝑛) + 𝑂(𝑛) = 𝑂(𝑛 log 𝑛).

5.3 Knapsack Problem

Problem 5.3.1 (0/1 knapsack)
Suppose we have items with weights 𝑤1, … , 𝑤𝑛 and values 𝑣1, … , 𝑣𝑛 but our knapsack has
capacity 𝑊. We want to select items 𝑆 ⊆ {1, … , 𝑛} satisfying ∑𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 and maximizes
∑𝑖∈𝑆 𝑣𝑖.
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Example 5.3.2. w = [3, 4, 6, 5], v = [2, 3, 1, 5], 𝑊 = 8.

Solution. The optimal 𝑆 = {1, 4} with weight 3 + 5 = 8 and value 2 + 5 = 7.

Lecture 17
(07/06)For each item 𝑛, we can either choose it or we can not. Let 𝑂[𝑊, 𝑛] be best value for a knapsack of

capacity 𝑊 and considering only the items 1, … , 𝑛. Then, 𝑂[𝑊, 𝑛] is either 𝑣𝑛 + 𝑂[𝑊 − 𝑤𝑛, 𝑛 − 1]
or 𝑂[𝑊, 𝑛 − 1].

We can initialize 𝑂[0, 𝑖] = 0 for all 𝑖 and 𝑂[𝑤, 0] = 0 for all 𝑤. To be able to calculate 𝑂[𝑊, 𝑛], we
must have already calculated 𝑂[𝑊 − 𝑤𝑛..𝑊, 𝑛 − 1]. In particular, if we iterate on 𝑛 first, we can
guarantee that the entire row 𝑂[, 𝑛 − 1] exists before considering 𝑂[𝑊, 𝑛]:

Algorithm 5.3.3 01KnapSack(𝑣1, … , 𝑣𝑛, 𝑤1, … , 𝑤𝑛, 𝑊)
1: 𝑂 ← 0-indexed array of size (𝑛 + 1) × (𝑊 + 1)
2: 𝑂[0, ] ← 0; 𝑂[, 0] ← 0⊺

3: for 𝑖 = 1, … , 𝑛 do
4: for 𝑤 = 1, … , 𝑊 do
5: if 𝑤𝑖 > 𝑤 then
6: 𝑂[𝑤, 𝑖] ← 𝑂[𝑤, 𝑖 − 1]
7: else
8: 𝑂[𝑤, 𝑖] ← max{𝑣𝑛 + 𝑂[𝑊 − 𝑤𝑛, 𝑛 − 1], 𝑂[𝑊, 𝑛 − 1]}
9: return 𝑂[𝑊, 𝑛]

The runtime here is obviously Θ(𝑛𝑊). We call this pseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomialpseudo-polynomial because it is polynomial in
𝑛 (the size of the input) but also in 𝑊 (the value of an input). It is not polynomial because the
size parameters are 𝑛 and lg 𝑊, but we have 𝑛2lg 𝑊.

5.4 Subsequence Problems

Problem 5.4.1 (longest increasing subsequence)
Find the longest (potentially discontinuous) increasing subsequence of an array 𝐴[1..𝑛] of
integers.

Example 5.4.2. Given 𝐴 = [7, 1, 3, 10, 11, 5, 19], the longest increasing subsequence is [1, 3, 10, 11, 19].

Notice that there are Θ(2𝑛) subsequences, so brute force is very bad here.

Suppose we try doing DP and storing ℓ[𝑖] as the longest increasing subsequence of 𝐴[1..𝑖]. This
doesn’t work, since we can’t immediately deduce ℓ[𝑖 + 1] from just ℓ[𝑖] and 𝐴.

We could instead store into 𝐿[𝑖] a pair of the length and the last entry (ℓ, 𝑐). Then, we can add on
the next element 𝐿[𝑖] ← (ℓ + 1, 𝐴[𝑖]), but what is 𝐿[𝑖] if we do not select 𝐴[𝑖]?

35



CS 341 Spring 2023: Lecture Notes James Ah Yong

Alternatively, let 𝐿[𝑖] be the length of the longest increasing subsequence of 𝐴[1..𝑖] that ends with
𝐴[𝑖]. Then, 𝐿[1] = 1. The longest increasing subsequence 𝑆𝑖 ending at 𝐴[𝑖] either looks like
[… , 𝐴[𝑗], 𝐴[𝑖]] = [… 𝑆𝑗, 𝐴[𝑖]] for some 𝑗 or just [𝐴[𝑖]].

Algorithm 5.4.3 LongestIncreasingSubsequence(𝐴[1..𝑛])
1: 𝐿 ← array of size 𝑛
2: 𝐿[1] ← 1
3: for 𝑖 = 2, … , 𝑛 do
4: 𝐿[𝑖] ← 1 ▷ 𝑆𝑖 = [𝐴[𝑖]]
5: for 𝑗 = 1, … , 𝑖 − 1 do ▷ 𝑆𝑖 = [… 𝑆𝑗, 𝐴[𝑖]]
6: if 𝐴[𝑗] < 𝐴[𝑖] then
7: 𝐿[𝑖] ← max{𝐿[𝑖], 𝐿[𝑗] + 1}
8: return max 𝐿

This algorithm runs in Θ(𝑛2) time which is much faster than Θ(2𝑛). Note that we don’t return the
actual sequence here, only its length, but it is trivial to find the sequence from the array 𝐿.

Problem 5.4.4 (longest common subsequence)
Given two arrays of characters (strings) 𝐴[1..𝑛] and 𝐵[1..𝑚], find the maximum length of a
(potentially discontinuous) subsequence common to both 𝐴 and 𝐵.

Example 5.4.5. For 𝐴 = blurry and 𝐵 = burger, we should return burr for 𝑘 = 4.

As with Problem 5.3.1, we have to work in a 2D problem space. Let 𝑀[𝑖, 𝑗] be the longest sub-
sequence length between 𝐴[1..𝑖] and 𝐵[1..𝑗]. Zero out 𝑀[0, ] and 𝑀[, 0]. Then, 𝑀[𝑖, 𝑗] will be the
greatest of either (1) ignoring 𝐵[𝑗], (2) ignoring 𝐴[𝑖], or (3) adding 𝐴[𝑖] = 𝐵[𝑗]:

Algorithm 5.4.6 LongestCommonSubsequence(𝐴[1..𝑛], 𝐵[1..𝑚])
1: 𝑀 ← 0-indexed array of size 𝑛 + 1 × 𝑚 + 1
2: 𝑀[0, ] ← 0; 𝑀[, 0] ← 0⊺

3: for 𝑖 = 1, … , 𝑛 do
4: for 𝑗 = 1, … , 𝑚 do
5: 𝑀[𝑖, 𝑗] ← max{𝑀[𝑖, 𝑗 − 1], 𝑀[𝑖 − 1, 𝑗]}
6: if 𝐴[𝑖] = 𝐵[𝑗] then
7: 𝑀[𝑖, 𝑗] ← max{𝑀[𝑖, 𝑗], 1 + 𝑀[𝑖 − 1, 𝑗 − 1]}
8: return 𝑀[𝑛, 𝑚]

Notice that because we iterate by 𝑖 first, 𝑀[𝑖−1, 0..𝑚] will have values. Also, since we are iterating
by increasing 𝑗, 𝑀[𝑖, 1..𝑗−1] will be calculated. Therefore, this algorithm works and runs in Θ(𝑛𝑚)
time.

Lecture 18
(07/11)Problem 5.4.7 (edit distance)

Given two arrays of characters 𝐴[1..𝑛] and 𝐵[1..𝑚], what is the minimum number of add,
delete, or change operations are required to turn 𝐴 into 𝐵?
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Example 5.4.8. For 𝐴 = snowy, 𝐵 = sunny, the edit distance is 3.

Both snowy → sunny and snowy → sunny each take 3 operations.

Let 𝐷[𝑖, 𝑗] be the edit distance between 𝐴[1..𝑖] and 𝐵[1..𝑗]. Then, 𝐷[0, 𝑗] = 𝑗 for all 𝑗 (add 𝑗
characters to the empty string) and 𝐷[𝑖, 0] = 𝑖 for all 𝑖 (add 𝑖 characters to the empty string).
Otherwise, the value of 𝐷[𝑖, 𝑗] is the minimum of:

• Changing the last character: 𝐷[𝑖 − 1, 𝑗 − 1] + 𝛿𝐴[𝑖]𝐵[𝑗]
• Deleting 𝐴[𝑖] and matching 𝐴[1..𝑖 − 1] with 𝐵[1..𝑗]: 𝐷[𝑖 − 1, 𝑗] + 1
• Adding 𝐵[𝑗] and matching 𝐴[1..𝑖] with 𝐵[1..𝑗 − 1]: 𝐷[𝑖, 𝑗 − 1] + 1

Computing all values of 𝐷 takes Θ(𝑚𝑛) time.

5.5 Graph Algorithms

Problem 5.5.1 (optimal BST)
Given objects indexed by 1, … , 𝑛 with probabilities of access 𝑝1, … , 𝑝𝑛 (with ∑ 𝑝𝑖 = 1), what
is the optimal binary search tree that minimizes the expected access time?

This problem is similar to the greedy Huffman tree problem (where frequencies are given instead
of probabilities) and finding an optimal ordering for a linked list (greedily sort by probability).

The expected access time is ∑𝑛
𝑖=1 𝑝𝑖(depth(𝑖) + 1).

Example 5.5.2. A possible BST with 𝑛 = 6 with the cost of each node:

𝑝4

2𝑝2

3𝑝1 3𝑝3

2𝑝5

3𝑝6

We will split into subproblems based on where we place the root of a subtree. Let 𝑀[𝑖, 𝑗] be the
minimal cost for a tree of the items {𝑖, … , 𝑗} and 𝑀[𝑖, 𝑗] = 0 when 𝑗 < 𝑖. If we select 𝑘 as the root
of the 𝑖, 𝑗-subtree, then the cost of the tree is the cost of the 𝑖, 𝑘 − 1 and 𝑘 + 1, 𝑗 subtrees plus 𝑝𝑘.

When we place a subtree beneath 𝑘, the depth of every node increases by 1. That is, we can take
the weight from the 𝑀 array and add on one more copy of 𝑝ℓ for each node ℓ in the subtree:

𝑝4

𝑝2

2𝑝1 2𝑝3

𝑝5

2𝑝6

becomes

𝑝4

𝑝2 + 𝑝2

2𝑝1 + 𝑝1 2𝑝3 + 𝑝3

𝑝5 + 𝑝5

2𝑝6 + 𝑝6

to get Example 5.5.2.
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Then,

𝑀[𝑖, 𝑗] = min
𝑖≤𝑘≤𝑗

(𝑀[𝑖, 𝑘 − 1] +
𝑘−1
∑
ℓ=𝑖

𝑝ℓ + 𝑝𝑘 + 𝑀[𝑘 + 1, 𝑗] +
𝑗

∑
ℓ=𝑘+1

𝑝ℓ)

= min
𝑖≤𝑘≤𝑗

(𝑀[𝑖, 𝑘 − 1] + 𝑀[𝑘 + 1, 𝑗]) +
𝑗

∑
ℓ=𝑖

𝑝ℓ

Notice that ∑𝑗
ℓ=𝑖 𝑝ℓ = ∑𝑗

ℓ=1 𝑝ℓ − ∑𝑖−1
ℓ=1 𝑝ℓ. We can cache these sums in 𝑂(𝑛) time. We now have

our algorithm:

Algorithm 5.5.3 OptimalBST(𝑝1, … , 𝑝𝑛)
1: 𝑆[0] ← 0
2: for 𝑖 = 1, … , 𝑛 do
3: 𝑆[𝑖] ← 𝑆[𝑖 − 1] + 𝑝𝑖
4: for 𝑖 = 1, … , 𝑛 + 1 do
5: 𝑀[𝑖, 𝑖 − 1] ← 0
6: for 𝑑 = 0, … , 𝑛 − 1 do ▷ 𝑑 = 𝑗 − 𝑖
7: for 𝑖 = 1, … , 𝑛 − 𝑑 do
8: 𝑗 ← 𝑑 + 𝑖
9: 𝑀[𝑖, 𝑗] ← min𝑖≤𝑘≤𝑗(𝑀[𝑖, 𝑘 − 1] + 𝑀[𝑘 + 1, 𝑗] + 𝑆[𝑗] − 𝑆[𝑖 − 1])

which runs in 𝑂(𝑛3) time.

Problem 5.5.4 (largest independent set of a tree)
Given a tree 𝑇 = (𝑉 , 𝐸), what is the largest independent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent set (i.e., a set 𝑆 ⊆ 𝑉 such that
𝑆2 ∩ 𝐸 = ⌀)?

Example 5.5.5. If 𝐺 =

1

2

3

4 , then 𝑆 = {1, 3} and we return 2.

Let 𝐼[𝑣] be the size of the largest independent set of the subtree rooted at 𝑣. We can either include
𝑣 in the independent set or exclude it. If we include it, take the sum of the 𝐼[𝑢] for each grandchild
𝑢. Otherwise, we take the sum of the 𝐼[𝑢] for the children of 𝑢.

We will have to calculate 𝐼 bottom-up, but otherwise this gives us an 𝑂(𝑛) algorithm.

5.6 Shortest Path Revisited: Bellman–Ford

Lecture 19
(07/18)Recall Problem 4.3.3 (single-source shortest path) that we solved with Dijkstra’s.
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Let 𝛿𝑖(𝑠, 𝑣) be the length of the shortest path 𝑠  𝑣 with at most 𝑖 edges and ∞ if no such path
exists.

Then, we get a base case 𝛿0(𝑠, 𝑠) = 0 and 𝛿0(𝑠, 𝑣) = ∞ for 𝑣 ≠ 𝑠. By construction, 𝛿(𝑠, 𝑣) ≤ 𝛿𝑖(𝑠, 𝑣)
for all 𝑖 and 𝑣. In particular, if there are no negative cycles, 𝛿𝑛−1(𝑠, 𝑣) = 𝛿(𝑠, 𝑣).1 Therefore, we
only need to calculate for 𝑖 = 0, … , 𝑛 − 1.

Now, consider 𝛿𝑖(𝑠, 𝑣). The size of the shortest path is either exactly 𝑖 or at most 𝑖 − 1. If it is at
most 𝑖 − 1, then 𝛿𝑖(𝑠, 𝑣) = 𝛿𝑖−1(𝑠, 𝑣). Otherwise, there is an 𝑖th edge 𝑢𝑣 and the length is exactly
𝛿𝑖−1(𝑠, 𝑢) + 𝑤(𝑢𝑣). That is, we can calculate all of 𝛿𝑖−1 by:

Algorithm 5.6.1 BellmanFord(𝐺, 𝑠)
1: 𝑑0 ← [∞, … , ∞]; 𝑑0[𝑠] ← 0
2: parent ← [⊥, … , ⊥]; parent[𝑠] ← 𝑠
3: for 𝑖 = 1, … , 𝑛 − 1 do
4: for 𝑣 ∈ 𝑉 do
5: 𝑑𝑖[𝑣] ← 𝑑𝑖−1[𝑣]
6: for 𝑢 neighbour of 𝑣 do
7: if 𝑑𝑖−1[𝑢] + 𝑤(𝑢, 𝑣) < 𝑑𝑖[𝑣] then
8: 𝑑𝑖[𝑣] ← 𝑑𝑖−1[𝑢] + 𝑤(𝑢𝑣)
9: parent[𝑣] = 𝑢

The runtime here is not great (𝑂(𝑛2𝑚)). We can improve by noticing that we can use only one 𝑑
array. Instead of iterating over edges incident to vertices, iterate over every edge 𝑢𝑣. If 𝑢 and 𝑣 are
both undiscovered, we get 𝑑[𝑢] + 𝑤(𝑢𝑣) < 𝑑[𝑣] = ∞ + 𝑤(𝑢𝑣) < ∞ which is false, so the effect is the
same:

Algorithm 5.6.2 BellmanFord2.0(𝐺, 𝑠)
1: 𝑑 ← [∞, … , ∞]; 𝑑[𝑠] ← 0
2: parent ← [⊥, … , ⊥]; parent[𝑠] ← 𝑠
3: for 𝑖 = 1, … , 𝑛 − 1 do
4: for 𝑢𝑣 ∈ 𝐸 do
5: if 𝑑[𝑢] + 𝑤(𝑢, 𝑣) < 𝑑[𝑣] then
6: 𝑑[𝑣] ← 𝑑[𝑢] + 𝑤(𝑢𝑣)
7: parent[𝑣] = 𝑢

but we only use 𝑂(𝑛𝑚) time, which is better (compare with Dijkstra’s 𝑂((𝑛 + 𝑚) log 𝑚)).
Lecture 20
(07/18)We now prove that this simplification (and the original) works. Call the operation of considering a

new edge and setting 𝑑[𝑣] ← min{𝑑[𝑣], 𝑑[𝑢] + 𝑤(𝑢, 𝑣)} a relaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxationrelaxation.

Claim 5.6.3. After iteration 𝑖, we have 𝑑 ≤ 𝑑𝑖. Also, 𝑑[𝑣] only decreases through relaxations.

Proof. Induct on 𝑖. At 𝑖 = 0, 𝑑0 = [0, ∞, … , ∞] ≤ 𝑑.
1Since a path with no cycles on a graph with 𝑛 vertices can only have at most 𝑛 − 1 edges (if it is Hamiltonian).
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Suppose 𝑑 ≤ 𝑑𝑖−1. Since we are assigning 𝑑[𝑣] ← min{𝑑[𝑣], … }, obviously 𝑑[𝑣] can only decrease
with each relaxation. Then, 𝑑 ≤ 𝑑𝑖−1 holds throughout the iteration. For each vertex:

𝑑[𝑣] ← min{ 𝑑[𝑣] , min
𝑢𝑣∈𝐸

( 𝑑[𝑢] + 𝑤(𝑢, 𝑣))} ≤ min{ 𝑑𝑖−1[𝑣] , min
𝑢𝑣∈𝐸

( 𝑑𝑖−1[𝑢] + 𝑤(𝑢, 𝑣))} = 𝑑𝑖[𝑣]

𝑑[𝑣] ≤ 𝑑𝑖−1[𝑣] by inductive hypothesis

since 𝑑[𝑢] (now) ≤ 𝑑[𝑢] (at the start) ≤ 𝑑𝑖−1[𝑢]

so at the end of the iteration, 𝑑 ≤ 𝑑𝑖.

Claim 5.6.4. When there are no negative cycles: if 𝛿(𝑠, 𝑢) ≤ 𝑑[𝑢] and 𝑑(𝑠, 𝑣) ≤ 𝑑[𝑣] before a
relaxation, then 𝛿(𝑠, 𝑣) ≤ 𝑑[𝑣] afterwards.

Proof. The triangle inequality 𝛿(𝑠, 𝑣) ≤ 𝛿(𝑠, 𝑢) + 𝑤(𝑢, 𝑣) holds for all 𝑢𝑣 ∈ 𝐸 if there is no negative
cycle. Then, if 𝛿(𝑠, 𝑢) ≤ 𝑑[𝑢], we get 𝛿(𝑠, 𝑣) ≤ 𝑑[𝑢] + 𝑤(𝑢, 𝑣). We are also given 𝛿(𝑠, 𝑣) ≤ 𝑑[𝑣].
Therefore, 𝛿(𝑠, 𝑣) ≤ min{𝑑[𝑣], 𝑑[𝑢] + 𝑤(𝑢, 𝑣)}, so 𝛿(𝑠, 𝑣) ≤ 𝑑[𝑣] afterwards.

Proposition 5.6.5
If there are no negative cycles, for all 𝑖, after iteration 𝑖, 𝛿(𝑠, 𝑣) ≤ 𝑑[𝑣] ≤ 𝛿𝑖(𝑠, 𝑣) for all 𝑣. After
𝑛 − 1 iterations, 𝛿(𝑠, 𝑣) = 𝑑[𝑣].

Proof. We get 𝛿(𝑠, 𝑣) ≤ 𝑑[𝑣] from Claim 5.6.4 and 𝑑[𝑣] ≤ 𝛿𝑖(𝑠, 𝑣) from Claim 5.6.3.

Recall that 𝛿(𝑠, 𝑣) = 𝛿𝑛−1(𝑠, 𝑣) if there are no negative cycles. Then, at iteration 𝑖 = 𝑛 − 1, we have
𝛿(𝑠, 𝑣) ≤ 𝑑[𝑣] ≤ 𝛿𝑛−1(𝑠, 𝑣) = 𝛿(𝑠, 𝑣), i.e., 𝛿(𝑠, 𝑣) = 𝑑[𝑣].

Proposition 5.6.6
If there is a negative cycle, then there must be an edge 𝑢𝑣 with 𝑑[𝑢] > 𝑑[𝑣] + 𝑤(𝑢, 𝑣) (i.e.,
violates the triangle inequality).

Proof. Let 𝐶 = 𝑣1, … , 𝑣𝑘 = 𝑣1 be a negative cycle with ∑ 𝑤(𝑣𝑖, 𝑣𝑖+1) < 0. Suppose for a contradic-
tion that all 𝑑[𝑣𝑖+1] ≤ 𝑑[𝑣𝑖] + 𝑤(𝑣𝑖, 𝑣𝑖+1). Sum the inequality around the cycle:

𝑘−1
∑
𝑖=1

𝑑[𝑣𝑖+1] ≤
𝑘−1
∑
𝑖=1

(𝑑[𝑣𝑖] + 𝑤(𝑣𝑖, 𝑣𝑖+1))

𝑘−1
∑
𝑖=1

𝑑[𝑣𝑖+1] ≤
𝑘−1
∑
𝑖=1

𝑑[𝑣𝑖] +
𝑘−1
∑
𝑖=1

𝑤(𝑣𝑖, 𝑣𝑖+1)

0 ≤
𝑘−1
∑
𝑖=1

𝑤(𝑣𝑖, 𝑣𝑖+1)

which means this is a positive cycle. Contradiction.

Therefore, we can test for a negative cycle after calculating 𝑑 by analyzing all edges and finding
one where the triangle inequality does not hold.
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5.7 All Shortest Paths: Floyd–Warshall

We now solve a variation of the single-source shortest-path problem.

Problem 5.7.1 (all shortest paths)
Given a graph 𝐺 = (𝑉 , 𝐸) with weights 𝑤 ∶ 𝐸 ↦ ℝ, find every value of 𝛿(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉.

Floyd–Warshall is very simple, but slower than other algorithms. Notice that we are not restricting
weights to be non-negative, but still disallow negative cycles.

Instead of setting the path length as the subproblem parameter like Bellman–Ford, we instead
restrict which vertices can be used.

Let 𝐷𝑖(𝑣𝑗, 𝑣𝑘) be the length of the shortest path 𝑣𝑗  𝑣𝑘 with all intermediate vertices in {𝑣1, … , 𝑣𝑘}.

Initially, 𝐷0(𝑣𝑗, 𝑣𝑘) =
⎧{
⎨{⎩

0 𝑗 = 𝑘
𝑤(𝑣𝑗, 𝑣𝑘) 𝑣𝑗𝑣𝑘 ∈ 𝐸
∞ otherwise

Then, by construction, 𝐷𝑛(𝑣𝑗, 𝑣𝑘) = 𝛿(𝑣𝑗, 𝑣𝑘)

Claim 5.7.2. 𝐷𝑖(𝑣𝑗, 𝑣𝑘) = min{𝐷𝑖−1(𝑣𝑗, 𝑣𝑘), 𝐷𝑖−1(𝑣𝑗, 𝑣𝑖) + 𝐷𝑖−1(𝑣𝑖, 𝑣𝑘)}

Proof. The shortest path 𝑃 ∶ 𝑣𝑗  𝑣𝑘 either goes through 𝑣𝑖 or does not. Since there are no negative
cycles, it can only go through it exactly once.

This gives the algorithm:

Algorithm 5.7.3 FloydWarshall(𝐺)
1: initialize 𝐷0 as above
2: for 𝑖 = 1, … , 𝑛 do
3: for 𝑗 = 1, … , 𝑛 do
4: for 𝑘 = 1, … , 𝑛 do
5: 𝐷𝑖[𝑣𝑗, 𝑣𝑘] ← min{𝐷𝑖−1[𝑣𝑗, 𝑣𝑘], 𝐷𝑖−1[𝑣𝑗, 𝑣𝑖] + 𝐷𝑖−1[𝑣𝑖, 𝑣𝑘]}

which has runtime 𝑂(𝑛3) (similar to running Bellman–Ford on every source in 𝑂(𝑚𝑛2)).
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Chapter 6

Complexity Theory

6.1 Introduction

Lecture 21
(07/20)We consider in general decision problems.

Definition 6.1.1 (decision problem)
A map that takes a problem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instanceproblem instance and returns a truth value. In general, a map A ∶ ℐ(A) →
{0, 1}. We call an instance where A(𝐼) = 1 a yes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instanceyes-instance (otherwise a no-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instanceno-instance).

Note that we can consider a problem instance 𝐼 ∈ ℐ(A) as a natural number (formally) since we
typically represent them as some sort of binary string.

Proposition 6.1.2
Almost all decision problems are undecidable.

Proof. Notice that we can represent the map A ∶ ℕ → {0, 1} as a binary string A(0)A(1) ⋯. Then,
assuming there is no structure here, we can perform a diagonal argument to show that the problem
is uncountably infinite.

However, solutions are a finite bit string, which are only countably infinite.

Definition 6.1.3 (P)
The class of decision problems that can be solved in polynomial time, i.e., in 𝑂(𝑛𝑝) time for
𝑝 > 0.
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Definition 6.1.4 (polynomial reduction)
A problem A is reducible to a problem B if there exists a function 𝑓 ∶ ℐ(A) → ℐ(B) such that
yes-instances are mapped to yes-instances (no-instances to no-instances) and 𝑓 is computable
in 𝑂(𝑛𝑝) for some 𝑝. We write A ≤P B.

As with normal orders, we say that A =P B ⟺ A ≤P B ∧ B ≤P A.

Suppose that A ≤P B and B ∈ P. Then, given an instance 𝐼 ∈ ℐ(A), we can solve it by solving 𝑓(𝐼)
(which is computed in polynomial time) as an instance of B (which is polynomial).

Lemma 6.1.5 (transitivity of polynomial reduction)
If A ≤P B and B ≤P C, then A ≤P C.

Proof. By definition, there exists 𝑓 ∶ ℐ(A) → ℐ(B) and 𝑔 ∶ ℐ(B) → ℐ(C). Then, 𝑔 ∘ 𝑓 ∶ ℐ(A) → ℐ(C)
and preserves yes-no.

Lemma 6.1.6 (proving hardness)
Suppose A ≤P B and we know that A ∉ P. Then, B ∉ P.

Proof. By contradiction. If B ∈ P, then we could solve A in polynomial time.

6.2 Sample Reductions

Recall from graph theory that a cliquecliquecliquecliquecliquecliquecliquecliquecliquecliquecliquecliquecliquecliquecliquecliqueclique is a set of vertices 𝑆 ⊆ 𝑉 (𝐺) such that for all 𝑢, 𝑣 ∈ 𝑆,
𝑢𝑣 ∈ 𝐸(𝐺). Similarly, an independent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent setindependent set is a set 𝑆 of vertices such that for all 𝑢, 𝑣 ∈ 𝑆, 𝑢𝑣 ∉ 𝐸(𝐺).

Proposition 6.2.1
Consider the problems Clique (does a graph 𝐺 have a clique of size at least 𝑘?) and IS (does a
graph 𝐺 have an independent set of size at least 𝑘?). Then, Clique =P IS.

Proof. Notice that a clique is the “inverse” of an independent set (i.e., a clique is a set 𝑆 ⊆ 𝑉 such
that 𝑆2 ⊆ 𝐸 while an independent set is a set 𝑆 ⊆ 𝑉 such that 𝑆2 ⊔ 𝐸).

Define the inverse graph ̄𝐺 = (𝑉 , ̄𝐸) where ̄𝐸 = 𝑉 2 − 𝐸. Then, given an instance of one problem
(𝐺, 𝑘), we can make a call to the other problem ( ̄𝐺, 𝑘). The inversion takes 𝑂(𝑚) time, which is
polynomial.

Therefore, Clique =P IS.

Recall again that a vertex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex coververtex cover is a set 𝑆 ⊆ 𝑉 such that {𝑢𝑣} ∩ 𝑆 ≠ ⌀ for all 𝑢𝑣 ∈ 𝐸 (i.e., at least
one endpoint of every edge is in 𝑆).
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Proposition 6.2.2
IS =P VC (does 𝐺 contain a vertex cover of at most 𝑘 vertices?)

Proof. Notice that 𝑆 is a vertex cover if and only if 𝑉 −𝑆 is an independent set.

Suppose 𝑆 is a vertex cover but 𝑉 −𝑆 is not independent. That is, there exists 𝑥, 𝑦 ∈ 𝑉 −𝑆 such
that 𝑥𝑦 ∈ 𝐸. But at least one of 𝑥 or 𝑦 must be in 𝑆 since it is a vertex cover. Contradiction.

Conversely, suppose 𝑉 −𝑆 is independent but 𝑆 is not a vertex cover. Then, there is an edge 𝑥𝑦 ∈ 𝐸
with 𝑥, 𝑦 ∉ 𝑆. But that means 𝑥 and 𝑦 are adjacent in the independent set 𝑉 −𝑆. Contradiction.

Therefore, 𝐺 has a vertex cover of size at most 𝑘 if and only if 𝐺 has an independent set of size at
least 𝑛 − 𝑘. We map VC instances (𝐺, 𝑘) ↔ (𝐺, 𝑛 − 𝑘) instances of IS. This map obviously takes
polynomial time, so IS =P VC.

Therefore, finding cliques, independent sets, and vertex covers are all equivalent up to polynomial-
time reducibility.

Lecture 22
(07/25)Proposition 6.2.3

Consider the problems HC (does a graph 𝐺 have a Hamiltonian cycle?) and HP (does a graph
𝐺 contain a Hamiltonian path?). Then, HC =P HP.

Proof. Consider first the Hamiltonian 𝑠, 𝑡-path problem (does 𝐺 contain a Hamiltonian path 𝑠  
𝑡?) and that we are given an instance (𝐺, 𝑠, 𝑡). Then, (𝐺, 𝑠, 𝑡) is a yes-instance if and only if
𝐺 + 𝑥 + 𝑠𝑥 + 𝑡𝑥 is a yes-instance of HC.

Likewise, a Hamiltonian cycle 𝑠 𝑡𝑠 exists if and only if (𝐺−𝑠𝑡) is a yes-instance of the Hamiltonian
𝑠, 𝑡-path problem.

Since both of those operations are polynomial time removals/additions of vertices/edges, we have
that the Hamiltonian 𝑠, 𝑡-path problem =P HC.

Now, consider the actual problem HP. We can show HP ≤P HC in the same way. Consider a graph
𝐺 and add a vertex 𝑥 adjacent to all vertices. Then, this new graph 𝐺′ has a Hamiltonian cycle if
and only if 𝐺 has a Hamiltonian path.

Finally, to show HC ≤P HP, consider a graph 𝐺 with a Hamiltonian cycle 𝑠 𝑡 𝑠. Create 𝐺′ by
splitting an arbitrary vertex 𝑡 into two vertices 𝑡 and 𝑡′ such that 𝑠 𝑡 and 𝑡′  𝑠. how do we

divide the
edges of 𝑡?

Then, because
of the way we divided the edges of 𝑡, a Hamiltonian path in 𝐺′ must start at 𝑡 and end at 𝑡′. It
follows that 𝐺 has a Hamiltonian cycle if and only if 𝐺′ has a Hamiltonian path.

Therefore, HC = HP.

Recall from CS 245 that a binary function of 𝑛 variables is satisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiablesatisfiable if there exists an assignment
of truth values to variables that makes the expression true. Recall also that we may write any
binary function in conjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal formconjunctive normal form, i.e., as a conjunction of a finite set of 𝑚 disjunctions
of literalsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliteralsliterals (either variables or their negations).
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Proposition 6.2.4
Consider the problem 3SAT (is a CNF formula of at most 3 literals per clause satisfiable?).
Then, 3SAT ≤P IS.

Proof. The reduction will take advantage of the fact that to make the whole formula true, we must
select at least one literal from each disjunction to make true.

Construct a graph of all the literals. Attach each literal in the same clause. Attach any two
complementary literals.

Then, ask if there is an independent set of size at least 𝑚.

For correctness, suppose that 𝐺 has an independent set 𝑆 of size at least 𝑚. Assign each variable
𝑥 = ⊤ if ∃𝑥 ∈ 𝑆 and 𝑥 = ⊥ if ∃ ̄𝑥 ∈ 𝑆. Since literals are adjacent to their complements, 𝑥 will either
be set to true or false (or neither, in which case we just assign ⊤ arbitrarily). Also, since literals
are adjacent in 𝐺 if they are from the same clause, the 𝑚 elements of the independent set must
come from each of the 𝑚 clauses by the pigeonhole principle. Therefore, this assignment satisfies
𝐺.

Conversely, suppose there exists a satisfying assignment. Then, simply construct the according
independent set. Because edges exist only between contradictory literals or between clauses, the
set will indeed be independent. this feels

wrongTherefore, 3SAT ≤P IS.

6.3 NP-completeness

Consider the SubsetSum problem, where we are given a set of integers 𝑆 and must find a subset
𝑇 ⊆ 𝑆 such that ∑𝑥∈𝑇 𝑥 = 0. This problem is hard.

However, suppose an oracle gives us 𝑇 and claims it has sum 0. We can write a helper function
Verify(𝐼, 𝐶) which returns yes if 𝐼 is a yes-instance and 𝐶 is a valid certificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificatecertificate that proves 𝐼 is a
yes-instance. In our example, VerifySubsetSum(𝑆, 𝑇) checks that indeed every element in 𝑇 is
also in 𝑆 and also that they sum to 0.

Definition 6.3.1 (NP)
The class of decision problems with yes-instances that can be verified in polynomial time.
Equivalently, the class of decision problems that can be solved by a non-deterministic algorithm
in polynomial time.

Lecture 23
(07/27)For example, 3SAT is in NP because evaluating the clauses given a valid variable truth-value

assignment can be done in polynomial time.

Not all decision problems are in NP: for example, consider whether a graph is non-Hamiltonian.
The no-instances are easily verifiable, but the yes-instances are hard.
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Definition 6.3.2 (co-NP)
The class of decision problems with no-instances that can be verified in polynomial time.

Clearly, all problems in P are also in NP and co-NP: simply solve the problem in polynomial time.
Therefore, P ⊆ NP and P ⊆ co-NP. This leads to the most famous problem in computer science.

Conjecture 6.3.3
P ?= NP

To make deciding whether NP ⊆ P easier, we create a notion of the “hardest” problems in NP.

Definition 6.3.4 (NP-complete)
A problem X ∈ NP is NP-complete if for all Y ∈ NP, we have Y ≤P X. Then, we write X ∈ NPC.

Then, it immediately follows that P = NP ⟺ ∃X ∈ NPC, X ∈ P.

Theorem 6.3.5 (Cook–Levin)
3SAT ∈ NPC

This is a useful theorem, since once we have on NP-complete problem, we can just show that any
other problem, for example IS, is NP-complete because 3SAT ≤P IS.

Proof (sketch). Consider the CircuitSAT problem. We are given a DAG with labelled vertices.
Inputs are marked with 𝑥1, … , 𝑥𝑛. Internal vertices are marked by Boolean operators and, or, and
not. For example,

and

𝑣

and

𝑥1 𝑥2

or

𝑥3

For a vertex 𝑣, is there some truth-value assignment to the 𝑥𝑖’s that makes 𝑣 true?

We will show that CircuitSAT is NP-complete, and then that CircuitSAT ≤P 3SAT.

Let A ∈ NP and 𝑆 be a yes-instance of A. We want to find an algorithm that checks of a certificate
𝑡 can prove that 𝑆 is indeed a yes-instance.

This verification algorithm is a Boolean function (i.e., it takes in 𝑡 as input and outputs a Boolean
value), so we can write it as a circuit (recall from CS 245 that ∧, ∨, and ¬ are sufficient to write
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any Boolean function). Therefore, we can just call CircuitSAT to find 𝑡, which is as good as solving
𝑆.

Therefore, A ≤P CircuitSAT, and CircuitSAT ∈ NPC.

Now, notice that we can transform the CircuitSAT DAG into a set of conjunctive clauses with at
most three literals:

and

𝑣𝑖

𝑣𝑗 𝑣𝑘

or
𝑣𝑖

𝑣𝑗 𝑣𝑘

not
𝑣𝑖

𝑣𝑗

( ̄𝑣𝑖 ∨ 𝑣𝑗), ( ̄𝑣𝑖 ∨ 𝑣𝑘), (𝑣𝑖 ∨ ̄𝑣𝑗 ∨ ̄𝑣𝑘) (𝑣𝑖 ∨ ̄𝑣𝑗), (𝑣𝑖 ∨ ̄𝑣𝑘), ( ̄𝑣𝑖 ∨ 𝑣𝑗 ∨ 𝑣𝑘) (𝑣𝑖 ∨ 𝑣𝑗), ( ̄𝑣𝑖 ∨ ̄𝑣𝑗)

Therefore, CircuitSAT ≤P 3SAT, which means that 3SAT ∈ NPC.

For reference, a list of NP-complete problems:

• 3SAT, SAT
• independent set, vertex cover, clique
• (directed) Hamiltonian cycle, Hamiltonian path
• travelling salesman
• subset sum
• 0/1 knapsack

We will show NP-completeness for Hamiltonian cycles and paths.

Theorem 6.3.6
3SAT ≤P DirectedHamiltonianCycle ≤P HamiltonianCycle

Proof. We begin by showing 3SAT ≤P DirectedHamiltonianCycle. That is, given a formula, we must
create a directed graph such that the formula is satisfiable if and only if the graph is Hamiltonian.

To do this, we will first create a graph with 2𝑛 Hamiltonian cycles corresponding to each possible
truth value assignment. Then, we will add vertices to constrain the valid cycles to those consistent
with the given clauses.

TODO

To convert a directed graph 𝐺 to an undirected graph 𝐺′, replace each vertex 𝑣 by 𝑣𝑖, 𝑣𝑚, and 𝑣𝑜:

𝑣 becomes 𝑣𝑖 𝑣𝑚 𝑣𝑜

Suppose there is a directed Hamiltonian cycle in 𝐺. Then, we just have to follow it in 𝐺′ to hit
every vertex. If there is a Hamiltonian cycle in 𝐺′, it must go
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𝑣𝑖 𝑣𝑚 𝑣𝑜 and not 𝑣𝑖 𝑣𝑚 𝑣𝑜 because it is a cycle,

so we can construct the directed Hamiltonian cycle in 𝐺.

This takes polynomial time, so we have DirectedHamiltonianCycle ≤P HamiltonianCycle.

Then, by combining with Theorem 6.3.5 and Proposition 6.2.3, we have proved NP-completeness
for HamiltonianCycle and HamiltonianPath.
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Chapter 7

Final Review

Lecture 24
(08/01)

Exercise 7.0.1. Suppose we want to schedule people be on call between time 𝑆 and 𝑇. If each
of the 𝑛 people are available from 𝑠𝑖 to 𝑡𝑖, give a greedy algorithm to assign the minimum
number of people.

Assume that the input is already sorted by start time 𝑆 ≤ 𝑠1 ≤ ⋯ ≤ 𝑠𝑛 ≤ 𝑇.

Solution. Since we know we must start at 𝑆, consider all the intervals that start at 𝑆. Then, pick
the one with the latest end time.

For each subsequent selection, consider all the intervals with start times before the last chosen end
time and then select the one with the latest end time.

Algorithm 7.0.2 GreedyScheduleAssign(𝑆, 𝑇 , [𝑠1, 𝑡1], … , [𝑠𝑛, 𝑡𝑛])
1: 𝑂 ← ⌀
2: 𝑠 ← 𝑆, 𝑜 ← 1
3: for 𝑖 = 1, … , 𝑛 do
4: if 𝑠𝑖 ≤ 𝑠 then
5: if 𝑡𝑖 ≥ 𝑡𝑜 then
6: 𝑜 ← 𝑖
7: else
8: 𝑂 ← 𝑂 ∪ {𝑜}
9: 𝑠 ← 𝑡𝑜

10: 𝑜 ← 𝑖

This runs in 𝑂(𝑛) time.

Exercise 7.0.3. An 𝑖 × 𝑗 rectangle is worth 𝑃 [𝑖, 𝑗]. Given an 𝑛 × 𝑚 rectangle, give a dynamic
programming algorithm to find the optimal way to cut the rectangle into smaller rectangles.

Solution. Let 𝑀[𝑖, 𝑗] be the optimal value of a rectangle after considering subdivisions. Then,
𝑀[𝑖, 𝑗] is either:

• 𝑃 [𝑖, 𝑗], the value without cutting;
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• 𝑀𝑉(𝑖, 𝑗) = max ⋃
1≤𝑘≤𝑖

{𝑀[𝑘, 𝑗], 𝑀[𝑖 − 𝑘, 𝑗]}, the maximum value of a vertical cut; or

• 𝑀𝐻(𝑖, 𝑗) = max ⋃
1≤𝑘≤𝑗

{𝑀[𝑖, 𝑘], 𝑀[𝑖, 𝑗 − 𝑘]}, the maximum value of a horizontal cut.

Finally, we just iterate. Each of the 𝑂(𝑛𝑚) iterations takes 𝑂(𝑛 + 𝑚) time, so we have 𝑂(𝑛2𝑚 +
𝑛𝑚2).

Exercise 7.0.4. Consider the problem ModifiedSTPath: given an edge-weighted directed graph,
is there a simple 𝑠, 𝑡-path (i.e., with no repeated vertices) with total weight at most 𝑘. What
complexity class is ModifiedSTPath in?

Solution. We can find shortest paths in polynomial time, so find a shortest path via Dijkstra and
check if its weight is at most 𝑘. This means ModifiedSTPath ∈ P. Therefore, it is also in NP and
co-NP.

Exercise 7.0.5. Show that ModifiedSTPath is NP-complete.

Proof. We will show that DirectedHamiltonianPath ≤P ModifiedSTPath.

Suppose we have a directed graph 𝐺 = (𝑉 , 𝐸) as input to DirectedHamiltonianPath. Notice that a
Hamiltonian path is just a simple path with |𝑉| − 1 edges.

If we give every edge in 𝐺 a weight of −1, then we can just count the edges that a path traverses.
Let 𝐺′ = (𝑉 ∪ {𝑠, 𝑡}, 𝐸 ∪ {𝑠𝑣, 𝑡𝑣 ∶ 𝑣 ∈ 𝑉 }) and 𝑤(𝑒) = −1. Then, we can call ModifiedST-
Path(𝐺′, 𝑤, 𝑠, 𝑡, −(|𝑉| + 1)) which will respond “yes” exactly when there is a path of maximum
length |𝑉| + 1 and “no” otherwise.

Therefore, DirectedHamiltonianPath ≤P ModifiedSTPath, which means ModifiedSTPath is NP-complete,
as desired.
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