
CS 350 Spring 2023:
Lecture Notes

1 Operating Systems Introduction 2

2 Threads 4

3 Synchronization 7

Back Matter 10
Index of Defined Terms . 10

Lecture notes taken, unless otherwise specified, by myself during section 001 of the Spring
2023 offering of CS 350, taught by Kevin Lanctot.

Lectures

Lecture 1 (05/09) 2
Lecture 2 (05/11) 3
Lecture 3 (05/16) 5
Lecture 4 (05/18) 5
Lecture 5 (05/25) 7
Lecture 6 (05/30) 7
Lecture 7 (06/01) 8

1

Chapter 1

Operating Systems Introduction

Lecture 1
(05/09)Generally, an operating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating systemoperating system acts partially as a cop (e.g., watching for unplugged USB

drives) and as a facilitator (e.g., allowing you to interface with any storage device with
fopen). It is responsible for:

• managing resources;
• creating execution environments;
• loading programs; and
• providing common services and utilities

We will consider an OS from three views:

1. Application: what does an OS provide? Provides an execution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environmentexecution environment which
provides resources, interfaces, and isolation.

2. System: what problems does an OS solve? Manages hardware resources, allocates
them to programs, and controls access to shared resources between programs.

3. Implementation: how is an OS built? It must be concurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrentconcurrent (allow multiple things
to run at once) and real-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-timereal-time (respond to events in a set time).

Definition (kernel)
The part of the operating system that responds to system calls, interrupts, and

exceptions.

Definition (operating system)
Includes the kernel, but also other related programs that provide services for appli-
cations. For example, utility programs, command interpreters, and programming
libraries.

The kernel protects from bad user programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programsuser programs by isolating them in user spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser spaceuser space (resp. kernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel spacekernel space)
and allowing them only to interact with hardware using system calls.
Definition (system call)

A user interaction with the OS. For example, the C function fopen makes the
Linux syscall sys_open. They are much slower than calling a user function.

2

CS 350 Spring 2023: Lecture Notes James Ah Yong

Definition (types of kernels)

• MonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithicMonolithic: when the entire OS is the kernel (e.g. Linux)
• MicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernelMicrokernel: when only absolutely necessary parts are in the kernel
• HybridHybridHybridHybridHybridHybridHybridHybridHybridHybridHybridHybridHybridHybridHybridHybridHybrid: somewhere between monolithic kernels and microkernels (e.g. Win-

dows, macOS)
• Real-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-timeReal-time: with stringent event response time, guarantees, and scheduling

A monolithic kernel is faster, since we avoid slower system calls. However, they are less
secure since third-party drivers must be trusted and included in the kernel.

Lecture 2
(05/11)Provided by the execution environment are abstract entities that a program is able to

manipulate:

• files and file systems (secondary storage; e.g. HDDs)
• address spaces (primary memory; RAM)
• processes, threads (program execution)
• sockets, pipes (message channels)

3

Chapter 2

Threads

Definition (thread)
Sequence of instructions

An ordinary sequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential programsequential program has only a single thread. Analogous to how DFAs have
a single state and NFAs can follow multiple paths, a program can have multiple threads
of execution. The threads can be for the same role (e.g. one per server visitor) or for
different roles (e.g. Chrome’s JavaScript and graphics engines).

Threads allow for:

• concurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrencyconcurrency: allow multiple tasks to occur at once
• parallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelismparallelism: different threads on different processors to increase throughput
• responsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsivenessresponsiveness: allow blocking tasks to not block the whole system
• priorityprioritypriorityprioritypriorityprioritypriorityprioritypriorityprioritypriorityprioritypriorityprioritypriorityprioritypriority: do things that are more important first
• modularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularitymodularity: separate out tasks into threads that can’t crash each other

A thread will pause execution when it is blockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblocked.

Consider for example the traffic simulation for Assignment 1. Each thread represents a
vehicle passing through an intersection, and we are trying to prevent collisions.

A thread can create a new thread using thread_fork. The original and new threads share
global data and the heap. However, the new thread has a separate, private stack.

For example, in /kern/synchprobs/traffic.c:

for (i = 0; i < NumThreads; i++) {
error = thread_fork("vehicle_simulation thread", NULL, vehicle_simulation,

NULL, i);
if (error) {

panic("traffic_simulation: thread_fork failed: %s\n", strerror(error));
}

}

we start a thread running vehicle_simulation(NULL, i).

In OS/161, we create a thread with

int thread_fork(
const char *name,

4

CS 350 Spring 2023: Lecture Notes James Ah Yong

struct proc *proc,
void (*func)(void *, unsigned long),
void *data1,
unsigned long data2

);

and can terminate with void thread_exit(void) and yield with void thread_yield(void).
However, we cannot control the order that threads run in.

Recall from CS 241 how to execute a single thread: fetch–execute cycle. In CS 241, we
called all the registers $0, … , $31. In real life, they have names like a0 and s8.

CS 241 passed all arguments via the stack. We will pass the first four as a0 to a3 and the
rest on the stack.

Lecture 3
(05/16)Recall: functions push arguments (not a0-a3), return address, local variables, and temporary-

use registers onto the stack.

With multiple threads, we need multiple stacks. When swapping threads, save the value
of registers to the stack and then load from the other stack.

The threads share the same code, global read-only data, global data, and heap. They have
their own stacks and program counters. Since we might have lots of threads, each stack
has a fixed size (e.g. 2 MB).

We can multithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithreadmultithread a core by having multiple sets of registers but share an ALU, control
unit, etc. by using the hardware when waiting for LW and SW instructions. Therefore,
given 𝑃 processors, each with 𝐶 cores and 𝑀 multithreads per core (almost always 2), we
can execute 𝑃𝐶𝑀 threads (truly) simultaneously.
Definition (timeshare)

Switching rapidly from one thread to another. During a context switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switchcontext switch, we sched-
ule which thread runs next, save the register contents of the current thread, and
load the register contents of the next thread. The saved/restored contents are also
called the thread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread contextthread context.

The C function thread_switch saves and restores caller-save registers, and calls the as-
sembly language subroutine switchframe_switch which saves and restores callee-save
registers.

Lecture 4
(05/18)There are four ways a context switch can be triggered:

1. voluntarily, via thread_switch;
2. by termination, via thread_exit;
3. when a thread is blocked, via wchan_sleep;1 or
4. by preemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemptionpreemption, when the thread schedule involuntarily stops it.

A thread can be either:

• runningrunningrunningrunningrunningrunningrunningrunningrunningrunningrunningrunningrunningrunningrunningrunningrunning, currently executing on the processor;
• readyreadyreadyreadyreadyreadyreadyreadyreadyreadyreadyreadyreadyreadyreadyreadyready, waiting in a ready pool; or
• blockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblockedblocked, waiting for something to happen and not ready to execute

Running to blocked via wchan_sleep, blocked to ready via wake_one or wake_all, and
ready to running via dispatch. A running thread can become ready by preemption or

1where wchan stands for “wait channel”

5

CS 350 Spring 2023: Lecture Notes James Ah Yong

via thread_yield.

6

Chapter 3

Synchronization

Lecture 5
(05/25)todo: slides 90 to 99
Lecture 6
(05/30)Definition (race condition)

A program where the order of execution affects the program result. The pieces
of code that can create a race condition by accessing a shared variable are called
critical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sectionscritical sections.

We can use a locklocklocklocklocklocklocklocklocklocklocklocklocklocklocklocklock to provide mutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusionmutual exclusion (when exactly one of the code chunks runs
in its entirety):

int volatile total = 0;
bool volatile total_lock = false; // false means unlocked

// true means locked
void add() { void sub() {

int i; int i;
for (i=0; i<N; i++) { for (i=0; i<N; i++) {

Acquire(&total_lock); Acquire(&total_lock);
total++; total--;
Release(&total_lock); Release(&total_lock);

} }
} }

We can imagine implementing Acquire and Release by spinning until we can proceed
(this is a spinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlockspinlock):

Acquire(bool *lock) {
while (*lock == true) {} // spin until the lock is free
*lock = true; // grab the lock

}

Release(bool *lock) {
*lock = false; // give up the lock

}

7

CS 350 Spring 2023: Lecture Notes James Ah Yong

This does not actually work because Acquire could be preempted before grabbing the
lock. There are special assembly language instructions which allow us to make this work
and create a spinlock.

Since spinlocks use the processor while they wait, they should not be used for long waiting
times. While a spinlock is spinning, we must also disable interrupts.

In OS/161, we can create and manipulate spinlock structs using the methods spinlock_init,
spinlock_acquire, and spinlock_release.

We can instead block the thread instead of eating up CPU time. The OS/161 methods
lock_create, lock_acquire, and lock_release are analogous to the spinlock methods.
A lock is owned by a thread (since it only blocks a single thread) and not a CPU (since a
spinlock takes up an entire CPU while spinning).

While a thread is blocked by a lock, it goes on a wait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channelwait channel for that lock, i.e., a queue of
threads that will be awoken when the lock is released. In OS/161, we can use wchan_lock,
wchan_sleep, wchan_wakeall, and wchan_wakeone.

If we need something more complex than a boolean lock, we can use a semaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphoresemaphore, which
holds an integer. We can either call P(roberen) (lit. “try”, waits until able to decrement)
or V(erhogen) (lit. “increase”, increments).

There are three kinds of semaphore:

• binarybinarybinarybinarybinarybinarybinarybinarybinarybinarybinarybinarybinarybinarybinarybinarybinary: 0 or 1, behaves like a lock
• countingcountingcountingcountingcountingcountingcountingcountingcountingcountingcountingcountingcountingcountingcountingcountingcounting: an arbitrary number of resources
• barrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrierbarrier: force one thread to wait for others to complete, start count at 0

We do not need to call V after P. We can also start at whatever initial value we want.
Semaphores also do not have owners.

Lecture 7
(06/01)In summary:

Spinlocks Locks Sempahores
Consumes a CPU Owned by a thread No ownership

Spins (no interrupts) Blocks Blocks
Binary (held/not held) Binary Non-negative integer

We implement semaphores and locks using spinlocks and wait channels because we do not
want a race condition on sem->sem_lock. Simplified:

void P(struct semaphore *sem) {
spinlock_acquire(&sem->sem_lock); // lock the semaphore
while (sem->sem_count == 0) { // check if resources available

wchan_lock(sem->sem_wchan); // lock wait channel's queue
spinlock_release(&sem->sem_lock); // unlock the semaphore
wchan_sleep(sem->sem_wchan); // context switch (unlocks queue)
spinlock_acquire(&sem->sem_lock); // relock the semaphore

}
sem->sem_count--; // use a resource
spinlock_release(&sem->sem_lock); // unlock the semaphore

}

and

8

CS 350 Spring 2023: Lecture Notes James Ah Yong

void V(struct semaphore *sem) {
spinlock_acquire(&sem->sem_lock); // lock the semaphore
sem->sem_count++; // add a resource
wchan_wakeone(sem->sem_wchan); // unblock a thread on the queue
spinlock_release(&sem->sem_lock); // unlock the semaphore

}

We can abstract away from integers entirely and have a condition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variablecondition variable. When a
condition is true, the thread can run; when it is not true, the thread waits until it becomes
true. If a thread sets the condition to true, it can signal one or broadcast all blocked
threads.

Two threads can deadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlockdeadlock if they are trying to acquire locks held by each other. To avoid
this, either have a standard order of acquisition or do retries (No Hold and Wait):

lock_acquire(lock1);
while (!try_acquire(lock2)) {

lock_release(lock1);
lock_acquire(lock1);

}

but OS/161 does not have bool try_acquire(struct lock *).

9

Index of Defined Terms

blocking, 4

concurrency, 2, 4
condition variable, 9
context switch, 5
critical section, 7

deadlock, 9

execution environment,
2

kernel, 2
hybrid kernel, 3
microkernel, 3
monolithic kernel, 3

kernel space, 2

lock, 7

modularity, 4
multithread, 5
mutual exclusion, 7

operating system, 2

parallelism, 4
preemption, 5
priority, 4

race condition, 7
real-time, 2
real-time operating

system, 3
responsiveness, 4

semaphore, 8
barrier, 8

binary, 8
counting, 8

sequential program, 4
spinlock, 7
system call, 2

thread, 4
blocked, 5
ready, 5
running, 5

thread context, 5
timeshare, 5

user programs, 2
user space, 2

wait channel, 8

10

	1 Operating Systems Introduction
	2 Threads
	3 Synchronization
	Back Matter
	Index of Defined Terms

