
CS 480/680 Winter 2024:
Lecture Notes

1 Classic Machine Learning 3
1 Introduction . 3
2 Perceptron . 5
3 Linear Regression . 9
4 Logistic Regression . 11
5 Hard-Margin Support Vector Machines . 13
6 Soft-Margin Support Vector Machines . 15
7 Reproducing Kernels . 18
8 Gradient Descent . 21

2 Neural Networks 26
9 Multilayer Perceptron . 26
10 Convolutional Neural Networks . 29
11 Transformers . 32

3 Modern Machine Learning 35
12 Large Language Models . 35
13 Generative Adversarial Networks . 36
14 Flows . 39
15 Diffusion Models . 41

4 Trustworthy Machine Learning 45
17 Robustness . 45

Back Matter 46
List of Named Results . 46
Index of Defined Terms . 47

Lecture notes taken, unless otherwise specified, by myself during section 002 of the Winter 2024
offering of CS 480/680, taught by Hongyang Zhang and Yaoliang Yu.

Lectures

Lecture 1 Jan 9 3
Lecture 2 Jan 11 3
Lecture 3 Jan 16 7

Lecture 4 Jan 18 9
Lecture 5 Jan 23 9
Lecture 6 Jan 25 13
Lecture 7 Jan 30 15
Lecture 8 Feb 1 18

1

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Lecture 9 Feb 6 21
Lecture 10 Feb 8 24
Lecture 11 Feb 13 27
Lecture 12 Feb 15 29
Lecture 13 Feb 27 31

Lecture 14 Mar 5 32
Lecture 15 Mar 12 36
Lecture 16 𝜋 39
Lecture 17 Mar 19 41
Lecture 18 Mar 21 42

2

Chapter 1

Classic Machine Learning

1 Introduction

Lecture 1
Jan 9There have been three historical AI booms:

1. 1950s–1970s: search-based algorithms (e.g., chess), failed when they realized AI is actually a
hard problem

2. 1980s–1990s: expert systems
3. 2012 – present: deep learning

Machine learning is the subset of AI where a program can learn from experience.

Major learning paradigms of machine learning:

• Supervised learning: teacher/human labels answers (e.g., classification, ranking, etc.)
• Unsupervised learning: without labels (e.g., clustering, representation, generation, etc.)
• Reinforcement learning: rewards given for actions (e.g., gaming, pricing, etc.)
• Others: semi-supervised, active learning, etc.

Active focuses in machine learning research:

• Representation: improving the encoding of data into a space
• Generalization: improving the use of the model on new distributions
• Interpretation: understanding how deep learning actually works
• Complexity: improving time/space requirements
• Efficiency: reducing the amount of samples required
• Privacy: respecting legal/ethical concerns of data sourcing
• Robustness: gracefully failing under errors or malicious attack
• Applications

Lecture 2
Jan 11A machine learning algorithm has three phases: training, prediction, and evaluation.

3

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 1.1 (dataset)
A datasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdatasetdataset consists of a list of featuresfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeaturesfeatures x1,… ,x𝑛,x′

1,… ,x′
𝑚 ∈ ℝ𝑑 which are 𝑑-dimensional

vectors and a label vector y⊺ ∈ ℝ𝑛.

Each training sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sampletraining sample x𝑖 is associated with a labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel 𝑦𝑖. A test sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sampletest sample x′
𝑖 may or may not be

labelled.

Example 1.2 (email filtering). Suppose we have a list 𝐷 of 𝑑 English words.

Define the training set 𝑋 = [x1,… ,x𝑛] ∈ ℝ𝑑×𝑛 and y = [𝑦1,… , 𝑦𝑛] ∈ {±1}𝑛 such that x𝑖𝑗 = 1
if the word 𝑗 ∈ 𝐷 appears in email 𝑖 (this is the bag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representationbag-of-words representation):

x1 x2 x3 x4 x5 x6 x′

and 1 0 0 1 1 1 1
viagra 1 0 1 0 0 0 1

the 0 1 1 0 1 1 0
of 1 1 0 1 0 1 0

nigeria 1 0 0 0 1 0 0
𝑦 + − + − + − ?

Then, given a new email x′
1, we must determine if it is spam or not.

Example 1.3 (OR dataset). We want to train the OR function:

x1 x2 x3 x4
0 1 0 1
0 0 1 1

𝑦 − + + +

This can be represented graphically by finding a line dividing the points:

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.5

1

4

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

2 Perceptron

Definition 2.1
The inner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner productinner product of vectors ⟨a,b⟩ is the sum of the element-wise product ∑𝑗 𝑎𝑗𝑏𝑗.

A linear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear functionlinear function is a function 𝑓 ∶ ℝ𝑑 → ℝ𝑑 such that for all 𝛼, 𝛽 ∈ ℝ, x, z ∈ ℝ𝑑, 𝑓(𝛼x+𝛽z) =
𝛼𝑓(x) + 𝛽𝑓(z).

Theorem 2.2 (linear duality)
A function is linear if and only if there exists w ∈ ℝ𝑑 such that 𝑓(x) = ⟨x,w⟩.

Proof. (⇒) Suppose 𝑓 is linear. Let w ∶= [𝑓(e1),… , 𝑓(e𝑑)] where e𝑖 are coordinate vectors. Then:

𝑓(x) = 𝑓(𝑥1e1 +⋯+ 𝑥𝑑e𝑑)
= 𝑥1𝑓(e1) + ⋯ + 𝑥𝑑𝑓(e𝑑)
= ⟨x,w⟩

by linearity of 𝑓.

(⇐) Suppose there exists w such that 𝑓(x) = ⟨x,w⟩. Then:

𝑓(𝛼x + 𝛽z) = ⟨𝛼x + 𝛽z,w, 𝛼x + 𝛽z,w⟩
= 𝛼 ⟨x,w⟩ + 𝛽 ⟨x,w⟩
= 𝛼𝑓(x) + 𝛽𝑓(z)

since inner products are linear in the first argument.

Definition 2.3 (affine function)
A function 𝑓(x) where there exist w ∈ ℝ𝑑 and biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias 𝑏 ∈ ℝ such that 𝑓(x) = ⟨x,w⟩ + 𝑏.

Definition 2.4 (sign function)

sgn(𝑡) = {
+1 𝑡 > 0
−1 𝑡 ≤ 0

It does not matter what sgn(0) is defined as.

Definition 2.5 (linear classifier)
̂𝑦 = sgn(⟨x,w⟩ + 𝑏)

The parameters w and 𝑏 will uniquely determine the linear classifier.

5

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Example 2.6 (geometric interpretation). We can interpret ̂𝑦 > 0 as a halfspace (see CO 250).
Then, we can draw something like:

w

𝑥1

𝑥2

Proposition 2.7
The vector w is orthogonal to the decision boundary 𝐻.

Proof. Let x,x′ ∈ 𝐻 be vectors on the boundary 𝐻 = {𝑥 ∶ ⟨w,x⟩ + 𝑏 = 0}. Then, we must show
x′ − x = ⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗xx′ ⟂ w.

We can calculate ⟨w,x′ − x⟩ = ⟨w,x⟩ − ⟨w,x′⟩ = −𝑏 − (−𝑏) = 0.

Originally, the inventor of the perceptron thought it could do anything. He was (obviously) wrong.

Algorithm 1 Training Perceptron
Require: Dataset (x𝑖, y𝑖) ∈ ℝ𝑑 × {±1}, initialization w0 ∈ ℝ𝑑, 𝑏0 ∈ ℝ.
Ensure: w and 𝑏 for linear classifier sgn(⟨x,w⟩ + 𝑏)

for 𝑡 = 1, 2,… do
receive index 𝐼𝑡 ∈ {1,… , 𝑛}
if y𝐼𝑡

(⟨x𝐼𝑡
,w⟩ + 𝑏) ≤ 0 then

w ← w + y𝐼𝑡
x𝐼𝑡

𝑏 ← 𝑏 + y𝐼𝑡

In a perceptron, we train by adjusting w and 𝑏 whenever a training data feature is classified “wrong”
(i.e., scorew,𝑏(x) ∶= y ̂𝑦 < 0 ⟺ the signs disagree).

The perceptron solves the feasibility problem

Find w ∈ ℝ𝑑, 𝑏 ∈ ℝ such that ∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) > 0

by iterating one-by-one. It will converge “faster” (with fewer 𝑡-iterations) if the data is “easy”.

Consider what happens when there is a “wrong” classification. Let w𝑘+1 = 𝑤𝑘+yx and 𝑏𝑘+1 = 𝑏𝑘+y.

6

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Then, the updated score is:

scorew𝑘+1,𝑏𝑘+1
(x) = y ⋅ (⟨x,w𝑘+1⟩ + 𝑏𝑘+1)

= y ⋅ (⟨x,w𝑘 + yx⟩ + 𝑏𝑘 + y)
= y ⋅ (⟨x,w𝑘⟩ + 𝑏𝑘) + ⟨x,x⟩ + 1
= y ⋅ (⟨x,w𝑘⟩ + 𝑏𝑘) + ‖x‖2

2 + 1⏟
always positive

which is always an increase over the previous “wrong” score.

↓ Lectures 3 and 4 taken slides and Neysa since I was sick ↓ Lecture 3
Jan 16

Instead of writing the affine function ⟨x,w⟩ + 𝑏, write ⟨x,w⟩ = ⟨(x
1),(w

𝑏)⟩.

Then, the update rule becomes w ← w + yx.

Theorem 2.8 (convergence theorem)
Suppose there exists w∗ such that y𝑖 ⟨x𝑖,w∗,x𝑖,w∗⟩ > 0 for all 𝑖. Assume that ‖x𝑖‖2 ≤ 𝐶 for
all 𝑖, and we normalize the w∗ such that ‖w∗‖2 = 1. Define the margin 𝛾 ∶= min𝑖 |⟨x𝑖,w∗⟩|.

Then, the perceptron algorithm converges after 𝐶2/𝛾2 mistakes.

Proof. Recall the update on the mistake (x, y) is w ← w + yx.

Then, the inner product ⟨w,w∗⟩ is

⟨w + yx,w∗⟩ = ⟨w,w∗⟩ + y ⟨x,w∗⟩
= ⟨w,w∗⟩ + |⟨x,w∗⟩|
≥ ⟨w,w∗⟩ + 𝛾

because y ⟨x,w∗⟩ must be positive if w∗ is optimal. So for each update, ⟨w,w∗⟩ grows by at least
𝛾 > 0. That is, after 𝑀 updates, ⟨w,w∗⟩ ≥ 𝑀𝛾.

Likewise, the inner product ⟨w,w⟩ is

⟨w + yx,w + yx⟩ = ⟨w,w⟩ + 2y ⟨w,x⟩⏟
< 0 because an update means it’s wrong

+
∈ [0, 𝐶2] by construction

⏞y2 ⟨w,w⟩

≤ ⟨w,w⟩ + 𝐶2

so each update grows ⟨w,w⟩ by at most 𝐶2, meaning that after 𝑀 updates, ⟨w,w⟩ ≤ 𝑀𝐶2.

Finally, recall from linear algebra that 1 ≥ cos(w,w∗) = ⟨w,w∗⟩
‖w‖2‖w∗‖2

. Then,

1 ≥
⟨w,w∗⟩

‖w‖2 ⋅ ‖w∗‖2

≥
𝑀𝛾

√
𝑀𝐶2 ⋅ 1

=
√
𝑀

𝛾
𝐶

which implies 𝑀 ≤ 𝐶2/𝛾2.

7

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Therefore, the larger the margin 𝛾 is, the more linearly separable the data is, and the faster the
perceptron algorithm will converge.

Optimization perspective We can equivalently characterize the perceptron algorithm as an op-
timization problem. Given the linear classifier ̂𝑦 = sgn(⟨w,x⟩), we want to minimize the perceptron
loss

ℓ(w,x𝑡, y𝑡) = −y𝑡 ⟨w,x𝑡⟩ ⋅ 𝕀[mistake on x𝑡]
= −min{y𝑡 ⟨w,x𝑡⟩ , 0}

𝐿(w) = −1
𝑛

𝑛

∑
𝑡=1

(y𝑡 ⟨w,x𝑡⟩ ⋅ 𝕀[mistake on x𝑡])

Then, the gradient descent update (see section 8) is

w𝑡+1 = w𝑡 − 𝜂𝑡∇wℓ(w𝑡,x𝑡, y𝑡)
= w𝑡 + 𝜂𝑡y𝑡x𝑡 ⋅ 𝕀[mistake on x𝑡]

With step size 𝜂𝑡 = 1, we recover the update rule w𝑡+1 = w𝑡 + y𝑡x𝑡.

Remark 2.9. The solution to perceptron is not unique, since there are many possible lines
separating the data.

To pick the “best” line, we can maximize the margin 𝛾. This leads to support vector machines (see
sections 5 and 6).

Example 2.10 (XOR dataset). Consider the XOR function

x1 x2 x3 x4
0 1 0 1
0 0 1 1

y − + + +

There is no separating hyperplane.

Proof. Suppose there exist w and 𝑏 such that y(⟨x,w⟩ + 𝑏) > 0. Then,

𝑥1 = (0, 0), y1 = − ⟹ 𝑏 < 0
𝑥2 = (1, 0), y2 = + ⟹ 𝑤1 + 𝑏 > 0
𝑥3 = (0, 1), y3 = + ⟹ 𝑤1 + 𝑏 > 0 ⟹ 𝑤1 +𝑤2 + 2𝑏 > 0
𝑥4 = (1, 1), y4 = − ⟹ 𝑤1 +𝑤2 + 𝑏 < 0 ⟹ 𝑏 > 0

which is a contradiction.

This leads us to a theorem.

8

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Theorem 2.11
If there is no perfect separating hyperplane, then the perceptron algorithm cycles.

The proof is really complicated, and we will not cover it.

In this case, we can allow some wrong answers by setting a reasonable loss ℓ and regularizer reg:

min
w

�̂�[ℓ(y ̂𝑦) + reg(w)] s.t. ̂𝑦 ∶= ⟨x,w⟩ + 𝑏

We stop running perceptron when either:

• the maximum number of iterations is reached (i.e., we keep a constant maxiter),
• the maximum allowed runtime is reached,
• the training error stops changing, or
• the validation error stops decreasing.

If we have multiple classes (𝑐 of them), we can run perceptron as either one-vs.-all or one-vs.-one.

In one-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptronone-vs.-all perceptron, for each class 𝑘, let it be positive, and all others be negative. We train
weights w𝑘 to get 𝑐 imbalanced perceptrons. Then, predict according to the highest score

ŷ ∶= arg max
𝑘

⟨x,w𝑘⟩ .

In one-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptronone-vs.-one perceptron, for each pair of classes (𝑘, 𝑙), let 𝑘 be positive, 𝑙 be negative, and ignore
all other classes. Then, train weights w𝑘,𝑙 for a total of (𝑐

2
) balanced perceptrons. We predict by

majority vote
ŷ ∶= arg max

𝑘
∑
𝑙∶𝑙≠𝑘

⟨x,w𝑘,𝑙⟩ .

3 Linear Regression

Lecture 4
Jan 18

Problem 3.1 (regression)
Given training data (x𝑖, y𝑖) ∈ ℝ𝑑+𝑡, find 𝑓 ∶ 𝒳 → 𝒴 such that 𝑓(x𝑖) ≈ y𝑖.

The problem is that for finite training data, there are an infinite number of functions that exactly
hit each point.

Theorem 3.2 (exact interpolation is always possible)
For any finite training data (x𝑖, y𝑖) ∶ 𝑖 = 1,… , 𝑛 such that x𝑖 ≠ x𝑗 for all 𝑖 ≠ 𝑗, there exist
infinitely many functions 𝑓 ∶ ℝ𝑑 → ℝ𝑡 such that for all 𝑖, 𝑓(x𝑖) = y𝑖.

TODO: ...up to slide 14 (geometry of linear regression)

↑ Lectures 3 and 4 taken from slides and Neysa since I was sick ↑
Lecture 5
Jan 239

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Theorem 3.3 (Fermat’s necessary condition for optimality)
If w is a minimizer/maximizer of a differentiable function 𝑓 over an open set, then 𝑓 ′(w) = 0.

We can use this property to solve linear regression.

Recall the loss is Loss(W) = 1
𝑛
‖WX − Y‖2

𝐹. Then, the derivative ∇W Loss(W) = 2
𝑛
(WX − Y)X⊺.

We can derive the normal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equationnormal equation:

2
𝑛
(WX − Y)X⊺ = 0

WXX⊺ − YX⊺ = 0

WXX⊺ = YX⊺

W = YX⊺(XX⊺)−1

Once we find W, we can predict on unseen data X𝑡𝑒𝑠𝑡 with ̂Y𝑡𝑒𝑠𝑡 = WX𝑡𝑒𝑠𝑡.

Then,

Suppose X = [0 𝜖
1 1] and y = [1 −1].

Then, solving the linear least squares regression we get w = yX⊺(XX⊺)−1 = [−2/𝜖 1]. This is
chaotic!

Why does this happen? As 𝜖 → 0, two columns in X become almost linearly dependent with
incongruent corresponding 𝑦-values. This leads to a contradiction and an unstable w.

To solve this, we add a 𝜆‖W‖2
𝐹 term.

Definition 3.4 (ridge regression)
Take the linear regression and add a regularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization termregularization term:

min
W

1
𝑛
‖WX − Y‖2

𝐹 + 𝜆‖W‖2
𝐹

This gives a new normal equation:

Loss(W) = 1
𝑛
‖WX − Y‖2

𝐹 + 𝜆‖W‖2
𝐹

∇W Loss(W) = 2
𝑛
(WX − Y)X⊺ + 2𝜆W

0 = 2
𝑛
(WX − Y)X⊺ + 2𝜆W

W(XX⊺ + 𝑛𝜆𝐼) = YX⊺

W = YX⊺(XX⊺ + 𝑛𝜆𝐼)−1

10

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Proposition 3.5
XX⊺ + 𝑛𝜆𝐼 is far from rank-deficient for large 𝜆.

Proof. Recall from linear algebra that we can always take the singular value decomposition of any
matrix 𝑀 = 𝑈Σ𝑉 ⊺ where 𝑈 and 𝑉 are orthogonal and Σ is non-negative diagonal where the rank
is the number of non-zero entries in Σ.

Consider the SVD of X:

X = 𝑈Σ𝑉 ⊺

XX⊺ = 𝑈Σ𝑉 ⊺𝑉 Σ⊺𝑈⊺ = 𝑈Σ2𝑈⊺

XX⊺ + 𝑛𝜆𝐼 = 𝑈Σ2𝑈⊺ + 𝑈(𝑛𝜆𝐼)𝑈⊺

= 𝑈(Σ2 + 𝑛𝜆𝐼)𝑈⊺

The matrix Σ2 + 𝑛𝜆𝐼 is a diagonal matrix with strictly positive elements for sufficiently large 𝜆.
Therefore, XX⊺ + 𝑛𝜆𝐼 has full rank and thus no singular values.

Remark 3.6. Performing a ridge regularization is identical to augmenting the data.

Notice that
1
𝑛
‖WX − Y‖2

𝐹 + 𝜆‖W‖2
𝐹 = 1

𝑛
∥W[X

√
𝑛𝜆𝐼] − [Y 0]∥2

𝐹

so if we augment X with
√
𝑛𝜆𝐼 and Y with 0, i.e., 𝑝 data points x𝑗 =

√
𝑛𝜆e𝑗 and y𝑗 = 0.

4 Logistic Regression

Return to the linear classification problem.

Recall that we took ŷ = sgn(⟨x,w⟩) where x = (x
1) and w = (w

𝑏) in ℝ𝑑+1.

How confident are we in our prediction ŷ? We can use the marginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmargin (or logitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogit) |⟨x,w⟩| (“how far away
is the point from the decision boundary?”).

The margin is unnormalized with respect to the data, so we cannot really interpret it until we
somehow cram it into [0, 1].

We can try directly learning hte confidence.

Let 𝒴 = {0, 1}. Consider confidence 𝑝(x;w) ∶= Pr[Y = 1 ∣ X = x]. Given independent (x𝑖, y𝑖):

Pr[Y1 = y1,… ,Y𝑛 = y𝑛 ∣ X1 = x1,… ,X𝑛 = x𝑛]

=
𝑛

∏
𝑖=1

Pr[Y𝑖 = y𝑖 ∣ X𝑖 = x𝑖]

=
𝑛

∏
𝑖=1

[𝑝(x𝑖;w)]y𝑖[1 − 𝑝(x𝑖;w)]1−y𝑖

and we can get our maximum likelihood estimation

11

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 4.1 (maximum likelihood estimation)

max
w

𝑛

∏
𝑖=1

[𝑝(x𝑖;w)]y𝑖[1 − 𝑝(x𝑖;w)]1−y𝑖

or equivalently the minimum minus log-likelihood

min
w

𝑛

∑
𝑖=1

[−y𝑖 log 𝑝(x𝑖;w) − (1 − y𝑖) log(1 − 𝑝(x𝑖;w))]

Now, how do we define the probability 𝑝 based on w?

We will assume that the log of the odds ratio log probability of event
probability of no event

= log 𝑝(x;w)
1−𝑝(x;w)

= ⟨x,w⟩ is linear.

This leads us to the sigmoid transformation.

Definition 4.2 (sigmoid transformation)

𝑝(x;w) = 1
1 + exp(− ⟨x,w⟩)

If we return now to the MLE we defined earlier, we get

min
w

𝑛

∑
𝑖=1

[−y𝑖 log 𝑝(x𝑖;w) − (1 − y𝑖) log(1 − 𝑝(x𝑖;w))]

=min
w

𝑛

∑
𝑖=1

[−y𝑖 log 1
1 + exp(− ⟨x,w⟩)

− (1 − y𝑖)
exp{− ⟨x,w⟩}

1 + exp(− ⟨x,w⟩)
]

=min
w

𝑛

∑
𝑖=1

[y𝑖 log(1 + exp(− ⟨x,w⟩)) + (1 − y𝑖) log(1 + exp(− ⟨x,w⟩)) + (1 − y𝑖) ⟨x,w⟩]

=min
w

𝑛

∑
𝑖=1

log[1 + exp(− ⟨x𝑖,w⟩)] + (1 − y𝑖)(⟨x𝑖,w⟩)

If we redefine y′
𝑖 =

y𝑖+1
2

, i.e., y′ ∈ {±1}, then we get the logistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic losslogistic loss

min
w

𝑛

∑
𝑖=1

log[1 + exp(−y′
𝑖 ⟨x,w⟩)] (4.a)

There is no closed form solution for this problem, so we use the gradient descent algorithm (covered
in section 8).

Suppose we have found an optimal w. Then, we can set ̂𝑦 = 1 ⟺ 𝑝(x;w) = Pr[Y = 1 ∣ X = x] >
1
2
. The value of 𝑝(x;w) is our confidence.

Remember: All this is under the assumption that the log of the odds ratio is linear. Everything is
meaningless if it is not.

12

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Extending to the multiclass case Suppose we instead have y ∈ {1,… , 𝑐} and we need to learn
w𝑖 for each class. The sigmoid function becomes the softmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmaxsoftmax function

Pr[Y = 𝑘 ∣ X = x;W = [w1,… ,w𝑐]] =
exp ⟨x,w𝑘⟩

∑𝑐
𝑙=1 exp ⟨x,w𝑙⟩

(4.b)

This maps the real-valued vector x to a probability vector. Notice that the softmax values for each
class are all non-negative and sum to 1.

To train, we use the MLE again

To predict, pick the index of the highest softmax value

ŷ = arg max
𝑘

Pr[Y = 𝑘 ∣ X = x;W = [w1,… ,w𝑐]]

5 Hard-Margin Support Vector Machines

Lecture 6
Jan 25Recall that the perceptron is a feasibility program, i.e., a linear program with c⊺x = 0. It has

infinite solutions.

Naturally, some are much better than others. To take advantage of better algorithms, we can
instead maximize the separation.

Let 𝐻 be a the hyperplane defined by ⟨x,w⟩ + 𝑏 = 0. The separation (distance) between a point
x𝑖 and 𝐻 is the length of the projection of x𝑖 − x onto the normal vector w.

x x𝑖

x𝑖 − x

𝐻

projw(x𝑖 − x)
w

Simplfiying, we can express this as

⟨x𝑖 − x,w⟩
‖w‖2

=
⟨x𝑖,w⟩ − ⟨x,w⟩

‖w‖2
(linearity)

=
⟨x𝑖,w⟩ + 𝑏

‖w‖2
(x ∈ 𝐻 ⇔ ⟨x,w⟩ + 𝑏 = 0)

=
y𝑖 ̂𝑦𝑖

‖w‖2

We now have something to maximize.

13

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 5.1 (margin)
Given a hyperplane 𝐻 ∶= {x ∶ ⟨x,w⟩ + 𝑏 = 0} separating the data, the marginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmarginmargin is the smallest
distance between a data point x𝑖 and 𝐻.

That is, min𝑖
y𝑖 ̂𝑦𝑖
‖w‖2

.

The goal is the maximize the margin across all possible hyperplanes:

max
w,𝑏

min
𝑖

y𝑖 ̂𝑦𝑖

‖w‖2
s.t. ∀𝑖, y𝑖 ̂𝑦𝑖 > 0 where ̂𝑦𝑖 ∶= ⟨x𝑖,w⟩ + 𝑏

We claim that we can arbitrarily scale the numerator. Let 𝑐 > 0. Then, (w, 𝑏) has the same loss
as (𝑐w, 𝑐𝑏) because ⟨x𝑖,𝑐w⟩+𝑐𝑏

‖𝑐w‖2
= 𝑐⟨x𝑖,w⟩+𝑐𝑏

𝑐‖w‖2
= ⟨x𝑖,w⟩+𝑏

‖w‖2
.

Therefore, we can equivalently write

max
w,𝑏

1
‖w‖2

s.t. min
𝑖

y𝑖 ̂𝑦𝑖 = 1 where ̂𝑦𝑖 ∶= ⟨x𝑖,w⟩ + 𝑏

or even better:
min
w,𝑏

‖w‖2
2 s.t. ∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) ≥ 1 (5.a)

Finally, consider the points that are closest to the boundary.

Definition 5.2
For the separating hyperplane 𝐻 = {⟨x𝑖,w⟩ + 𝑏 = 0}, the two supporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanessupporting hyperplanes are the
parallel hyperplanes 𝐻+ ∶= {⟨x𝑖,w⟩ + 𝑏 = 1} and 𝐻− ∶= {⟨x𝑖,w⟩ + 𝑏 = −1} which represent
the margin boundaries.

A support vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vectorsupport vector is a data point x𝑖 ∈ 𝐻+ ∪𝐻−.

The support vectors are rare, but decisive because they reach the boundary of the constraint.

Explanation from the dual perspective Recall the SVM quadratic program

min
w𝑏

1
2
‖w‖2

2 s.t. ∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) ≥ 1

Introduce Lagrangian multipliers (dual variables) 𝜶 ∈ ℝ𝑛.

min
w,𝑏

max
𝜶>0

1
2
‖w‖2

2 −∑
𝑖

𝛼𝑖[y𝑖(⟨x𝑖,w⟩ + 𝑏) − 1]

=min
w,𝑏

{
+∞ ∃𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) < 1(set 𝛼𝑖 as +∞)
1
2
‖w‖2

2 ∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) ≥ 1(set all 𝛼𝑖 as 0)

=min
w𝑏

1
2
‖w‖2

2, 𝑠.𝑡.∀𝑖, y𝑖(⟨x𝑖,w⟩ + 𝑏) ≥ 1

14

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Therefore, we only need to study the minimax problem. Assuming that the problem is convex
(which it is, outside the scope of the course), we can express this as

max
𝜶>0

Loss(𝛼)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
min
w,𝑏

1
2
‖w‖2

2 −∑
𝑖

𝛼𝑖[y𝑖(⟨x𝑖,w⟩ + 𝑏) − 1]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Loss(w,𝑏,𝛼)

and take the derivative of the interior with respect to w and 𝑏:

𝜕Loss(w, 𝑏, 𝛼)
𝜕w

= w −∑
𝑖

𝛼𝑖y𝑖x𝑖 = 0

w∗ = ∑
𝑖

𝛼𝑖y𝑖x𝑖

𝜕Loss(w, 𝑏, 𝛼)
𝜕𝑏

= −∑
𝑖

𝛼𝑖y𝑖 = 0

∑
𝑖

𝛼𝑖y𝑖 = 0

Substitute back into Loss(𝛼):

Loss(𝛼) ∶= min
w,𝑏

1
2
‖w‖2

2 −∑
𝑖

𝛼[y𝑖(⟨x,w⟩ + 𝑏) − 1]

= min
w,𝑏

1
2
‖w‖2

2 −⟨∑
𝑖

𝛼𝑖y𝑖x𝑖,w⟩− 𝑏∑
𝑖

𝛼𝑖y𝑖 +∑
𝑖

𝛼𝑖

= 1
2
∥∑

𝑖
𝛼𝑖y𝑖x𝑖∥

2

2
−⟨∑

𝑖
𝛼𝑖y𝑖x𝑖,∑

𝑖
𝛼𝑖y𝑖x𝑖⟩+∑

𝑖
𝛼𝑖 (s.t. ∑𝑖 𝛼𝑖y𝑖 = 0)

= −1
2
∥∑

𝑖
𝛼𝑖y𝑖x𝑖∥

2

2
+∑

𝑖
𝛼𝑖 (s.t. ∑𝑖 𝛼𝑖y𝑖 = 0)

Therefore, we can write the dual problem as

min
𝜶≥0

−∑
𝑖

𝛼𝑖 +
1
2
∑

𝑖
∑

𝑗
𝛼𝑖𝛼𝑗y𝑖y𝑗 ⟨x𝑖,x𝑗⟩ s.t. ∑

𝑖
𝛼𝑖y𝑖 = 0

We prefer this dual problem because it admits a very easy way to use a non-linear mapping x
𝜙
−→ 𝜙(x)

to transform non-linearly separable data x into linearly separable 𝜙(x). After applying the unknown
non-linear mapping, we get

min
𝜶≥0

−∑
𝑖

𝛼𝑖 +
1
2
∑

𝑖
∑

𝑗
𝛼𝑖𝛼𝑗y𝑖y𝑗⟨𝜙(x𝑖), 𝜙(x𝑗)⟩ s.t. ∑

𝑖
𝛼𝑖y𝑖 = 0

which we can find without explicitly applying 𝜙 by using the “kernel trick” from section 7, writing
the inner product directly as a non-linear function.

6 Soft-Margin Support Vector Machines

Lecture 7
Jan 30

15

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

One of the drawbacks of the hard-margin SVM is that the data must be linearly separable. That
is, there must exist a non-zero margin between the data.

If we have a small number of outliers on the wrong side of the decision boundary, we can instead
just penalize it in the loss. We do this by relaxing the constraint in hard-margin SVM and including
failures in the objective function.

Definition 6.1 (hinge loss)
Given label y ∈ {−1,+1} and score ̂𝑦 ∶= ⟨x,w⟩ + 𝑏, let y ̂𝑦 be the confidence.

Define ℓhinge = (1 − y ̂𝑦)+ = {
1 − y ̂𝑦 y ̂𝑦 < 1
0 otherwise

In general, notate 𝑥+ to mean max{𝑥, 0}.

Now, we can formulate the soft-margin SVM as

min
w,𝑏

1
2
‖w‖2

2 +𝐶 ⋅∑
𝑖
(1 − y𝑖 ̂𝑦𝑖)+ s.t. ̂𝑦𝑖 = ⟨x𝑖,w⟩ + 𝑏 (6.a)

(margin maximization, regularization hyperparameter, error penalty). Notice that the hard-margin
SVM is the limiting behaviour of the soft-margin SVM as 𝐶 → ∞.

Why do we use the hinge loss? Consider the probability that Y ≠ sgn(Ŷ)

Pr[Y ≠ sgn(Ŷ)] = Pr[Y ̂Y ≤ 0] = 𝔼[𝕀[YŶ ≤ 0]] =∶ 𝔼[ℓ0−1(YŶ)]

We want to minimize 𝔼[ℓ0−1(YŶ)]. Minimizing this value is hard because ℓ0−1 is discontinuous at
0 and has gradient 0 almost everywhere.

By Bayes’ rule, we can rewrite as 𝔼X 𝔼Y∣X[ℓ0−1(Y ̂Y)]. Then, we can minimize instead

𝜂(x) = arg min
̂𝑦∈ℝ

𝔼
Y∣X=x

[ℓ0−1(Y ̂𝑦)]

since setting Y = 𝜂(X).

Definition 6.2 (classification calibrated)
We say a loss function ℓ(y ̂𝑦) is classification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibratedclassification calibrated if for all x,

ŷ(x) ∶= arg min
̂𝑦∈ℝ

𝔼
Y∣X=x

[ℓ(𝑌 ̂𝑦)]

has the same sign as the Bayes rule 𝜂(x).

Due to Bartlett, we have a helpful theorem

16

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Theorem 6.3 (characterization under convexity)
Any convex loss ℓ is classification calibrated if and only if ℓ is differentiable at 0 and ℓ′(0) < 0.

Corollary 6.4. A classifier that minimizes the expected hinge loss also minimizes the expected
0-1 loss.

This theorem is also one of the big reasons why the perceptron cannot generalize well.

Remark 6.5. The perceptron loss ℓ(y ̂𝑦) = −min{y ̂𝑦, 0} is not differentiable at 0, so it is not
classification calibrated and cannot generalize.

Generating the dual Recall the soft-margin SVM

min
w,𝑏

1
2
‖w‖2

2 +𝐶 ⋅∑
𝑖
(1 − y𝑖(⟨x𝑖,w⟩ + 𝑏))+

Notice that we can write 𝐶 ⋅ (𝑡)+ = max{𝐶𝑡, 0} = max0≤𝛼≤𝐶 𝛼𝑡 to get

min
w,𝑏

max
0≤𝜶≤𝐶

1
2
‖w‖2

2 +∑
𝑖

𝛼𝑖(1 − y𝑖(⟨x𝑖,w⟩ + 𝑏))

As before, swap min with max:

max
0≤𝜶≤𝐶

Loss(𝛼)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
min
w,𝑏

1
2
‖w‖2

2 +∑
𝑖

𝛼𝑖(1 − y𝑖(⟨x𝑖,w⟩ + 𝑏))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Loss(w,𝑏,𝛼)

Now, set our optimality conditions

𝜕Loss(w, 𝑏, 𝛼)
𝜕w

= w −∑
𝑖

𝛼𝑖y𝑖x𝑖 = 0
𝜕Loss(w, 𝑏, 𝛼)

𝜕𝑏
= −∑

𝑖
𝛼𝑖y𝑖 = 0

w = ∑
𝑖

𝛼𝑖y𝑖x𝑖 ∑
𝑖

𝛼𝑖y𝑖 = 0

and substitute into Loss(𝛼):

Loss(𝛼) ∶= 1
2
‖w‖2

2 +∑
𝑖

𝛼𝑖(1 − y𝑖(⟨x𝑖,w⟩ + 𝑏))

= 1
2
∥∑

𝑖
𝛼𝑖y𝑖x𝑖∥

2

2
+∑

𝑖
𝛼𝑖 −⟨∑

𝑖
𝛼𝑖y𝑖x𝑖,∑

𝑖
𝛼𝑖y𝑖x𝑖⟩

= −1
2
∥∑

𝑖
𝛼𝑖y𝑖x𝑖∥

2

2
+∑

𝑖
𝛼𝑖

Switching from max to min and expanding the norm, we get

min
0≤𝜶≤𝐶

−∑
𝑖

𝛼𝑖 +
1
2
∑

𝑖
∑

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 ⟨x𝑖,x𝑗⟩ s.t. ∑

𝑖
𝛼𝑖y𝑖 = 0 (6.b)

17

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

which is identical to the hard-margin SVM dual with an upper bound 𝐶 on 𝜶.
Lecture 8
Feb 1Suppose we solve the dual (eq. 6.b) with optimal solution 𝜶∗. Then,

w∗ = ∑
𝑖

𝛼∗
𝑖y𝑖x𝑖. (6.c)

If we have a point on 𝐻±1, i.e., y ̂𝑦 = 1, we can recover 𝑏∗ as y − ⟨x,w∗⟩.

Training by gradient descent Suppose we have a minimization problem minx 𝑓(x). Then, to
make a guess x better, set x ← x − 𝜂 ⋅ ∇x𝑓(x) for some learning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning ratelearning rate 𝜂 > 0.

Given the problem

min
w,𝑏

1
2𝜆

‖w‖2
2 +𝐶 ∑

𝑖
ℓ(y𝑖 ̂𝑦𝑖) where ̂𝑦𝑖 = ⟨x𝑖,w,x𝑖,w⟩ + 𝑏

with loss function ℓ, the gradient descent steps are

w ← w − 𝜂 ⋅ ∇w(1
2𝜆

‖w‖2
2 +𝐶 ∑

𝑖
ℓ(y𝑖 ̂𝑦𝑖))

= w − 𝜂[w
𝜆

+ 𝐶 ∑
𝑖

ℓ′(y𝑖 ̂𝑦𝑖)y𝑖x𝑖]

𝑏 ← 𝑏 − 𝜂 ⋅ ∇𝑏(
1
2𝜆

‖w‖2
2 +𝐶 ∑

𝑖
ℓ(y𝑖 ̂𝑦𝑖))

= 𝑏 − 𝜂[𝐶 ∑
𝑖

ℓ′(y𝑖 ̂𝑦𝑖)y𝑖]

because ∇wℓ(y𝑖 ̂𝑦𝑖) = ℓ′(y𝑖 ̂𝑦𝑖) ⋅ y𝑖∇w(̂𝑦𝑖) = ℓ′(y𝑖 ̂𝑦𝑖)y𝑖x𝑖 and ∇𝑏ℓ(y𝑖 ̂𝑦𝑖) = ℓ′(y𝑖 ̂𝑦𝑖) ⋅ y𝑖∇𝑏(̂𝑦𝑖) = ℓ′(y𝑖 ̂𝑦𝑖) ⋅
y𝑖.

If ℓ is hinge loss, we define the derivative ℓ′(𝑡) = {
−1 𝑡 ≤ 1
0 𝑡 > 1

.

If ℓ is perceptron loss, we define ℓ′(𝑡) = {
−1 𝑡 ≤ 0
0 𝑡 > 1

.

All other common loss functions are easily differentiable.

7 Reproducing Kernels

We have dealt with data that is perfectly linearly separable (hard-margin SVM) and mostly linearly
separable (soft-margin SVM).

Problem 7.1
How can we use our existing techniques to classify a fully non-linearly separable dataset?

In the linear classifier, we used an affine function ⟨w,x⟩ + 𝑏. Now, we define a quadratic classifier.

18

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 7.2 (quadratic classifier)
A function 𝑓 ∶ ℝ𝑑 → ℝ𝑑 of the form 𝑓(x) = ⟨x, 𝑄x⟩ +

√
2 ⟨x,p⟩ + 𝑏 where the weights to be

learned are 𝑄 ∈ ℝ𝑑×𝑑, p ∈ ℝ𝑑, and 𝑏 ∈ ℝ.

Recall from linear algebra that for all 𝐴, 𝐵, 𝐶, ⟨𝐴𝐵,𝐶⟩ = ⟨𝐵,𝐴⊺𝐶⟩ and ⟨𝐴,𝐵𝐶⟩ = ⟨𝐴𝐵⊺, 𝐶⟩.

Definition 7.3 (matrix vectorization)
Given a matrix A ∈ ℝ𝑚×𝑛, let ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗A ∈ ℝ𝑚𝑛 be its vectorization. That is,

A =
⎡
⎢
⎢
⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤
⎥
⎥
⎦

⟹ ⃗⃗⃗⃗⃗⃗⃗⃗A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑎11
𝑎12
⋮

𝑎1𝑛
⋮

𝑎𝑚𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Then, we can write the quadratic classifier as:

𝑓(x) = ⟨x, 𝑄x⟩ +
√
2 ⟨x,p⟩ + 𝑏

= ⟨xx⊺, 𝑄⟩ + ⟨
√
2x,p⟩ + 𝑏

= ⟨⎡
⎢
⎣

⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗xx⊺
√
2x
1

⎤
⎥
⎦
,⎡⎢
⎣

⃗⃗⃗⃗⃗⃗⃗𝑄
p
𝑏

⎤
⎥
⎦
⟩

If we write 𝜙(x) = (⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗xx⊺,
√
2x, 1)⊺ and w = (⃗⃗⃗⃗⃗⃗⃗𝑄,p, 𝑏)⊺, then we can write 𝑓 as

𝑓(x) = ⟨𝜙(x),w⟩

but this really blows up the dimension to ℝ𝑑2+𝑑+1. Recall that in the dual forms of SVM, all we
need is to know the inner product ⟨𝜙(x), 𝜙(w)⟩. With our new 𝜙, we get

𝑘(x, z) ∶= ⟨𝜙(x), 𝜙(z)⟩ = ⟨⎡
⎢
⎣

⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗xx⊺
√
2x
1

⎤
⎥
⎦
,⎡⎢
⎣

⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗zz⊺
√
2z
1

⎤
⎥
⎦
⟩

= ⟨⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗xx⊺, ⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗zz⊺⟩ + ⟨
√
2x,

√
2z⟩ + 1

= ⟨x, z⟩2 + 2 ⟨x, z⟩ + 1
= (⟨x, z⟩ + 1)2

This process is easily reproducable for a given 𝜙. What about the other direction?

Definition 7.4 (reproducing kernel)
We call 𝑘 ∶ 𝒳 × 𝒳 → ℝ a reproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernelreproducing kernel if there exists some 𝜙 ∶ 𝒳 → ℋ so that
⟨𝜙(x), 𝜙(z)⟩ = 𝑘(x, z).

19

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Remark 7.5. When such a kernel exists, it may not be unique.

For example, the kernels 𝜙(x) = [𝑥2
1,
√
2𝑥1𝑥2, 𝑥2

2] ∈ ℝ3 and 𝜓(x) = [𝑥2
1, 𝑥1𝑥2, 𝑥1𝑥2, 𝑥2

2] ∈ ℝ4

have the same inner product ⟨𝜙(x), 𝜙(z)⟩ = ⟨𝜓(x), 𝜓(z)⟩.

Theorem 7.6 (Mercer’s theorem)
𝑘 ∶ 𝒳×𝒳 → ℝ is a kernel if and only if for any 𝑛 ∈ ℕ and any x1,… ,x𝑛 ∈ 𝒳, the kernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrixkernel matrix
𝐾𝑖𝑗 ∶= 𝑘(x𝑖,x𝑗) is symmetric and positive semi-definite.

Recall from linear algebra: 𝐾 is symmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetricsymmetric if 𝐾𝑖𝑗 = 𝐾𝑗𝑖 for all indices, and positive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definitepositive semi-definite if
⟨𝜶,𝐾𝜶⟩ ≥ 0 for all vectors 𝜶.

The proof is extremely convoluted and well beyond the scope of the course.

Example 7.7. The following are kernels:

• the polynomial kernel 𝑘(x, z) = (⟨x, z⟩ + 1)𝑝 for hyperparameter 𝑝,

• the Gaussian kernel 𝑘(x, z) = exp(−‖x − z‖2
2/𝜎) for hyperparameter 𝜎, and

• the Laplace kernel 𝑘(x, z) = exp(−‖x − z‖2/𝜎) for hyperparameter 𝜎

Now, we can substitute our expression for the inner product to eqs. 6.a and 6.b, the primal and
dual of the soft-margin SVM:

min
w,𝑏

1
2
‖w‖2

2 +𝐶 ⋅∑
𝑖
(1 − y𝑖 ̂𝑦𝑖)+ s.t. ̂𝑦𝑖 = ⟨𝜙(x𝑖),w⟩

min
0≤𝜶≤𝐶

−∑
𝑖

𝛼𝑖 +
1
2
∑

𝑖
∑

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(x𝑖,x𝑗) s.t. ∑

𝑖
𝛼𝑖y𝑖 = 0

Once we solve 𝜶∗, we can try to recover w∗ as in eq. 6.c

w∗ = ∑𝛼∗
𝑖y𝑖𝜙(x𝑖)

but this will not work since we do not know 𝜙 explicitly. Instead, we only need to compute the
score function

𝑓(x) ∶= ⟨𝜙(x),w∗⟩

= ⟨𝜙(x),∑𝛼∗
𝑖y𝑖𝜙(x𝑖)⟩

= ∑𝛼∗
𝑖y𝑖 ⟨𝜙(x), 𝜙(x𝑖)⟩

= ∑𝛼∗
𝑖y𝑖𝑘(x,x𝑖)

and return sgn(𝑓(x)).

20

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

8 Gradient Descent

Lecture 9
Feb 6All of our machine learning models so far have been expressed as optimization problems (eqs. 4.a,

5.a and 6.a).

Remark 8.1. Optimization problems are identical up to constants. That is,

min
x

𝑓(x) = min
x

𝑐 ⋅ 𝑓(𝑥)

if 𝑐 has no x-dependence.

We can consider now a generic optimization problem min
x

𝑓(x).

Assume that 𝑓(x) is differentiable with gradient ∇x𝑓(x).

Notation. Given the generic optimization problem, write 𝑓∗ ∶= minx 𝑓(𝑥) for the optimal
value and 𝑥∗ ∶= arg minx 𝑓(𝑥) for the optimal parameter.

Then, we can define gradient descent.

Definition 8.2 (gradient descent)
Choose an initial point x(0) ∈ ℝ𝑑 and repeat

𝑥(𝑘) = 𝑥(𝑘−1) − 𝑡⏟
step size

⋅∇𝑓(𝑥(𝑘−1))

𝑘 = 1, 2,… for some step size 𝑡 > 0 until satisfied.

Intuitively, we are walking “down” the function by checking for a downwards slope and taking a
𝑡-sized step down that slope.

For example, the perceptron (section 2) with optimization problem

min
w

𝑓(w) = min
w

−1
𝑛
∑

𝑖
y𝑖 ⟨w,x𝑖⟩ 𝕀[mistake on x𝑖]

with gradient
∇w𝑓(w) = −1

𝑛
∑

𝑖
y𝑖x𝑖𝕀[mistake on x𝑖]

leads us to the gradient descent update

w ← w + 𝑡[1
𝑛
∑

𝑖
y𝑖x𝑖𝕀[mistake on x𝑖]]

This is very expensive, since we need to iterate over our entire training data for each update. Since
the gradient is just a sample mean, we can make an estimation

̃∇w𝑓(w) = y𝐼x𝐼𝕀[mistake on x𝐼]

21

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

after picking a random index 𝐼 ∈R {1,… , 𝑛}. This is an unbiased estimator of the sample mean.
Doing this, i.e.,

w ← w + 𝑡y𝐼x𝐼𝕀[mistake on x𝐼]

is called stochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descentstochastic gradient descent. Since it is (very) inaccurate, it will take many more iterations
to converge.

For a more complex example, consider the soft-margin SVM (section 6) with optimization problem

min
w,𝑏

1
2
‖w‖2

2 +𝐶 ∑
𝑖

ℓhinge(1 − y𝑖 ̂𝑦𝑖) s.t. ̂𝑦𝑖 = ⟨x𝑖,w⟩ + 𝑏

We calculate two gradients ∇w and ∇𝑏 to get

w ← w − 𝑡[w +𝐶 ∑
𝑖

ℓ′
hinge(y𝑖 ̂𝑦𝑖)y𝑖x𝑖]

𝑏 ← 𝑏 − 𝑡[𝐶 ∑
𝑖

ℓ′
hinge(y𝑖 ̂𝑦𝑖)y𝑖]

Motivating gradient descent Suppose we take the Taylor expansion of 𝑓 at the current iterate
x. Then, we can say

𝑓(y) ≈ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2𝑡

‖y − x‖2
2

and take the minimization with respect to y on both sides

min
y

𝑓(y) ≈ min
y

⎡
⎢⎢
⎣

𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2𝑡

‖y − x‖2
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔(y)

⎤
⎥⎥
⎦

so that we can write

𝜕𝑔
𝜕y

= 0 +∇𝑓(x) + 1
𝑡
(𝑦 − 𝑥) = 0

𝑡∇𝑓(x) + y − x = 0
y = x − 𝑡∇𝑓(x)

which is our gradient descent formula.

Applying gradient descent We cannot set the step size too large (it will diverge) or too small
(it will be too slow). How do we choose the step size?

Definition 8.3 (convexity)
A function 𝑓 is convexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvexconvex if 𝑓(y) ≥ 𝑓(x) + ∇𝑓(x)⊺(y − x) for any x,y ∈ ℝ𝑑.

We also want to characterize the smoothness.

22

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 8.4 (Lipschitz continuity)
Given convex and differentiable 𝑓, we say 𝑓 is 𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth𝐿-smooth or 𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous𝐿-Lipschitz continuous for 𝐿 > 0 if
the matrix

𝐿𝐼 −∇2𝑓(x)

is positive semi-definite for every 𝑥 (we write 𝐿𝐼 ⪰ ∇2𝑓(𝑥)).

Then, we can characterize the convergence rate.

Theorem 8.5 (convergence rate for convex case)
Gradient descent with fixed step size 𝑡 ≤ 1/𝐿 satisfies

𝑓(x(𝑘)) − 𝑓∗ ≤
∥x(0) − x∗∥2

2
2𝑡𝑘

We say gradient descent has convergence rate 𝒪(1/𝑘) (i.e., a bound of 𝑓(x(𝑘))−𝑓(x∗) ≤ 𝜀 takes
𝒪(1/𝜀) iterations).

Proof. Recall the mean value theorem allows us to write the Lagrangian

𝑓(y) = 𝑓(x) + ∇𝑓(x)⊺(y − x) + 1
2
(y − x)⊺∇2𝑓(a)(y − x)

where a is on the line between x and y. Then, since 𝐿𝐼 ⪰ ∇2𝑓(a), we have

𝑓(y) ≤ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝐿
2
(y − x)⊺(y − x)

≤ 𝑓(x) + ∇𝑓(x)⊺(y − x) + 𝐿
2
‖y − x‖2

2

Now, plug in y = x+ ∶= x − 𝑡∇𝑓(x) (i.e., do the gradient update) to get

𝑓(x+) ≤ 𝑓(x) + ∇𝑓(x)⊺(x − 𝑡∇𝑓(x) − x) + 𝐿
2
‖x − 𝑡(∇𝑓(x)) − x‖2

2

= 𝑓(x) − 𝑡‖∇𝑓(x)‖2
2 + 𝐿𝑡2

2
‖∇𝑓(x)‖2

2

= 𝑓(x) − (1 − 1
2
𝐿𝑡)𝑡‖∇𝑓(x)‖2

2

Since 𝑡 ≤ 1
𝐿

, we have (1 − 1
2
𝐿𝑡) ≥ 1

2
and we can conclude that

𝑓(x+) ≤ 𝑓(x) − 1
2
𝑡‖∇𝑓(x)‖2

2 (⋆)

which means that we have decreased the function value by at least 𝑡
2
‖∇𝑓(x)‖2

2.

Recall that 𝑓 is convex. Then, by definition, 𝑓(x∗) ≥ 𝑓(x) + ∇𝑓(x)⊺(x∗ − x). Equivalently,

𝑓(x) ≤ 𝑓(x∗) + ∇𝑓(x)⊺(x − x∗)

23

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

and by (⋆) we can say

𝑓(x+) ≤ 𝑓(x∗) + ∇𝑓(x)⊺(x − x∗) − 𝑡
2
‖∇𝑓(x)‖2

2

𝑓(x+) − 𝑓(x∗) ≤ ∇𝑓(x)⊺(x − x∗) − 𝑡
2
‖∇𝑓(x)‖2

2

= 1
2𝑡

(2𝑡∇𝑓(x)⊺(x − x∗) − 𝑡2‖∇𝑓(x)‖2
2)

= 1
2𝑡

((2𝑡∇𝑓(x)⊺(x − x∗) − 𝑡2‖∇𝑓(x)‖2
2 − ‖x − x∗‖2

2) + ‖x − x∗‖2
2)

= 1
2𝑡

(−‖x − 𝑡∇𝑓(x) − x∗‖ + ‖x − x∗‖2
2)

= 1
2𝑡

(‖x − x∗‖2
2 − ∥x+ − x∗∥22)

If we define x+ ∶= x(𝑖) and x ∶= x(𝑖−1), we have

𝑓(x(𝑖)) − 𝑓(x∗) ≤ 1
2𝑡

(∥x(𝑖−1) − x∗∥2
2
− ∥x(𝑖) − x∗∥2

2
)

𝑘

∑
𝑖=1

[𝑓(x(𝑖)) − 𝑓(x∗)] ≤
𝑘

∑
𝑖=1

1
2𝑡

(∥x(𝑖−1) − x∗∥2
2
− ∥x(𝑖) − x∗∥2

2
)

𝑘

∑
𝑖=1

𝑓(x(𝑖)) − 𝑘𝑓(x∗) ≤ 1
2𝑡

(∥x(0) − x∗∥2
2
− ∥x(𝑘) − x∗∥2

2
)

≤ 1
2𝑡

(∥x(0) − x∗∥2
2
)

1
𝑘

𝑘

∑
𝑖=1

𝑓(x(𝑖)) − 𝑓(x∗) ≤ 1
2𝑡𝑘

(∥x(0) − x∗∥2
2
)

Finally, because each step decreases, we must have 𝑓(x(𝑘)) ≤ 1
𝑘
∑𝑘

𝑖=1 𝑓(x
(𝑖)). That is,

𝑓(x(𝑘)) − 𝑓∗ ≤ 1
𝑘

𝑘

∑
𝑖=1

𝑓(x(𝑖)) − 𝑓(x∗) ≤ 1
2𝑡𝑘

(∥x(0) − x∗∥2
2
)

as desired.

Lecture 10
Feb 8We have a stronger sense of convexity that gives a stronger convergence rate.

Definition 8.6 (𝑚-strong convexity)
For some 𝑚 > 0, 𝑓 is 𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex𝑚-strong convex if 𝑓(x)−𝑚‖x‖2

2 is convex. We write 𝐿𝐼 ⪰ ∇2𝑓(x) ⪰ 𝑚𝐼.

Theorem 8.7 (convergence rate for strong convexity)
Let 𝑓 be differentiable, 𝑚-strong convex, and 𝐿-smooth. Then, gradient descent with fixed
step size 𝑡 ≤ 2/(𝑚 + 𝐿) satisfies

𝑓(x(𝑘)) − 𝑓∗ ≤ 𝛾𝑘𝐿
2
∥x(0) − x∗∥2

2

where 0 < 𝛾 < 1.

24

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

The rate here is 𝒪(𝛾𝑘) which is exponentially fast. That is, a bound 𝑓(x(𝑘)) − 𝑓(x∗) < 𝜀 can be
achieved using only 𝒪(log1/𝛾(1/𝜀)) iterations, much better than before.

Alternatively, we can make a weaker assumption and ask for a weaker result. In a non-convex
function, there are (potentially many) local minima. Instead of asking for small ∥𝑓(x(𝑘)) − 𝑓(x∗)∥

2
,

we only need ‖∇𝑓(x)‖.

Theorem 8.8 (convergence rate for non-convex case)
Suppose 𝑓 is differentiable, 𝐿-smooth, and non-convex. Then, gradient descent with fixed step
size 𝑡 ≤ 1/𝐿 satisfies

min
𝑖=0,…,𝑘

∥∇𝑓(x(𝑖))∥
2
≤ √2(𝑓(x(0)) − 𝑓∗)

𝑡(𝑘 + 1)

The rate 𝒪(1/
√
𝑘) for finding stationary points cannot be improved by any deterministic algorithm.

However, all these require that the gradient ∇𝑓(x) is known to us.

Stochastic gradient descent Recall that we introduced the case for perceptron where we update
using one data point instead of the full dataset.

Consider some decomposable optimization with unreasonably large 𝑛

min
w

1
𝑛
∑

𝑖
𝑓𝑖(w)

where we assume ∇𝑓𝑖(w) exists for all 𝑖. Then, the two gradient descent updates

w ← w − 𝑡1
𝑛
∑

𝑖
∇𝑓𝑖(w)

w ← w − 𝑡 ⋅ ∇𝑓𝐼(w)

(where 𝐼 is a uniformly random index) have the same expected value. Notice that the “full” gradient
descent will have true time complexity 𝒪(𝑛/𝜀) because each step takes 𝒪(𝑛) time to calculate.

The stochastic version takes just 𝒪(1/𝜀2) time.

To summarize these theorems:

Case Hessian assumption Iterations for 𝜀 error Step size
Non-convex 𝐿𝐼 ⪰ ∇2𝑓(x) 𝒪(1/𝜀2) 𝑡 ≤ 1/𝐿

Convex 𝐿𝐼 ⪰ ∇2𝑓(x) 𝒪(1/𝜀) 𝑡 ≤ 1/𝐿
𝑚-strong convex 𝐿𝐼 ⪰ ∇2𝑓(x) ⪰ 𝑚𝐼 𝒪(log(1/𝜀)) 𝑡 ≤ 2/(𝑚 + 𝐿)

Stochastic convex 𝐿𝐼 ⪰ ∇2𝑓(x) 𝒪(1/𝜀2) 𝑡 = 1/𝑘

In general, we will want to use stochastic gradient descent when 𝑛 > 𝐶1/𝜀 and full gradient descent
when 𝑛 < 𝐶2/𝜀 for some constants 𝐶1, 𝐶2.

25

Chapter 2

Neural Networks

We can finally progress from 30- to 60-year old algorithms to stuff people actually use now. Recall
the XOR dataset (ex. 2.10). We showed that it is not linearly separable, so it cannot be learned
by perceptron (thm. 2.11).

One way to deal with this is to use a richer model (e.g., a quadratic classifier) or to lift the data
through some feature map 𝜙. These two approaches are equivalent due to reproducing kernels.

A neural network tries to learn the feature map and the linear classifier simultaneously.

9 Multilayer Perceptron

We can set up the following layers:

• input layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layerinput layer x ∈ ℝ2

• linear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layerlinear layer z = Ux + c for learnable parameters U ∈ ℝ2×2 and c ∈ ℝ2

• hidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layerhidden layer h = 𝜎(z) for some non-linear 𝜎
• prediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layerprediction layer ̂𝑦 = ⟨h,w⟩ + 𝑏 for learnable parameters w ∈ ℝ2 and 𝑏 ∈ ℝ
• output layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layeroutput layer sgn(̂𝑦) or sigmoid(̂𝑦)

In total, we need to learn U, c, w, and 𝑏 (here, 9 parameters).

Example 9.1. XOR dataset is learnable with a 2-layer neural network. Let

U = [1 1
1 1], c = [0

−1], w = [2
−4], 𝑏 = −1

and let 𝜎(𝑡) = max{𝑡, 0} (the ReLU activation function).

Then, sgn(⟨𝜎(Ux + c),w⟩ + 𝑏) works.

To do a multi-class classification, simply have a bunch of ̂𝑦’s in a vector ̂y = Wh + b and make a
prediction vector ̂p = softmax(̂y).

26

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Remark 9.2. The hidden layer 𝜎 must be non-linear. Otherwise, the composition of linear
layers is just a linear layer and we gain nothing.

There are a lot of options for 𝜎:

• relu(𝑡) = 𝑡+
• elu(𝑡) = 𝑡+ + 𝑡−(exp(𝑡) − 1)
• sgm(𝑡) = 1/(1 + exp(−𝑡))
• tanh(𝑡) = 1 − 2sgm(𝑡)

We can also stack several layers together, repeating the pattern of linear layer + non-linear layer.

To train, we need a loss function ℓ and a dataset 𝒟 = {(x𝑖, y𝑖)}

Notation. Write [ℓ ∘ 𝑓](x𝑖, y𝑖,w) to mean ℓ[𝑓(x𝑖,w), y𝑖].

We can express the neural network as a minimization problem

min
w

1
𝑛
∑

𝑖
[ℓ ∘ 𝑓](x𝑖, y𝑖,w) (9.a)

which gives the gradient descent rule

w ← w − 𝜂 ⋅ 1
𝑛
∑

𝑖
∇[ℓ ∘ 𝑓](x𝑖, y𝑖,w)

for learning rate 𝜂. This requires a full pass over the dataset for each step.

Instead of doing ordinary stochastic gradient descent, we can minibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatchminibatch by picking a random subset
𝐵 ⊆ {1,… , 𝑛}:

w ← w − 𝜂 ⋅ 1
|𝐵|

∑
𝑖∈𝐵

∇[ℓ ∘ 𝑓](x𝑖, y𝑖,w)

which trades off variance and computation cost.
Lecture 11
Feb 13The learning rate has diminishing returns. Instead of keeping a constant 𝜂, we can paramaterize

𝜂𝑡 and say something like

𝜂𝑡 =
⎧{
⎨{⎩

𝜂0 𝑡 ≤ 𝑡0
𝜂0/10 𝑡0 < 𝑡 ≤ 𝑡1
𝜂0/100 𝑡1 < 𝑡

for an initial 𝜂0 and specific epochs 𝑡0, 𝑡1. Alterntaively, we can use sublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decaysublinear decay 𝜂𝑡 = 𝜂0/(1+𝑐𝑡)
or 𝜂𝑡 = 𝜂0/

√
1 + 𝑐𝑡 for some constant 𝑐.

We need to calculate a lot of partial derivatives with respect to matrices.

27

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 9.3
Let 𝑦(X) ∈ ℝ and X = [𝑋𝑖𝑗] ∈ ℝ𝑚×𝑛. Then, we define the partial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. Xpartial derivative of 𝑦 w.r.t. X as

𝜕𝑦
𝜕X

= [
𝜕𝑦

𝜕𝑋𝑖𝑗
] =

⎡
⎢
⎢
⎢
⎣

𝜕𝑦
𝜕𝑋11

𝜕𝑦
𝜕𝑋12

⋯ 𝜕𝑦
𝜕𝑋1𝑛

𝜕𝑦
𝜕𝑋21

𝜕𝑦
𝜕𝑋22

⋯ 𝜕𝑦
𝜕𝑋2𝑛

⋮ ⋮ ⋮
𝜕𝑦

𝜕𝑋𝑚1

𝜕𝑦
𝜕𝑋𝑚2

⋯ 𝜕𝑦
𝜕𝑋𝑚𝑛

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝑚×𝑛

as a matrix.

The best way to do this is to just “guess” analogous to scalar calculus, then check that the dimension
is right (i.e., dim 𝜕𝑦

𝜕X = dim X)

Consider the forward pass for NN width 𝑘 and output dimension 𝑐:

x = input x ∈ ℝ𝑑×1

z = Wx + b1 W ∈ ℝ𝑘×𝑑, z,b1 ∈ ℝ𝑘×1

h = ReLU(z) h ∈ ℝ𝑘×1

𝜽 = Uh + b2 U ∈ ℝ𝑐×𝑘, 𝜽,b2 ∈ ℝ𝑐×1

𝐽 = 1
2
‖𝜽 − y‖2

2 y ∈ ℝ𝑐×1, 𝐽 ∈ ℝ

Now, we can apply the chain rule to find our desired gradients:

𝜕𝐽
𝜕𝜽

= 𝜽 − y

𝜕𝐽
𝜕U

= 𝜕𝐽
𝜕𝜽

∘ 𝜕𝜽
𝜕U

= (𝜽 − y)⏟
𝑐×1

h⊺⏟
1×𝑘

(to get 𝑐 × 𝑘)

𝜕𝐽
𝜕b2

= 𝜕𝐽
𝜕𝜽

∘ 𝜕𝜽
𝜕b2

= 𝜽 − y⏟
𝑐×1

(already has right dimensions)

𝜕𝐽
𝜕h

= 𝜕𝐽
𝜕𝜽

∘ 𝜕𝜽
𝜕h

= U⊺⏟
𝑘×𝑐

(𝜽 − y)⏟
𝑐×1

(to get 𝑘 × 1)

𝜕𝐽
𝜕z

= 𝜕𝐽
𝜕h

∘ 𝜕h
𝜕z

= U⊺(𝜽 − y)⏟⏟⏟⏟⏟
𝑘×1

⊙ ReLU′(z)⏟⏟⏟⏟⏟
𝑘×1

(using ⊙ to keep the dimension)

𝜕𝐽
𝜕W

= 𝜕𝐽
𝜕z

∘ 𝜕z
𝜕W

= (U⊺(𝜽 − y) ⊙ ReLU′(z))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘×1

x⊺⏟
1×𝑑

(to get 𝑘 × 𝑑)

𝜕𝐽
𝜕b1

= 𝜕𝐽
𝜕z

∘ 𝜕z
𝜕b1

= (U⊺(𝜽 − y) ⊙ ReLU′(z))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘×1

(already has right dimensions)

where ⊙ is the Hadamard (element-wise) product, i.e.,

⎡
⎢
⎢
⎣

𝑎1
𝑎2
⋮
𝑎𝑑

⎤
⎥
⎥
⎦

⊙
⎡
⎢
⎢
⎣

𝑏1
𝑏2
⋮
𝑏𝑑

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑎1𝑏1
𝑎2𝑏2
⋮

𝑎𝑑𝑏𝑑

⎤
⎥
⎥
⎦

28

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

for two matrices of identical dimension.

Existing frameworks like TensorFlow will automatically do this.

Theorem 9.4 (universal approximation theorem by 2-layer NNs)
For any continuous function 𝑓 ∶ ℝ𝑑 → ℝ𝑐 and any 𝜀 > 0, there exists 𝑘 ∈ ℕ, W ∈ ℝ𝑘×𝑑,
b ∈ ℝ𝑘, and U ∈ ℝ𝑐×𝑘 such that

sup
x

‖𝑓(x) − 𝑔(x)‖2 < 𝜀

where 𝑔(x) = U(𝜎(Wx + b)) and 𝜎 is element-wise ReLU.

Informally, a 2-layer NN can approximate any continuous function arbitrarily closely provided it is
wide enough with a large number of parameters.

However, it’s not very efficient. In the worst case, a 2-layer MLP needs 𝑘 = exp(1/𝜀) but a 3-layer
MLP can get away with 𝑘 = poly(1/𝜀). Deeper networks will have even smaller dimensionality
requirements.

To help avoid overfitting, we can apply dropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropout. For each minibatch, randomly select some hidden
neurons to be active with probability 𝑞 (and pretend the rest of them don’t exist). Then, each
training minibatch gets a “different” network, so it’s harder for neurons to “collude” to get over-
fitting. To make sure that dropout does not affect the overall expectation, multiply each h by 1/𝑞
during the back-propagation.

We can also do batch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalizationbatch normalization to ensure that the mean and variance of all the minibatches
are the same.

10 Convolutional Neural Networks

Lecture 12
Feb 15An MLP has a lot of parameters to learn. Instead of densely connecting every node in the input

layer to the hidden layer, only connect some of them (i.e., make W sparse).

Also, to reduce the number of parameters even more, make a bunch of the weights the same.
Following a certain pattern, we get a convolution. These are useful for image processing/classifica-
tion/segmentation but not for NLP.

The layers of CNN are roughly:

• feature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extractionfeature extraction: a series of convolutions + ReLUs. We use a sliding window to reduce
the dimensions of the input while poolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpooling inputs together to increase width to make up for
decreased size.

• vectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorizationvectorization: convert the matrix into a vector
• classification: a fully connected layer (i.e., MLP)
• probabilistic distribution: a softmax activation function

To process an image, split into sepraate channels for RGB values, then treat as a matrix of values.
We will learn a kernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernelkernel for the convolution with stochastic gradient descent.

29

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Example 10.1. To calculate the convolution

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∗ ⎡⎢
⎣

1 0 1
0 1 0
1 0 1

⎤⎥
⎦

= ⎡⎢
⎣

4 3 4
2 4 3
2 3 4

⎤⎥
⎦

we can find each coloured value by taking the tensor inner product (i.e., the inner product of
the vectorization) of the kernel with the kernel-sized region around a value:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Convolutions have been shown to represent human visual cognition. Traditional image processing
also uses convolutions. For example, edge detection and Gaussian smoothing.

For multi-channel input, “stack” the channels and use a “cube” (tensor) kernel. We can also apply
a bias term 𝑏 ∈ ℝ to the output tensor (add 𝑏 to every element).

In a CNN layer, we increase channels to account for decreased resolution. For example, with 3
RGB input channels, we might learn 5 different 3 × 3 × 3 kernels. Then, we will end up with 5
output channels.

We can also control the size of the step taken during convolution. Instead of always moving 1-left
and 1-down, we can have a larger stridestridestridestridestridestridestridestridestridestridestridestridestridestridestridestridestride. However, we want overlap between windows, so always
make sure that the stride is less than the kernel size. We can also control the paddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpadding, adding 0s
as necessary to keep boundary information.

Suppose we have input size
typical 𝑚 = 𝑛 = 224

⏞𝑚×𝑛×𝑐𝑖𝑛, kernel size
typical 𝑎 = 𝑏 = 5

⏞𝑎× 𝑏×𝑐𝑖𝑛, stride
typical 𝑠 = 𝑡 = 1, 2

⏞𝑠× 𝑡, and padding
typical 𝑝 = 𝑞

⏞𝑝 × 𝑞 so
that the preprocesssed input looks like

𝑚
+

2𝑝

𝑛 + 2𝑞

𝑚

𝑛

𝑝
𝑞

30

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Then, the output size will be

⌊1 + 𝑚+ 2𝑝 − 𝑎
𝑠

⌋ × ⌊1 + 𝑛 + 2𝑞 − 𝑏
𝑡

⌋

If we want the input and output to have the “same” size, set

𝑝 = ⌈
𝑚(𝑠 − 𝑎) + 𝑎 − 𝑠

2
⌉ and 𝑞 = ⌈

𝑛(𝑡 − 1) + 𝑏 − 𝑡
2

⌉

...one reading week later... Lecture 13
Feb 27

Recall the convolution of X = ⎡⎢
⎣

𝑥00 𝑥01 𝑥02
𝑥10 𝑥11 𝑥12
𝑥20 𝑥21 𝑥22

⎤⎥
⎦

and W = [𝑤00 𝑤01
𝑤10 𝑤11

]:

W ∗ X = [𝑤00𝑥00 +𝑤01𝑥01 +𝑤10𝑥10 +𝑤11𝑥11 𝑤00𝑥01 +𝑤01𝑥02 +𝑤10𝑥11 +𝑤11𝑥12
𝑤00𝑥10 +𝑤01𝑥11 +𝑤10𝑥20 +𝑤11𝑥21 𝑤00𝑥11 +𝑤01𝑥12 +𝑤10𝑥21 +𝑤11𝑥22

]

such that the vectorization is

Vector(W ∗ X) =
⎡
⎢
⎢
⎣

𝑤00𝑥00 +𝑤01𝑥01 +𝑤10𝑥10 +𝑤11𝑥11
𝑤00𝑥01 +𝑤01𝑥02 +𝑤10𝑥11 +𝑤11𝑥12
𝑤00𝑥10 +𝑤01𝑥11 +𝑤10𝑥20 +𝑤11𝑥21
𝑤00𝑥11 +𝑤01𝑥12 +𝑤10𝑥21 +𝑤11𝑥22

⎤
⎥
⎥
⎦

This is a linear transformation. Therefore, we can design a circulant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrixcirculant matrix Wcirc such that
Wcirc Vector(X) = Vector(W ∗ X). Define

Wcirc =
⎡
⎢
⎢
⎣

𝑤00 𝑤01 0 𝑤10 𝑤11 0 0 0 0
0 𝑤00 𝑤01 0 𝑤10 𝑤11 0 0 0
0 0 0 𝑤00 𝑤01 0 𝑤10 𝑤11 0
0 0 0 0 𝑤00 𝑤01 0 𝑤10 𝑤11

⎤
⎥
⎥
⎦

and it is clear that Wcirc Vector(X) = Vector(W ∗ X).

Now, notice that we only need to learn |W| = 4 weights instead of |Wcirc| = 9 × 4 = 36 weights.

We can also down-sample the input size using poolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpoolingpooling. Just like convolution, we take a sliding
window with some fixed size and stride and apply a transformation. Instead of the inner product,
we can do max-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-poolingmax-pooling (take the max of the window) or average-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-poolingaverage-pooling (take the mean of the
window). Global poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal poolingGlobal pooling is where the window is the whole input, so we output a single scalar.

Architecture Examples

LeNet Given an input of size 322,

• Convolve with six 52 kernels to 6 @ 282

• Subsample down by half to 6 @ 142

• Convolve with sixteen 52 kernels to 16 @ 102

• Subsample down by half to 16 @ 55

• Fully connect to a 120-wide layer
• Fully connect to an 84-wide layer
• Gaussian connect to a 10-wide output

31

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

AlexNet Given an input of size 3 @ 224 × 224:

• Convolve with 96 kernels to 96 @ 55 × 55
Lecture 14
Mar 5

11 Transformers

TODO: up to slide 11

Input
Embedding

Output
Embedding

Add & Norm
Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm
Masked

Multi-Head
Attention

Add & Norm
Feed

Forward

Add & Norm
Feed

Forward

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Probabilities

𝑁×

𝑁×

Positional
Encoding

Positional
Encoding

Our goal is given a sequence of tokens (the prompt) 𝑋 = (x1,… ,x𝑛), to find a sequence 𝑌 =
(y1,… ,y𝑚) such that the maximum likelihood

arg max
𝑌

𝑝(y1,… ,y𝑚 ∣ x1,… ,x𝑛)

32

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

is achieved. We use an auto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressiveauto-regressive model where we greedily take

arg max
y𝑘

𝑝(y𝑘 ∣ x1,… ,x𝑛,y1,… ,y𝑘−1)

i.e., one token at a time. Note that 𝑚 is not pre-defined; we keep generating until we reach the
[END] token.

At each step, we input the embeddings of the prompt and the partially generated text. The text
is converted to tokens, which are the smallest elements the model can understand. Then, the tokens
are embedded in a high-dimensional vector space (typically, 𝑑 = 512). The embedding should map
similar words to similar locations.

The output of the prompt embedding is 𝑋 = [x1,… ,x𝑛] ∈ ℝ𝑛×𝑑 and the auto-regressive outputs
[y1,… ,y𝑘] ∈ ℝ𝑘×𝑑

Since word order matters, we also add a positional encoding. We define the matrix 𝑊 𝑝 ∈ ℝ𝑛×𝑑

as
𝑊 𝑝

𝑡,2𝑖 = sin(𝑡/100002𝑖/𝑑), 𝑊 𝑝
𝑡,2𝑖+1 = cos(𝑡/100002𝑖/𝑑), 𝑖 = 0,… , 𝑑

2
− 1

This is a fixed part of the model, and we simply add 𝑊 𝑝 to 𝑋. The auto-regressive output is also
similarly positionally encoded.

These are then sent to attention layers.

The Attention function has an input value 𝑉 ∈ ℝ𝑛×𝑑, a key 𝐾 ∈ ℝ𝑛×𝑑, and a query 𝑄 ∈ ℝ𝑚×𝑑.
It outputs an ℝ𝑚×𝑑 matrix.

Recall the softmax function (eq. 4.b) as applied to vectors:

softmax(z) = [
exp(𝑧1)

∑𝑖 exp(𝑧𝑖)
,… ,

exp(𝑧𝑛)
∑𝑖 exp(𝑧𝑛)

]

Then, writing v⊺
𝑖 , k⊺

𝑖 , and q⊺
𝑖 as the rows of 𝑉, 𝐾, and 𝑄:

Attention(𝑉 ,𝐾,𝑄)

= softmax(𝑄𝐾⊺
√
𝑑

)𝑉

=

⎡
⎢
⎢
⎢
⎢
⎣

softmax(⟨q1,k1⟩√
𝑑

) softmax(⟨q1,k2⟩√
𝑑

) ⋯ softmax(⟨q1,k𝑛⟩√
𝑑

)

softmax(⟨q2,k1⟩√
𝑑

) softmax(⟨q2,k2⟩√
𝑑

) ⋯ softmax(⟨q2,k𝑛⟩√
𝑑

)
⋮ ⋮ ⋱ ⋮

softmax(⟨q𝑚,k1⟩√
𝑑

) softmax(⟨q𝑚,k2⟩√
𝑑

) ⋯ softmax(⟨q𝑚,k𝑛⟩√
𝑑

)

⎤
⎥
⎥
⎥
⎥
⎦

𝑉

=

⎡
⎢
⎢
⎢
⎢
⎣

softmax(⟨q1,k1⟩√
𝑑

)v⊺
1 + softmax(⟨q1,k2⟩√

𝑑
)v⊺

2 +⋯+ softmax(⟨q1,k𝑛⟩√
𝑑

)v⊺
𝑛

softmax(⟨q2,k1⟩√
𝑑

)v⊺
1 + softmax(⟨q2,k2⟩√

𝑑
)v⊺

2 +⋯+ softmax(⟨q2,k𝑛⟩√
𝑑

)v⊺
𝑛

⋮
softmax(⟨q𝑚,k1⟩√

𝑑
)v⊺

1 + softmax(⟨q𝑚,k2⟩√
𝑑

)v⊺
2 +⋯+ softmax(⟨q𝑚,k𝑛⟩√

𝑑
)v⊺

𝑛

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝑚×𝑑

Each output “value” (i.e., row) here is a convex combination of the rows of 𝑉.

In the self-attention case, 𝑄 = 𝐾 = 𝑉 = whatever the input is.

33

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

So far, there are no learnable parameters. To add learnable parameters, we do a linear layer with
each of 𝑉, 𝐾, and 𝑄. That is, 𝑊 𝑞

𝑖 ,𝑊
𝑘
𝑖 ,𝑊

𝑣
𝑖 ∈ ℝ512×64 can be learnable linear layers such that

Attention𝑖 = softmax(𝑄𝑊 𝑞
𝑖 (𝐾𝑊 𝑘

𝑖)⊺
√

𝑑
)𝑉𝑊 𝑣

𝑖 .

Each of these 𝑖 = 1,… , ℎ triplets is called a head. Typically ℎ = 8. A multi-head attention layer
concatenates each Attention𝑖 and sends that through a final learnable linear layer.

A masked attention layer just ignores future tokens y𝑘,… ,y𝑚 during training.

The feed forward layers are just two-layer MLPs with ReLU activation:

max(0,x⊺𝑊1 + b1)𝑊2 + b2

where 𝑊1 ∈ ℝ𝑑×4𝑑 and 𝑊2 ∈ ℝ4𝑑×𝑑. They also have residual connections and layer normal-
ization.

Summary There are three tunable hyperparameters: layers 𝑁 = 6, output dimensions 𝑑 = 512,
and heads ℎ = 8.

The cross-attention module has 𝑉 = 𝐾 = encoder and 𝑄 = decoder. The other attention modules
are self-attentive, so 𝑉 = 𝐾 = 𝑄.

We train by minimizing the log-loss between true next words and predicted next words

min
𝑊

�̂�[− ⟨𝑌 , log ̂𝑌⟩]

where 𝑌 = [y1,… ,y𝑙] is the one-hot output sequence and ̂𝑌 = [̂y1,… , ̂y𝑙] are the predicted proba-
bilities.

34

Chapter 3

Modern Machine Learning

12 Large Language Models

TOOD: up to slide 9

Generative Pre-Training (GPT-1)

GPT-1 is an open-source 12-layer decoder with 110M parameters. It is pre-trained unsupervised
on next-word prediction. Then, fine-tuning is done on task-dependent architecture, i.e., there are
specific

Bidirectional Encoder Representations from Transformers (BERT)

BERT is an encoder-only model. It also has a pre-training phase and fine-tuning phase.

In the pre-training phase, the encoder is given masked sentences and is trained to generate the
missing tokens (Masked LM; task A). Training on task A performs better than training on the
left-to-right prediction task. The model is also trained on next-sentence prediction (NSP; task B),
where it binary classifies whether two sentences follow or are unrelated.

BERTBASE has a similar number of parameters (110M) to GPT-1, but performs better. BERTLARGE
(340M) performs better than both.

RoBERTa (Robustly Optimized BERT Approach) is just a larger BERT model with bigger batches
and more data. It was also only trained on the Masked LM objective, but with longer sequences.

Sentence-BERT/RoBERTa trains the similarity task using two encoders (one for each sentence)
and saves represented encodings. This saves a lot of inference time.

GPT-2 through 4

Basically the only thing done is make the model larger.

35

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

GPT-2 introduced a new dataset called WebText. The 1.5B-parameter model is around 10× larger
than GPT-1, and is trained in the same way. It is about on par with BERT on finetuning tasks.
It is also the most recent OpenAI model to be open-sourced. However, it is very good at zero-shot
learning. This means we no longer need task-dependent architecture.

GPT-3 is trained exactly the same as GPT and GPT-2, but 100× larger (175B parameters). At
around the 100B-parameter level, we start to see emergent properties of in-context learning (zero-
/few-shot prompts) and chain-of-thought (either one-shot or “let’s do this step-by-step”). However,
raw language models do not answer questions or behave in a chat-like way. For example, asking a
quesiton to GPT-3 will result in a list of similar questions.

GPT-3.5 (InstructGPT) uses Reinforcement Learning from Human Feedback (RLHF). In RLHF,
the agent uses a policy function (LLM) to take actions (outputs) given a state (prompt), and is
returned a reward and new state based on the environment (another LLM):

1. Collect demonstration data, and train a supervised policy: train by overfitting GPT-3 to
human-written desired outputs (the SFT model).

2. Collect comparison data, and train a reward model: train a new reward model (RM) using
human rankings of outputs. We use pair-wise comparison logistic loss

loss(𝜃) = − 𝔼
(𝑥,𝑦𝑤,𝑦𝑙)

[log(𝜎(𝑟𝜃(𝑥, 𝑦𝑤) − 𝑟(𝑥, 𝑦𝑙)))]

for a prompt 𝑥 and preferred output 𝑟𝜃(𝑥, 𝑦𝑤) ≫ 𝑟𝜃(𝑥, 𝑦𝑙). This trains a real-valued function
𝑟𝜃 so ChatGPT knows how much better 𝑦𝑤 is than 𝑦𝑙 without the unknown human element.

3. Optimize a policy against the reward model using reinforcement learning: update the SFT
model using the RM model using proximal policy optimization (PPO):

max
𝜙

𝔼
(𝑥,𝑦)

[𝑟𝜃(𝑥, 𝑦)⏟
RM reward

−𝛽 log(𝜋RL
𝜙 (𝑦 ∣ 𝑥)/𝜋SFT(𝑦∣𝑥))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

model is close to SFT

] + 𝛾 𝔼[log(𝜋RL
𝜙 (𝑥))]⏟⏟⏟⏟⏟⏟⏟

pretraining loss

In general, GPT ≪ prompted GPT ≪ SFT ≪ PPO < PPO with pretraining mix. PPO-ptx is the
base model for ChatGPT-3.5 and GitHub Copilot.

GPT-4 allows combined multimodal image/text input. The paper says nothing so nobody knows
how it works.

13 Generative Adversarial Networks

Lecture 15
Mar 12Suppose we are given training data {x𝑖} ∼ 𝑞(x), i.e., with data densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata densitydata density 𝑞(x). Recall that 𝑞(x) is a

distribution if ∫∞
−∞ 𝑞(x)dx = 1 and 𝑞(x) ≥ 0.

We will develop a model densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel densitymodel density 𝑝𝜽(x) paramaterized by 𝜽. We will find 𝜽 by minimizing some

36

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

“distance” between 𝑞 and 𝑝𝜽. In particular, we will minimize the KL divergence

KL(𝑞 ∥ 𝑝𝜽) ∶= ∫𝑞(x) log
𝑞(x)
𝑝𝜽(x)

≡ ∫− log 𝑝𝜽(x) ⋅ 𝑞(x)dx

= 𝔼
x∼𝑞(x)

[− log 𝑝𝜽(x)]

≈ −1
𝑛

𝑛

∑
𝑖=1

log 𝑝𝜽(x𝑖)

Then, we will use 𝑝𝜽(x) to generate new data X ∼ 𝑝𝜽(x).

However, we do not have a closed-form way to calculate 𝑝𝜽. Suppose that we want 𝑝(x) to be a
𝑑-variate Gaussian with means 𝝁 ∈ ℝ𝑑 and covariance matrix 𝑆 ∈ ℝ𝑑×𝑑:

𝑝(x) = (2𝜋)𝑑/2[det(𝑆)]−1/2 exp[−1
2
(x −𝝁)⊺𝑆−1(x −𝝁)]

To draw from 𝑝(x), start by drawing n ∼ 𝒩(0, id). Then, we write x = 𝐿n + 𝝁 where 𝐿𝐿⊺ = 𝑆
(the Chloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostionChloesky decompostion of 𝑆), so that we have

𝔼[x] = 𝐸[𝐿n +𝝁] = 𝝁
𝔼[(x −𝝁)(x −𝝁)⊺] = 𝐿 ⋅ 𝔼[nn⊺] ⋅ 𝐿⊺ = 𝐿𝐿⊺ = 𝑆

and 𝑝(x) = 𝒩(𝝁, 𝑆), as desired.

We will simply replace the function 𝐿n +𝝁 with a neural network.

Theorem 13.1 (representation through push-forward)
Let 𝑟 be any continuous distribution on ℝℎ. Then, for any distribution 𝑝 on ℝ𝑑, there exist
push-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward mapspush-forward maps T ∶ ℝℎ ⇉ ℝ𝑑 such that

Z ∼ 𝑟 ⟹ T(Z) ∼ 𝑝

This does not hold if 𝑟 has a delta mass at any point. Wlog, we take 𝑟 to be standard Gaussian
noise.

We will learn T using a neural network. In general, T is not unique, so we can optionally add
restrictions to force uniqueness. It can be a really weird set of mappings if ℎ ≪ 𝑑.

Now, we are able to generate new data X ∼ 𝑝𝜽 = T𝜽(Z) where Z ∼ 𝒩(0, id). This means that we
can easily draw from 𝑝𝜽 but we cannot write the density function.

We’re stuck in a catch-22: we need the density to find the loss and train, and we need the final
trained T to draw. Consider again the KL divergence:

KL(𝑞 ∥ 𝑝𝜽) = ∫ log
𝑞(x)
𝑝𝜽(x)

dx ≡ ∫
𝑞(x)
𝑝𝜽(x)

[log
𝑞(x)
𝑝𝜽(x)

− 1]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓(𝑞(x)
𝑝𝜽(x))

⋅𝑝𝜽(x)dx (13.a)

which we have rewritten as a function 𝑓 ∶ ℝ+ → ℝ, 𝑓(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1 of the ratio.

This is convex, because d2

d𝑡2𝑓(𝑡) =
d
d𝑡

log 𝑡 = 1
𝑡
> 0.

37

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Definition 13.2 (Fenchel conjugate)
The conjugate of any function 𝑓 is the convex function 𝑓∗(𝑠) ∶= max𝑡 𝑠𝑡 − 𝑓(𝑡).

Then, if 𝑓 is convex and continuous, then 𝑓 = 𝑓∗∗.

Since our 𝑓 is convex and continuous, let’s try writing 𝑓 as 𝑓∗∗. First,

𝑓∗(𝑠) = [max
𝑡

𝑠𝑡 − 𝑓(𝑡)]

= max
𝑡

[𝑠𝑡 − 𝑡 log 𝑡 + 𝑡 − 1]

Then, setting the derivative to 0, we get 𝑠 = log 𝑡, i.e., 𝑡 = exp 𝑠, so

𝑓∗(𝑠) = exp 𝑠 − 1

This gives us
𝑓(𝑡) = max

𝑠
[𝑠𝑡 − 𝑓∗(𝑠)] = max

𝑠
[𝑠𝑡 − exp 𝑠 + 1]

Revisiting eq. 13.a, we can replace 𝑓 by 𝑓∗∗:

KL(𝑞 ∥ 𝑝𝜽) ≡ ∫[𝑓(
𝑞(x)
𝑝𝜽(x)

) − 1] ⋅ 𝑝𝜽(x)dx

= ∫[max
𝑠

𝑠
𝑞(x)
𝑝𝜽(x)

− exp 𝑠] ⋅ 𝑝𝜽(x)dx

= ∫[max
𝑠

𝑠𝑞(x) − exp(𝑠)𝑝𝜽(x)]dx (𝑝𝜽(x) has no 𝑠-dependence)

= max
𝑆∶ℝ𝑑→ℝ

∫[𝑆(x)𝑞(x) − exp(𝑆(x))𝑝𝜽(x)]dx (𝑠 is paramaterized by x)

≈ max
𝑆∶ℝ𝑑→ℝ

1
𝑛

𝑛

∑
𝑖=1

𝑆(x𝑖) −
1
𝑚

𝑚

∑
𝑗=1

exp[𝑆(T𝜽(z𝑗))] (by thm. 13.1)

where x𝑖 ∼ 𝑞(x) and z𝑗 ∼ 𝒩(0, id). We write this as one line:

min
𝜽

KL(𝑞 ∥ 𝑝𝜽) ≈ min
𝜽

max
𝝓

1
𝑛

𝑛

∑
𝑖=1

𝑆𝝓(x𝑖) −
1
𝑚

𝑚

∑
𝑗=1

exp[𝑆𝝓(𝑇𝜽(z𝑗))] (13.b)

for a generatorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgeneratorgenerator T𝜽 which maps latent noise z to observation x, and a discriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminatordiscriminator 𝑆𝝓 which
distinguishes data x from generation T𝜽(z).

Both are neural networks paramaterized by weights 𝜽 and 𝝓, respectively.

This ends up being a minimax game between the generator and discriminator. At the equilibrium,
the generator can make data and the discriminator cannot distinguish.

In reality, we do not use KL divergence, but instead JS divergence

𝐽𝑆(𝑞 ∥ 𝑝𝜽) ∶= KL(𝑞 ∥ 𝑞+𝑝𝜽
2

) + KL(𝑞 ∥ 𝑞+𝑝𝜽
2

)

= ∫𝑞(x) log
2𝑞(x)

𝑞(x) + 𝑝𝜽(x)
+ 𝑝𝜽(x) log

2𝑝𝜽(x)
𝑞(x) + 𝑝𝜽(x)

dx

= ∫[
𝑞(x)
𝑝𝜽(x)

log
𝑞(x)/𝑝𝜽(x)

𝑞(x)/𝑝𝜽(x) + 1
+ log 1

𝑞(x)/𝑝𝜽(x) + 1
+ log 4] ⋅ 𝑝𝜽(x)dx

= ∫𝑓(𝑞(x)
𝑝𝜽(x)

) ⋅ 𝑝𝜽(x)dx

38

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

where 𝑓(𝑡) = 𝑡 log 𝑡 − (𝑡 + 1) log(𝑡 + 1) + log 4 is convex. Then, 𝑓∗(𝑡) = − log(1 − exp 𝑠) − log 4.

If we do the same transformation, we can approximate

min
𝜽

𝐽𝑆(𝑞 ∥ 𝑝𝜽) ≈ min
𝜽

max
𝝓

1
𝑛

𝑛

∑
𝑖=1

𝑆𝝓(x𝑖) −
1
𝑚

𝑚

∑
𝑗=1

log[1 − exp𝑆𝝓(𝑇𝜽(z𝑗))] − log 4

Exercise 13.3. Verify that this is true.

Why do we use JS divergence? After the same transformations, we can apply the change of variable
𝑆𝝓 ← log𝑆𝝓:

min
𝜽

𝐽𝑆(𝑞 ∥ 𝑝𝜽) ≈ min
𝜽

max
𝝓

1
𝑛

𝑛

∑
𝑖=1

log𝑆𝝓(x𝑖) −
1
𝑚

𝑚

∑
𝑗=1

log[1 − 𝑆𝝓(𝑇𝜽(z𝑗))]

Let y(x) = [x is real data]. Let 𝔭1(x) = 𝑆𝜙(x) be the (learnable) probability of x being real, and
𝔭0 = 1 − 𝔭1. Then, we have:

min
𝜽

max
𝝓

�̂�X log 𝔭y(X)

which is just the logistic regression (section 4), which we know well.
Lecture 16
𝜋In fact, we can prove that if we pick any strictly convex function 𝑓 ∶ ℝ+ → ℝ with normalization

𝑓(1) = 0, then we can define an 𝑓-divergence 𝔻𝑓 such that 𝔻𝑓(𝑞 ∥ 𝑝) ≥ 0 iff 𝑝 = 𝑞 and we can
maximize

min
𝜽

𝔻𝑓(𝑞 ∥ 𝑝)

∶= min
𝜽

∫𝑓(𝑞(x)
𝑝𝜽(x)

)𝑝𝜽(x)dx

≈ min
𝜽

max
𝝓

1
𝑛

𝑛

∑
𝑛=1

𝑆𝝓(x𝑖) −
1
𝑚

𝑚

∑
𝑗=1

𝑓∗[𝑆𝝓(𝑇𝜽(z𝑗))]

MMD-GAN: Use a reproducing kernel to introduce non-linearity to the discriminator.

Wasserstein GAN: Suppose that the discriminator 𝑆 is Lipschitz continuous. Then, paramaterize
𝑆 as a neural network and optimize over all Lipschitz functions.

14 Flows

Instead of minimizing distance, we can try to explicitly learn 𝑞 as a function of 𝑝𝜽.

Remark 14.1. Let T ∶ ℝ𝑑 ⇉ ℝ𝑑. Write ∇T = (∇𝑇1,… ,∇𝑇𝑑) ∶ ℝ𝑑 ⇉ ℝ𝑑 ⊗ ℝ𝑑.

Since T ∘ T−1 = id, then ∇T(T−1) ⋅ ∇T−1 = id by the chain rule.

39

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Theorem 14.2 (push-forward as change-of-variable)
Let 𝑟 be any continuous distribution on ℝ𝑑. If the push-forward map T ∶ ℝ𝑑 → ℝ𝑑 is
invertible, then the density of X ∶= T(Z) is

𝑝(x) = 𝑟(T−1x) ⋅ ∣det(∇T−1x)∣ =
𝑟(T−1x)

|det(∇T(T−1x))|

Proof (sketchy. physicisty. gross.). Roughly speaking, this means that 𝑝(x)dx = 𝑟(z)dz, i.e., the
“mass” of the distribution is preserved.

We can “rearrange” to write 𝑝(x) = dz
dx𝑟(z). By definition, 𝑟(z) will be T−1x. The “derivative” dz

dx
will be ∇T−1x, but we need it as a scalar, so it pops out as ∣det(∇T−1x)∣.

Notation. Write 𝑝 = T#𝑟 to notate the above definition for 𝑝(x).

Now, suppose we plug this into the KL-divergence:

min
T

KL(𝑞 ∥ T#𝑟) ≈ max
T

1
𝑛

𝑛

∑
𝑖=1

[log 𝑟(T−1x𝑖) − log ∣det∇T(T−1x𝑖)∣]

and learn T. However, this is pretty hard to do, since we have to express the inverse of T and the
determinant of the 𝑑 × 𝑑 gradient matrix of T.

Instead, we can learn the inverse during training:

max
S=T−1

1
𝑛

𝑛

∑
𝑖=1

[log 𝑟(Sx𝑖) − log |det∇Sx𝑖|]

but then we need to invert S to recover T for sampling. These both suck. We prefer paying the
cost during training, since that is a one-time cost.

We can be extremely clever with our construction of T to try to avoid this. Suppose that we
construct T as a triangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular maptriangular map such that ∇T(z) is lower triangular, i.e., 𝑇𝑖 depends only on the
first 𝑖 inputs. This is very natural, since saying the 𝑖th output can only look at elements “before
it” sounds like causality.

Also, suppose that T is increasing on the 𝑗th output for the 𝑗th input, i.e., the diagonal of ∇T(z)
is positive.

Now, since ∇T is triangular, it’s cheap to calculate the determinant as the product of the diagonal.
We went from an 𝒪(𝑑3) operation to 𝒪(𝑑), which is way better.

Since 𝑇𝑖 only depends on 𝑥𝑖 and (already solved) previous elements, and it is increasing w.r.t. 𝑥𝑖,
we can use binary search to invert each element. Bisections are basically free, so this is also 𝒪(𝑑).

Therefore, increasing triangular maps work very well for our purposes. We can also prove that they
work.

40

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

Theorem 14.3 (uniqueness for increasing triangular maps)
For any two densities 𝑟 and 𝑝 on ℝ𝑑, there exists a unique (up to permutation) increasing
triangular map T such that 𝑝 = T#𝑟.

If we fix 𝑟 as noise, this means that any property of the probabilistic density 𝑝 is fully captured in
the deterministic map T!

This means that we can optimize

min
T

KL(𝑞 ∥ 𝑇#𝑟) ≈ max
T

1
𝑛

𝑛

∑
𝑖=1

[log 𝑟(T−1x𝑖) −
𝑑

∑
𝑗=1

log∇𝑗𝑇𝑗(T−1x𝑖)]

where it only takes 𝒪(𝑑) time for each training step. There are a lot of models that are just this in
disguise.

Autoregressive models (like GPT) calculate 𝑝1(𝑥1), 𝑝2(𝑥2 ∣ 𝑥1),… , 𝑝𝑗(𝑥𝑗 ∣ 𝑥<𝑗) which will be a
triangular map.

If we suppose that each one of these distributions are Gaussian, we get an increasing triangular
map. However, nested Gaussians can only produce Gaussians. To add in non-normality, permute
the entries randomly after each layer (masked AR flows).

Lecture 17
Mar 19The real-NVP model works by splitting the data into z1 = {𝑧1,… , 𝑧𝑙−1} and z2 = {𝑧𝑙,… , 𝑧𝑑}. The

first segment is just copied x1 = z1 but the second part is fed through a map

𝑇𝑗(𝑧𝑗; 𝑧1,… , 𝑧𝑙−1) = exp(𝛼𝑗(𝑧1,… , 𝑧𝑙−1) ⋅ 𝟏𝑗≥𝑙) ⋅ 𝑧𝑗 + 𝜇𝑗(𝑧1,… , 𝑧𝑙−1) ⋅ 𝟏𝑗≥𝑙

where 𝑇 ends up as a triangular map.

If we replace the linear wrapping of Gaussians with neural networks, we end up with a neural AR
flow.

If we use a polynomial, this is a sum-of-squares model.

Theorem 14.4 (inverse sampling)
Let Z ∼ 𝑈(0, 1), 𝐹 be the cdf of X, and 𝑄 = 𝐹−1 be the quantile function of X. Then,
𝑄(Z) ∼ 𝐹.

The function T ∶ ℝ𝑑 → ℝ𝑑 pushes the noise Z forward to observation X. The inverse map T−1

pulls observations X back to noise Z.

This lets us generate anything from a uniform random generator. In particular, we can send noise
to uniform, and then uniform to data.

15 Diffusion Models

Suppose we had infinite layers of the masked AR flows. Recall that we set

x𝑡+1 ≈ x𝑡 + 𝜂𝑡 ⋅ f𝑡(x𝑡) =∶ T𝑡(x𝑡)

41

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

In the continuous case, we can express this as an ODE

dx𝑡+1 = f𝑡(x𝑡)d𝑡

for doing theory. In practice, we use the discrete form, since that’s all we can do with real computers.

Suppose each x𝑡 ∼ 𝑝𝑡. In particular, since x𝑡+1 ∼ 𝑝𝑡+1, we can write

log 𝑝𝑡+1(x𝑡+1) = log 𝑝𝑡(x𝑡) − log |det 𝜕xT𝑡(x𝑡)|
= log 𝑝𝑡(x𝑡) − log |det[id+𝜂𝑡 ⋅ 𝜕xf𝑡(x𝑡)]|
≈ log 𝑝𝑡(x𝑡) − 𝜂𝑡 ⋅ ⟨𝜕x, f𝑡(x𝑡)⟩

where we make the last approximation by Taylor expansion of log(𝑥) at 𝑥 = 1. Then, in the
continuous limit as 𝜂𝑡 → 0, we can conclude that

d log 𝑝𝑡(x𝑡)
d𝑡

= − ⟨𝜕x, f𝑡(x𝑡)⟩

From this, we can develop an MLE and learn.

We define the forward process as going from data to noise following

dx = f𝑡(x, 𝑡) d𝑡 + 𝑔(𝑡) dw

and the reverse process using stochastic gradient ascent following

dx = [f(x, 𝑡) − 𝑔2(𝑡)∇x log 𝑝𝑡(x)]d𝑡 + 𝑔(𝑡) dw (15.a)

for some score functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore functionscore function ∇x log 𝑝𝑡(x). The score function is the only thing we need to learn, because
f is chosen (the forward process) and 𝑔 is also chosen (the variance of the noise). We will use the
forward process to learn the score function, just like how the discriminator in GANs is used during
training and discarded.

To develop the addition of noise, we can write a stochastic differential equation

dx𝑡+1 = f𝑡(x𝑡)d𝑡 + 𝐺𝑡(x𝑡)dn𝑡

where n𝑡 is some noise, which we can discretize as

x𝑡+1 ≈ x𝑡 + 𝜂𝑡 ⋅ f𝑡(x𝑡) + g𝑡(x𝑡) (15.b)

where g𝑡(x𝑡) ∼ 𝒩(𝟎, 𝜂2
𝑡𝐺𝑡(x𝑡)𝐺𝑡(x𝑡)⊺).

Trivially, an ODE is just an SDE with 𝐺𝑡 ≡ 𝟎. Conversely, any SDE is equivalent to an ODE
by replacing f𝑡 with f𝑡 −

1
2
(𝐺𝑡𝐺⊺

𝑡)𝜕x − 1
2
(𝐺𝑡𝐺⊺

𝑡)𝜕x log 𝑝𝑡. Since we typically pick 𝐺𝑡 to have no
x-dependence, the only important term here is the score function.

We can write the reverse-time SDE as

dx𝑡+1 = f𝑡(x𝑡)d𝑡 + 𝐺𝑡(x𝑡)dn𝑡

where f𝑡 = −f𝑡 + (𝐺𝑡𝐺⊺
𝑡)𝜕x + (𝐺𝑡𝐺⊺

𝑡)𝜕x log 𝑝𝑡 and time flows backwards for barred variables.
Lecture 18
Mar 21

42

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

We will make the forwards-time SDE super simple so that the complexity is hidden in the reverse-
time SDE. Then, we can learn the reverse-time SDE as a neural net.

We can equivalently write the discrete version of eq. 15.a, derived by integrating

∫
𝑠+𝛿

𝑠
dx𝑡 = x𝑠+𝛿 − x𝑠

∫
𝑠+𝛿

𝑠
[f(x, 𝑡) − 𝑔2(𝑡)∇x log 𝑝𝑡(𝑥)]d𝑡 = [𝑓(x, 𝑠) − 𝑔2(𝑠)∇𝑥 log 𝑝𝑠(𝑥)] ⋅ 𝛿

∫
𝑠+𝛿

𝑠
𝑔(𝑡)d𝑤 = 𝑔(𝑠) ⋅

√
𝛿 ⋅ 𝜀 (𝜀 ∼ 𝒩(0, 𝐼))

to get
x𝑠+𝛿 − x𝑠 = [𝑓(x, 𝑠) − 𝑔2(𝑠)∇x log 𝑝𝑠(x)] ⋅ 𝛿 + 𝑔(𝑠) ⋅

√
𝛿 ⋅ 𝜀

Score Matching

We want to get the score function 𝑠𝑝(x) = 𝜕x log 𝑝(x) of 𝑝 and 𝑞 to be close using the Fischer
divergence:

𝔽(𝑝 ∥ 𝑞) ∶= 1
2

𝔼
X∼𝑞

‖𝜕x log 𝑝(X) − 𝜕x log 𝑞(X)‖2
2

= 𝔼
X∼𝑞

[1
2
∥𝑠𝑝(X)∥22 + ⟨𝜕x, 𝑠𝑝(X)⟩ + 1

2
∥𝑠𝑞(X)∥22]

≈ �̂�
X∼𝑞

[1
2
∥𝑠𝑝(X)∥22 + ⟨𝜕x, 𝑠𝑝(X)⟩]

where we simplify the cross-term in the second line

∫−𝑠𝑝(x) ⋅ 𝜕x log 𝑞(x) ⋅ 𝑞(x)dx = ∫−𝑠𝑝(x) ⋅ 𝜕x𝑞(x) ⋅
1

𝑞(𝑥)
⋅ 𝑞(x)dx (chain rule)

= ∫−𝑠𝑝(x)d𝑞(x) (magic?)

=
�������:0
−𝑠𝑝(x)𝑞(x) +∫𝑞(x)d𝑠𝑝(x) (by parts)

= ∫𝑞(x) ⋅ 𝜕x𝑠𝑝(x)dx

= 𝔼
X∼𝑞

𝜕x𝑠𝑝(X)

but nobody actually does this because it requires calculating the Hessian of the neural network.

Instead, suppose we have a latent variable Z with joint density 𝑞(x, z). Then, we get instead

𝔽(𝑝 ∥ 𝑞) ∶= 1
2

𝔼
X∼𝑞

‖𝜕x log 𝑝(X) − 𝜕x log 𝑞(X)‖2
2

= 1
2

𝔼
(X,Z)∼𝑞

[∥𝑠𝑝(X) − 𝜕x log 𝑞(X ∣ Z)∥22 + ∥𝑠𝑞(X)∥22 + ‖𝜕x log 𝑞(X ∣ Z)‖2
2]

≈ �̂�
(X,Z)∼𝑞

∥𝑠𝑝(X) − 𝜕x log 𝑞(X ∣ Z)∥22

43

CS 480/680 Winter 2024: Lecture Notes James Ah Yong

If we consider X as the data Z plus some Gaussian noise 𝜀 ∼ 𝒩(𝟎, 𝐼). Then, it is easy to obtain
the conditional density of X ∣ Z ∼ 𝒩(Z, 𝐼).

In particular, 𝑞(X ∣ Z) ∝ exp(− ‖X−Z‖2
2

2
) which means log 𝑞(X ∣ Z) ∝ −1

2
‖X − Z‖2

2 ∝ ‖𝜀‖.

This means we can interpret the score function as a predictor for the noise. This makes sense,
because we are trying to figure out how to remove noise from the image.

Returning to eq. 15.b, we want to minimize the Fischer divergence across the entire interval 𝑡 ∼ 𝜇
and learn the score function

min
𝜽

�̂�
𝑡∼𝜇

(X𝑡X0)∼𝑞(x,x0)

𝜆𝑡‖𝑠𝑡(X𝑡; 𝜽) − 𝜕x log 𝑞(X𝑡 ∣ X0)‖2
2

where we learn a single network which takes in 𝑡 and x𝑡.

Then, to do inference, we can either stochastically simulate the discrete reverse-time SDE

dx𝑡+1 = −f𝑡 + (𝐺𝑡𝐺⊺
𝑡)𝜕x + (𝐺𝑡𝐺⊺

𝑡)𝑠𝑡(x𝑡; 𝜽) d𝑡 + 𝐺𝑡(x𝑡)dn𝑡

or deterministically follow the discrete reverse-time ODE

dx𝑡+1 = f𝑡 −
1
2
(𝐺𝑡𝐺⊺

𝑡)𝜕x − 1
2
(𝐺𝑡𝐺⊺

𝑡)𝑠𝑡(x𝑡; 𝜽) d𝑡

The problem is that this requires evaluating the score neural network multiple times.

To do interpolation, run the forwards-time model on two images to get noisy points in latent space,
then average those and run the backwards-time model to recover an average image.

44

Chapter 4

Trustworthy Machine Learning

17 Robustness

We can measure models along a bunch of performance metrics: accuracy, training time, memory
usage, inference speed, robustness, privacy, fairness, etc.

Formally, to define the robustness of a classifier 𝑓 ∶ 𝕏 → 𝕐, given an unseen pair of examples
(𝑥, 𝑦) ∈ 𝕏 × 𝕐, 𝑓(𝑥) should be 𝑦.

Attackers have found ways to construct noise that image classifiers will confidently clsasify as
something wrong.

45

List of Named Results

2.2 Theorem (linear duality) . 5
2.8 Theorem (convergence theorem) . 7
3.2 Theorem (exact interpolation is always possible) 9
3.3 Theorem (Fermat’s necessary condition for optimality) 10
6.3 Theorem (characterization under convexity) . 17
7.6 Theorem (Mercer’s theorem) . 20
8.5 Theorem (convergence rate for convex case) . 23
8.7 Theorem (convergence rate for strong convexity) 24
8.8 Theorem (convergence rate for non-convex case) . 25

9.4 Theorem (universal approximation theorem by 2-layer NNs) 29

13.1 Theorem (representation through push-forward) . 37
14.2 Theorem (push-forward as change-of-variable) . 40
14.3 Theorem (uniqueness for increasing triangular maps) 41
14.4 Theorem (inverse sampling) . 41

46

Index of Defined Terms

𝑚-strong convexity, 24

affine function, 5
auto-regressive, 33

bag-of-words
representation, 4

batch normalization, 29
bias, 5

Chloesky decompostion, 37
circulant matrix, 31
classification calibrated, 16
convexity, 22

data density, 36
dataset, 4
discriminator, 38
dropout, 29

feature, 4
feature extraction, 29
Fenchel conjugate, 38

generator, 38

hidden layer, 26
hinge loss, 16

inner product, 5

input layer, 26

kernel, 29
kernel matrix, 20

label, 4
learning rate, 18
linear classifier, 5
linear function, 5
linear layer, 26
Lipschitz continuity, 23
logistic loss, 12
logit, 11

margin, 11, 14
matrix vectorization, 19
maximum likelihood

estimation, 12
minibatch, 27
model density, 36

normal equation, 10

one-vs.-all perceptron, 9
one-vs.-one perceptron, 9
output layer, 26

padding, 30
pooling, 29, 31

average, 31

global, 31
max, 31

positive semi-definite, 20
prediction layer, 26
push-forward maps, 37

quadratic classifier, 19

regularization term, 10
reproducing kernel, 19
ridge regression, 10

score function, 42
sigmoid transformation, 12
sign function, 5
softmax, 13
stochastic gradient descent,

22
stride, 30
sublinear decay, 27
support vector, 14
supporting hyperplanes, 14
symmetric, 20

test sample, 4
training sample, 4
triangular map, 40

vectorization, 29

47

	1 Classic Machine Learning
	1 Introduction
	2 Perceptron
	3 Linear Regression
	4 Logistic Regression
	5 Hard-Margin Support Vector Machines
	6 Soft-Margin Support Vector Machines
	7 Reproducing Kernels
	8 Gradient Descent

	2 Neural Networks
	9 Multilayer Perceptron
	10 Convolutional Neural Networks
	11 Transformers

	3 Modern Machine Learning
	12 Large Language Models
	13 Generative Adversarial Networks
	14 Flows
	15 Diffusion Models

	4 Trustworthy Machine Learning
	17 Robustness

	Back Matter
	List of Named Results
	Index of Defined Terms

