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Chapter 1

Introduction to the Language of
Mathematics

1.1 Warm-Up Exercises

Warm-Up Exercise 1.1. Determine if the following quantified statements are true or false.
No justification is needed.

(a) ∀𝑥 ∈ ℝ, sin2 𝑥 + cos2 𝑥 = 1

(b) ∃𝑦 ∈ ℤ, 6𝑦 − 3 = 28

(c) ∀𝑝 ∈ ℚ, ∃𝑞 ∈ ℤ, |𝑝 − 𝑞| ≤ 1

Solution. (a) True, by the Pythagorean identity.

(b) False, since 6𝑦 − 3 = 28 ⟹ 6𝑦 = 31 ⟹ 𝑦 = 31
6 , which is undefined in ℤ.

(c) True, select 𝑞 = ⌊𝑝⌋.

1.2 Recommended Problems

Recommended Problem 1.1. Which of the following are statements? If it is a statement,
determine if it is true or false. No justification is needed.

(a) 3 ≤ 𝜋

(b) 2𝑥 − 3 ≥ −1

(c) 𝑥2 − 𝑦3 = 1

(d) 𝑁 is a perfect square.

(e) 𝑥2 + 5𝑥 − 2
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(f) 𝑥 ≤ 𝑥 + 1

(g) There is a largest real number.

(h) There is a smallest positive number.

(i) Every real number is either positive or negative.

(j) Some triangles are right triangles.

Solution. (a) Statement, true.

(b) Not a statement, depends on 𝑥.

(c) Not a statement, depends on 𝑥 and 𝑦.

(d) Not a statement, depends on 𝑁.

(e) Not a statement or an open sentence.

(f) Not a statement, depends on 𝑥.

(g) Statement, false.

(h) Statement, true.

(i) Statement, false.

(j) Statement, true.

Recommended Problem 1.2. For each of the following statements, identify the four parts of
the quantified statement (quantifier, variables, domain, and open sentence). Next, express the
statement in symbolic form using as few words as possible and then write down the negation of
the statement (when possible, without using any negative words such as “not” or the ¬ symbol,
but negative math symbols like ≠ are okay). Finally, determine if the original statement is
true or false. No justification is needed.

(a) The equation 𝑥2 + 2𝑥 − 3 = 0 has a real solution.

(b) No matter which real value x we choose, −1 + cos 𝑥 will always be positive.

(c) Every natural number can be expressed as the product of two integers.

(d) There is a perfect square which is also a perfect cube.

Solution. (a)
∃𝑥 ∈ ℝ, 𝑥2 + 2𝑥 − 3 = 0

Quantifier: existential; variable: 𝑥; domain: ℝ; open sentence: 𝑥2 + 2𝑥 − 3 = 0. Negation:

∀𝑥 ∈ ℝ, 𝑥2 + 2𝑥 − 3 ≠ 0

The statement is true.
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(b)
∀𝑥 ∈ ℝ, −1 + cos 𝑥 > 0

Quantifier: universal; variable: 𝑥; domain: ℝ; open sentence: −1 + cos 𝑥 > 0. Negation:

∃𝑥 ∈ ℝ, −1 + cos 𝑥 ≤ 0

The statement is false.

(c)
∀𝑛 ∈ ℕ, ∃𝑎, 𝑏 ∈ ℤ, 𝑛 = 𝑎𝑏

Quantifier: universal/existential; variables: 𝑛, 𝑎, 𝑏; domain: ℕ, ℤ; open sentence: 𝑛 = 𝑎𝑏.
Negation:

∃𝑛 ∈ ℕ, ∀𝑎, 𝑏 ∈ ℤ, 𝑛 ≠ 𝑎𝑏

The statement is true.

(d)
∃𝑛 ∈ ℤ, ∃𝑥 ∈ ℤ, ∃𝑦 ∈ ℤ, 𝑛 = 𝑥2 = 𝑦3

Quantifier: existential; variables: 𝑛, 𝑥, 𝑦; domain: ℤ; open sentence: 𝑛 = 𝑥2 = 𝑦3. Negation:

∀𝑛 ∈ ℤ, ∀𝑥 ∈ ℤ, ∀𝑦 ∈ ℤ, 𝑛 ≠ 𝑥2 ∧ 𝑛 ≠ 𝑦2

The statement is true.

Recommended Problem 1.3. Negate the following statements without using words or the
¬ symbol. For each statement determine whether it or its negation is true.

(a) ∃𝑎 ∈ ℤ, ∀𝑏 ∈ ℤ, 3𝑎 = 𝑏

(b) ∀𝑎 ∈ ℤ, ∃𝑏 ∈ ℤ, 3𝑎 = 𝑏

(c) ∀𝑎 ∈ ℝ, ∀𝑏 ∈ ℝ, ∃𝑐 ∈ ℝ, 𝑎
𝑐 = 𝑏

Solution. (a) ∃𝑎 ∈ ℤ, ∀𝑏 ∈ ℤ, 3𝑎 = 𝑏: false
∀𝑎 ∈ ℤ, ∃𝑏 ∈ ℤ, 3𝑎 ≠ 𝑏: true

(b) ∀𝑎 ∈ ℤ, ∃𝑏 ∈ ℤ, 3𝑎 = 𝑏: true
∃𝑎 ∈ ℤ, ∀𝑏 ∈ ℤ, 3𝑎 ≠ 𝑏: false

(c) ∀𝑎 ∈ ℝ, ∀𝑏 ∈ ℝ, ∃𝑐 ∈ ℝ, 𝑎
𝑐 = 𝑏: true

∃𝑎 ∈ ℝ, ∃𝑏 ∈ ℝ, ∀𝑐 ∈ ℝ, 𝑎
𝑐 ≠ 𝑏: false

Recommended Problem 1.4. Express the following statement symbolically without using
any words: Every integer is a perfect square.

Solution. ∀𝑛 ∈ ℤ, ∃𝑚 ∈ ℤ, 𝑛 = 𝑚2
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Chapter 2

Logical Analysis of Mathematical
Statements

2.1 Warm-Up Exercises

Warm-Up Exercise 2.1. Let 𝐴, 𝐵 and 𝐶 be statement variables. Determine the truth table
of (𝐴 ∧ 𝐵) ⟹ ¬𝐶.

Solution.

𝐴 𝐵 𝐶 𝐴 ∧ 𝐵 ¬𝐶 (𝐴 ∧ 𝐵) ⟹ ¬𝐶
𝑇 𝑇 𝑇 𝑇 𝐹 𝐹
𝑇 𝑇 𝐹 𝑇 𝑇 𝑇
𝑇 𝐹 𝑇 𝐹 𝐹 𝑇
𝑇 𝐹 𝐹 𝐹 𝑇 𝑇
𝐹 𝑇 𝑇 𝐹 𝐹 𝑇
𝐹 𝑇 𝐹 𝐹 𝑇 𝑇
𝐹 𝐹 𝑇 𝐹 𝐹 𝑇
𝐹 𝐹 𝐹 𝐹 𝑇 𝑇

Warm-Up Exercise 2.2. State the contrapositive and the converse of the following implica-
tion: If Jane is a doctor, then she went to medical school.

Solution. Converse: If Jane went to medical school, then she is a doctor. Contrapositive: If Jane
did not go to medical school, then she is not a doctor.

2.2 Recommended Problems
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Recommended Problem 2.1. For each of the following statements, identify the four parts of
the quantified statement (quantifier, variables, domain, and open sentence). Next, express the
statement in symbolic form using as few words as possible and then write down the negation of
the statement (when possible, without using any negative words such as “not” or the ¬ symbol,
but negative math symbols like ≠ are okay). Finally determine if the original statement is
true or false. No justification is needed.

(a) For all real numbers 𝑥 and 𝑦, 𝑥 ≠ 𝑦 implies that 𝑥2 + 𝑦2 > 0.

(b) For every even integer 𝑎 and odd integer 𝑏, a rational number 𝑐 can always be found such
that 𝑎 < 𝑐 < 𝑏 or 𝑏 < 𝑐 < 𝑎.

Solution. (a)
∀𝑥 ∈ ℝ, ∀𝑦 ∈ ℝ, 𝑥 ≠ 𝑦 ⟹ 𝑥2 + 𝑦2 > 0

Quantifier: universal; variable: 𝑥; domain: ℝ; open sentence: 𝑥 ≠ 𝑦 ⇒ 𝑥2+𝑦2 > 0. Negation:
∃𝑥 ∈ ℝ, ∃𝑦 ∈ ℝ, 𝑥 ≠ 𝑦 ∧ 𝑥2 + 𝑦2 ≤ 0. The statement is true.

(b)

∀𝑎 ∈ ℤ, ∀𝑏 ∈ ℤ, ∃𝑐 ∈ ℚ, (
𝑎
2 ∈ ℤ ∧

𝑏 − 1
2 ∈ ℤ) ⟹ (𝑎 < 𝑐 < 𝑏 ∨ 𝑏 < 𝑐 < 𝑎)

Quantifier: universal/existential; variables: 𝑎, 𝑏, 𝑐; domain: ℤ, ℚ; open sentence: (𝑎
2 ∈

ℤ ∧ 𝑏−1
2 ∈ ℤ) ⇒ (𝑎 < 𝑐 < 𝑏 ∨ 𝑏 < 𝑐 < 𝑎). Negation:

∃𝑎 ∈ ℤ, ∃𝑏 ∈ ℤ, ∀𝑐 ∈ ℚ, (
𝑎
2 ∈ ℤ ∧

𝑏 − 1
2 ∈ ℤ) ∧ ((𝑐 ≤ 𝑎 ∨ 𝑐 ≥ 𝑏) ∧ (𝑐 ≤ 𝑏 ∨ 𝑐 ≥ 𝑎))

The statement is true.

Recommended Problem 2.2. Let 𝐴 and 𝐵 be statement variables. Prove that (¬𝐴) ∨ 𝐵 is
logically equivalent to ¬(𝐴 ∧ ¬𝐵).

Proof. Apply De Morgan’s law: (¬𝐴) ∨ 𝐵 ≡ ¬(𝐴 ∧ ¬𝐵).

Recommended Problem 2.3. Let 𝐴 and 𝐵 be statement variables. Determine whether
𝐴 ⟹ 𝐵 is logically equivalent to (¬𝐴) ∨ 𝐵.

Proof. 𝐴 ⟹ 𝐵 is defined as ¬(𝐴 ∧ ¬𝐵). This is easily verifiable by noticing that an implication is
only false when the hypothesis is true but the conclusion is false. Expand using De Morgan’s law:
¬(𝐴 ∧ ¬𝐵) ≡ (¬𝐴 ∨ 𝐵).

Recommended Problem 2.4. Assume that it has been established that the following impli-
cation is true:

If I don’t see my advisor today, then I will see her tomorrow.

For each of the sentences below, determine if it is true or false. No justification is needed. If
you can’t determine the truth value of the sentence, explain why.
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(a) I don’t meet my advisor both today and tomorrow. (This is arguably an ambiguous
English sentence. Answer the problem using both interpretations.)

(b) I meet my advisor both today and tomorrow.

(c) I meet my advisor either today or tomorrow (but not on both days).

Solution. (a) For the case of not today and not tomorrow, the statement is contradictory. For
the case of today or tomorrow, exclusive, see (c).

(b) Not contradictory, but the truth value is indeterminate because we do not know about meeting
“today”.

(c) Not contradictory, but the truth value is indeterminate because we do not know about meeting
“today”.

Recommended Problem 2.5. Let 𝐴, 𝐵 and 𝐶 be statement variables. Prove the following
logical equivalence using a chain of logical equivalences as in Chapter 2.3 of the notes.

(𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶) ≡ ¬((𝐴 ∨ 𝐵) ⟹ ¬𝐶)

Proof. Begin by considering the implication on the right-hand side. Recall the definition of an
implication 𝑋 ⟹ 𝑌 ≡ ¬𝑋 ∨ 𝑌. Apply this and simplify:

¬((𝐴 ∨ 𝐵) ⟹ ¬𝐶) ≡ ¬(¬(𝐴 ∨ 𝐵) ∨ ¬𝐶)
≡ ¬(¬(𝐴 ∨ 𝐵)) ∧ ¬(¬𝐶) De Morgan’s law
≡ (𝐴 ∨ 𝐵) ∧ 𝐶 Double negation
≡ (𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶) Distributive conjunction

Hence, the left side is logically equivalent to the right side, so the equivalency holds.

Recommended Problem 2.6. Four friends: Alex, Ben, Gina and Dana are having a discus-
sion about going to the movies. Ben says that he will go to the movies if Alex goes as well.
Gina says that if Ben goes to the movies, then she will join. Dana says that she will go to
the movies if Gina does. That afternoon, exactly two of the four friends watch a movie at the
theatre. Deduce which two people went to the movies.

Proof. For each friend, let 𝐴, 𝐵, 𝐺, and 𝐷 be if they go to the movies, respectively. We can write
our statements as implications: 𝐴 ⟹ 𝐵, 𝐵 ⟹ 𝐺, and 𝐺 ⟹ 𝐷. By the transitivity of
the implication, 𝐴 ⟹ 𝐺, 𝐴 ⟹ 𝐷, and 𝐵 ⟹ 𝐷. Recall that only two of 𝐴, 𝐵, 𝐺, and
𝐷 are allowed to be simultaneously true. If 𝐴 is true, then all of 𝐵, 𝐺, and 𝐷 are true, which
is a contradiction. Therefore, 𝐴 is false. If 𝐵 is true, then both 𝐺 and 𝐷 are true, which is a
contradiction. Therefore, 𝐵 is false. This leaves 𝐺 (which implies 𝐷) and 𝐷 to be true, which
satisfies our exclusivity condition. Therefore, Gina and Dana atttended the movies.
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Recommended Problem 2.7. Consider the following statement.

For all 𝑥 ∈ ℝ, if 𝑥6 + 3𝑥4 − 3𝑥 < 0, then 0 < 𝑥 < 1

(a) Rewrite the given statement in symbolic form.

(b) State the hypothesis of the implication within the given statement.

(c) State the conclusion of the implication within the given statement.

(d) State the converse of the implication within the given statement.

(e) State the contrapositive of the implication within the given statement.

(f) State the negation of the given statement without using the word “not” or the ¬ symbol
(but symbols such as ≠, ∤, etc. are fine).

Solution. (a) ∀𝑥 ∈ ℝ, 𝑥6 + 3𝑥4 − 3𝑥 < 0 ⟹ 0 < 𝑥 < 1

(b) 𝑥6 + 3𝑥4 − 3𝑥 < 0

(c) 0 < 𝑥 < 1

(d) 0 < 𝑥 < 1 ⟹ 𝑥6 + 3𝑥4 − 3𝑥 < 0

(e) 𝑥 ≤ 0 ∨ 𝑥 ≥ 1 ⟹ 𝑥6 + 3𝑥4 − 3𝑥 ≥ 0

(f) ∃𝑥 ∈ ℝ, 𝑥6 + 3𝑥4 − 3𝑥 < 0 ∧ (𝑥 ≤ 0 ∨ 𝑥 ≥ 1)

8



Chapter 3

Proving Mathematical Statements

3.1 Warm-Up Exercises

Warm-Up Exercise 3.1. Prove the following two quantified statements.

(a) ∀𝑛 ∈ ℕ, 𝑛 + 1 ≥ 2

(b) ∃𝑛 ∈ ℤ, 5𝑛−6
3 ∈ ℤ

Proof. (a) Let 𝑛 ∈ ℕ. Recall that 1 is the smallest natural. 𝑛 ≥ 1 ⟺ 𝑛 + 1 ≥ 2.

(b) Select 𝑛 = 3. Then, 5𝑛−6
3 = 15−6

3 = 9
3 = 3 ∈ ℤ.

Warm-Up Exercise 3.2. Prove that for all 𝑘 ∈ ℤ, if 𝑘 is odd, then 4𝑘 + 7 is odd.

Proof. Let 𝑘 be an odd integer. Then, it can be written as 2𝑛 + 1 for some integer 𝑛.

Substituting, 4𝑘 + 7 = 4(2𝑛 + 1) + 7 = 8𝑛 + 11 = 2(4𝑛 + 5) + 1. By definition, since 4𝑘 + 7 can be
written as 2𝑚 + 1 where 𝑚 = 4𝑛 + 5 is an integer, it is odd.

Warm-Up Exercise 3.3. Consider the following proposition

For all 𝑎, 𝑏 ∈ ℤ, if 𝑎3 ∣ 𝑏3, then 𝑎 ∣ 𝑏.

We now give three erroneous proofs of this proposition. Identify the major error in each proof,
and explain why it is an error.

(a) Consider 𝑎 = 2, 𝑏 = 4. Then 𝑎3 = 8 and 𝑏3 = 64. We see that 𝑎3 ∣ 𝑏3 since 8 ∣ 64. Since
2 ∣ 4, we have 𝑎 ∣ 𝑏.

(b) Since 𝑎 ∣ 𝑏, there exists 𝑘 ∈ ℤ such that 𝑏 = 𝑘𝑎. By cubing both sides, we get 𝑏3 = 𝑘3𝑎3.
Since 𝑘3 ∈ ℤ, then 𝑎3 ∣ 𝑏3.
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(c) Since 𝑎3 ∣ 𝑏3, there exists 𝑘 ∈ ℤ such that 𝑏3 = 𝑘𝑎3. Then 𝑏 = (𝑘𝑎2/𝑏2)𝑎, hence 𝑎 ∣ 𝑏.

Solution. (a) This proof is erroneous as it only considers one specific case of 𝑎 and 𝑏 and not the
general case of integer 𝑎 and 𝑏.

(b) This proof supposes the conclusion instead of the hypothesis.

(c) The proof does not guarantee that 𝑘𝑎2

𝑏2 is an integer.

Warm-Up Exercise 3.4. Let 𝑥 be a real number. Prove that if 𝑥3 − 5𝑥2 + 3𝑥 ≠ 15, then
𝑥 ≠ 5.

Proof. Suppose for the contrapositive that 𝑥 = 5. Then, 𝑥3 − 5𝑥2 + 3𝑥 = (5)3 − 5(5)2 + 3(5) = 15,
as required. Since the contrapositive is true, the original implication must be true.

Warm-Up Exercise 3.5. Prove that there do not exist integers 𝑥 and 𝑦 such that 2𝑥+4𝑦 = 3.

Proof. For the sake of contradiction, suppose the negation is true.

Consider the negation of the statement: there exist integers 𝑥 and 𝑦 such that 2𝑥 + 4𝑦 = 3. Let 𝑥
and 𝑦 be such integers. Then, 𝑥+2𝑦 is an integer. Therefore, 2𝑥+4𝑦 = 2(𝑥+2𝑦) is even. However,
3 is odd. An integer cannot be both even and odd, therefore, the negation is false, and the original
statement is true.

Warm-Up Exercise 3.6. Prove that an integer is even if and only if its square is an even
integer.

Proof. (⇒) Let 𝑛 be an even integer. Then, 𝑛 = 2𝑘 for some integer 𝑘. 𝑛2 = (2𝑘)2 = 4𝑘2 = 2(2𝑘2).
Since 2𝑘2 is an integer, 𝑛2 is even.

(⇐) Let 𝑛 be an even square integer. Then, 𝑛 = 2𝑘 for some integer 𝑘 and 𝑛 = 𝑥 ⋅ 𝑥 for some
integer 𝑥. Since 2𝑘 = 𝑥 ⋅ 𝑥, and 2 is prime, 2 must divide 𝑥. Therefore, 𝑥 = 2𝑦 for some integer 𝑦,
which is the definition of being even.

Since the implication is true in both directions, the biconditional is true.

3.2 Recommended Problems

Recommended Problem 3.1. Prove that 𝑥2 + 9 ≥ 6𝑥 for all real numbers 𝑥.

Proof. Let 𝑥 be a real number. 𝑥2 + 9 ≥ 6𝑥 ⟺ 𝑥2 − 6𝑥 + 9 ≥ 0 ⟺ (𝑥 − 3)2 ≥ 0. Since the
square of a real is always non-negative, the statements are true.
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Recommended Problem 3.2. Prove that for all 𝑟 ∈ ℝ where 𝑟 ≠ −1 and 𝑟 ≠ −2,

2𝑟+1

𝑟 + 2 −
2𝑟

𝑟 + 1 =
𝑟(2𝑟)

(𝑟 + 1)(𝑟 + 2)

Proof. Let 𝑟 be a real number that is neither −1 nor −2. Then,

𝐿𝐻𝑆 =
2𝑟+1

𝑟 + 2 −
2𝑟

𝑟 + 1

=
2𝑟+1(𝑟 + 1) − 2𝑟(𝑟 + 2)

(𝑟 + 1)(𝑟 + 2)

=
𝑟2𝑟+1 + 2𝑟+1 − 𝑟2𝑟 − 2 ⋅ 2𝑟

(𝑟 + 1)(𝑟 + 2)

=
𝑟2𝑟+1 +�

��2𝑟+1 − 𝑟2𝑟 −�
��2𝑟+1

(𝑟 + 1)(𝑟 + 2)

=
𝑟(2𝑟+1 − 2𝑟)

(𝑟 + 1)(𝑟 + 2)

=
𝑟(2𝑟 ⋅ 2 − 2𝑟)
(𝑟 + 1)(𝑟 + 2)

=
𝑟(2𝑟 +��2𝑟 −��2𝑟)
(𝑟 + 1)(𝑟 + 2)

=
𝑟(2𝑟)

(𝑟 + 1)(𝑟 + 2)
= 𝑅𝐻𝑆

Since the left side equals the right side, the equality is true.

Recommended Problem 3.3. Prove that there exists a real number 𝑥 such that 𝑥2 − 6𝑥 +
11 ≤ 2.

Proof. Let 𝑥 = 3. 𝑥2 − 6𝑥 + 11 = (3)2 − 6(3) + 11 = 9 − 18 + 11 = 2 ≤ 2, as required. Since 3 is a
real number, the statement is true.

Recommended Problem 3.4. Prove or disprove each of the following statements.

(a) ∀𝑛 ∈ ℤ, 5𝑛−6
3 is an integer.

(b) ∀𝑎 ∈ ℤ, 𝑎3 + 𝑎 + 2 is even.

(c) For every prime number 𝑝, 𝑝 + 7 is composite.

(d) For all 𝑥 ∈ ℝ, |𝑥 − 3| + |𝑥 − 7| ≥ 10.

(e) There exists a natural number 𝑚 < 123456 such that 123456𝑚 is a perfect square.

11
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(f) ∃𝑘 ∈ ℤ, 8 ∤ (4𝑘2 + 12𝑘 + 8).

(a)

Proof. Let 𝑛 = 1 as a counter-example. Then, 5𝑛−6
3 = 5−6

3 = −1
3 , which is not an integer.

Therefore, the statement is false.

(b)

Proof. Let 𝑎 be an integer. Then, 𝑎 is either even or odd. Suppose that 𝑎 is even and can
be written as 𝑎 = 2𝑘 for an integer 𝑘. Then, 𝑎3 + 𝑎 + 2 = (2𝑘)3 + 2𝑘 + 2 = 8𝑘3 + 2𝑘 + 2 =
2(4𝑘3 + 𝑘 + 1), an even number.
Suppose 𝑎 is odd and can be written as 𝑎 = 2𝑘 + 1 for an integer 𝑘. Then, 𝑎3 + 𝑎 + 2 =
(2𝑘 + 1)3 + (2𝑘 + 1) + 2 = 8𝑘3 + 12𝑘2 + 8𝑘 + 4 = 2(4𝑘3 + 6𝑘2 + 4𝑘 + 2), an even number.
Therefore, the statement is true.

(c)

Proof. Let 𝑝 be a prime number.
If 𝑝 is even, then 𝑝 = 2, and 𝑝 + 7 = 9 which is composite.
If 𝑝 is odd, 𝑝 = 2𝑘 + 1 for some integer 𝑘 ≥ 0 (as there are no negative primes). Then,
𝑝 + 7 = 2𝑘 + 8 = 2(𝑘 + 4), which is even. The only even prime is 2, but 2𝑘 + 8 ≥ 8, so 𝑝 + 7
is composite.
Therefore, since all primes are either even or odd, 𝑝 + 7 is composite for all primes.

(d)

Proof. Let 𝑥 = 3 as a counter-example. Then, |𝑥 − 3| + |𝑥 − 7| = |(3) − 3| + |(3) − 7| = 0 + 4 =
4 ≱ 10. Therefore, the statement is false.

(e)

Proof. Let 𝑚 = 1929, which is a natural number less than 123456. Then, 123456𝑚 =
238146624 = 154322. Since 123456𝑚 can be written as 𝑛2 where 𝑛 = 15432 ∈ ℤ, it is a
perfect square, and the statement is true.
Note: To find 𝑚 = 1929, notice that if 123456𝑚 = 𝑛2, then

√
123456𝑚 = 8

√
1929𝑚 (after

simplifying by prime factorization) must be an integer.

(f)

Proof. Consider the negation, ∀𝑘 ∈ ℤ, 8 ∣ (4𝑘2 + 12𝑘 + 8). Notice that the open sentence is
logically equivalent to 8 ∣ (4𝑘2 + 12𝑘). Let 𝑘 be a natural number. Then, 𝑘 is either even or
odd.
Suppose that 𝑘 is even and can be written as 𝑘 = 2𝑛. Then, 4𝑘2 = 16𝑛2 = 8(2𝑛2), so 8 ∣ 4𝑘2.
Likewise, 12𝑘 = 24𝑛 = 8(3𝑛), so 8 ∣ 12𝑘. By DIC, 8 ∣ (4𝑘2 + 12𝑘).
Now, suppose that 𝑘 is odd and can be written as 𝑘 = 2𝑛 + 1. Then, 4𝑘2 + 12𝑘 = 4(4𝑛2 +
2𝑛 + 1) + 12(2𝑛 + 1) = 16𝑛2 + 40𝑛 + 16 = 8(2𝑛2 + 5𝑛 + 1), so 8 ∣ (4𝑘2 + 12𝑘).
Therefore, the negation is true, so the original statement is false.

12
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Recommended Problem 3.5. Prove or disprove each of the following statements involving
nested quantifiers.

(a) For all 𝑛 ∈ ℤ, there exists an integer 𝑘 > 2 such that 𝑘 ∣ (𝑛3 − 𝑛).

Proof. Let 𝑛 be an integer. If 𝑛 = 0 or 𝑛 = ±1, 𝑛3 − 𝑛 = 0 and all integers (including any 𝑘)
divide zero.
If 𝑛 > 1, we select 𝑘 = 𝑛 + 1 > 2. Factor: 𝑛3 − 𝑛 = 𝑛(𝑛 − 1)(𝑛 + 1). Then, 𝑛3 − 𝑛 =
[𝑛(𝑛 − 1)](𝑛 + 1), so 𝑘 ∣ (𝑛3 − 𝑛).
If 𝑛 < 1, first let 𝑚 = −𝑛 so 𝑛3 − 𝑛 = (−𝑚)3 + 𝑚 = −(𝑚3 − 𝑚). Now, select 𝑘 = 𝑚 + 1 > 2.
Then, 𝑛3 − 𝑛 = −𝑚(𝑚 − 1)(𝑚 + 1), so 𝑘 ∣ (𝑛3 − 𝑛).
Therefore, the statement is true.

(b) For every positive integer 𝑎, there exists an integer 𝑏 with |𝑏| < 𝑎 such that 𝑏 divides 𝑎.

Proof. We disprove by counter-example. Let 𝑎 = 1. Then, |𝑏| < 1, and the only such integer
is 0. However, 0 ∤ 1 since there is no integer 𝑘 where 𝑘 ⋅ 0 = 1. Therefore, the statement is
false.

(c) There exists an integer 𝑛 such that 𝑚(𝑛 − 3) < 1 for every integer 𝑚.

Proof. Choose 𝑛 = 3 and let 𝑚 be an integer. Then, 𝑚(𝑛−3) = 𝑚(3−3) = 0 < 1, as desired.
Therefore, the statement is true.

(d) ∃𝑛 ∈ ℕ, ∀𝑚 ∈ ℤ, −𝑛𝑚 < 0

Proof. Consider the negation ∀𝑛 ∈ ℕ, ∃𝑚 ∈ ℤ, −𝑛𝑚 ≥ 0. Let 𝑛 be a natural number.
We can choose an integer 𝑚, namely 𝑚 = −1. Notice that because 𝑛 is a natural number,
𝑛 > 0 ⟺ 𝑛(−1)(−1) > 0 ⟺ −𝑛𝑚 > 0 ⟺ −𝑛𝑚 ≥ 0.
Because the negation is true, the original statement is false.

Recommended Problem 3.6. Prove that for all integers 𝑎 and 𝑏, if 𝑎 ∣ (2𝑏+3) and 𝑎 ∣ (3𝑏+5),
then 𝑎 ∣ 13.

Proof. Let 𝑎 and 𝑏 be arbitrary integers, and assume that 𝑎 ∣ (2𝑏 + 3) and 𝑎 ∣ (3𝑏 + 5).

Recall the divisibility of integer combinations: since 2𝑏 + 3 and 3𝑏 + 5 are integers, 𝑎 must divide
𝑛(2𝑏 + 3) + 𝑚(3𝑏 + 5) for all integers 𝑛 and 𝑚. Specifically, let 𝑛 = −39 and 𝑚 = 26. Then,
𝑛(2𝑏 + 3) + 𝑚(3𝑏 + 5) = −78𝑏 − 117 + 78𝑏 + 130 = 13. Therefore, 𝑎 ∣ 13.

Recommended Problem 3.7. Let 𝑎, 𝑏, 𝑐 and 𝑑 be positive integers. Prove that if 𝑎
𝑏 < 𝑐

𝑑 ,
then 𝑎

𝑏 < 𝑎+𝑐
𝑏+𝑑 < 𝑐

𝑑 .

Proof. Let 𝑎, 𝑏, 𝑐 and 𝑑 all be positive integers. Suppose 𝑎
𝑏 < 𝑐

𝑑 , which means 𝑎𝑑 < 𝑏𝑐, because 𝑏

13
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and 𝑑 are positive. Now, adding 𝑎𝑏 and 𝑐𝑑 to both sides, respectively:

𝑎𝑑 < 𝑏𝑐 𝑎𝑑 < 𝑏𝑐
𝑎𝑑 + 𝑎𝑏 < 𝑏𝑐 + 𝑎𝑏 𝑎𝑑 + 𝑐𝑑 < 𝑏𝑐 + 𝑐𝑑
𝑎(𝑏 + 𝑑) < 𝑏(𝑐 + 𝑎) 𝑑(𝑎 + 𝑐) < 𝑐(𝑏 + 𝑑)

𝑎
𝑏 <

𝑎 + 𝑐
𝑏 + 𝑑

𝑎 + 𝑐
𝑏 + 𝑑 <

𝑐
𝑑

Therefore, 𝑎
𝑏 < 𝑎+𝑐

𝑏+𝑑 < 𝑐
𝑑 .

Recommended Problem 3.8. Prove that for all integers 𝑛, if 1 − 𝑛2 > 0, then 3𝑛 − 2 is an
even integer.

Proof. Let 𝑛 be an integer where 1 − 𝑛2 > 0. Since squares of integers are positive, 1 > 𝑛2. This is
only true when |𝑛| < 1, but the only such integer is 0. 3(0) − 2 = −2, which is even.

Recommended Problem 3.9. Let 𝑎 and 𝑏 be integers. Prove each of the following implica-
tions.

(a) If 𝑎𝑏 = 4, then (𝑎 − 𝑏)3 − 9(𝑎 − 𝑏) = 0

Proof. Let 𝑎 and 𝑏 be integers with product 4.
Consider the possible values for 𝑎 and 𝑏. 4’s divisor pairs are (±1, ±4) and (±2, ±2). For all
of these pairs, either 𝑎 = 𝑏 or 𝑎 = 𝑏 ± 3. Specifically:

• If 𝑏 = ±2, then 𝑎 = 𝑏
• If 𝑏 = 1, then 𝑎 = 4 = 𝑏 + 3 (for 𝑏 = −1, 𝑎 = −4 = 𝑏 − 3)
• If 𝑏 = 4, then 𝑎 = 1 = 𝑏 − 3 (for 𝑏 = −4, 𝑎 = −1 = 𝑏 + 3)

Notice that the conclusion factors to (𝑎 − 𝑏)(𝑎 − 𝑏 − 3)(𝑎 − 𝑏 + 3) = 0. This is true when 𝑎 = 𝑏
or 𝑎 = 𝑏 ± 3, which we just showed.

(b) If 𝑎 and 𝑏 are positive, then 𝑎2(𝑏 + 1) + 𝑏2(𝑎 + 1) ≥ 4𝑎𝑏

Proof. Let 𝑎 and 𝑏 be positive integers, i.e., at least 1.
If 𝑎 and 𝑏 are both at least 1, then 𝑎 + 𝑏 ≥ 2, or 𝑎 + 𝑏 − 2 ≥ 0. Likewise, 𝑎𝑏 is a positive
integer, so 𝑎𝑏(𝑎 + 𝑏 − 2) ≥ 0.

𝑎𝑏(𝑎 + 𝑏 − 2) ≥ 0
𝑎2𝑏 + 𝑏2𝑎 − 2𝑎𝑏 ≥ 0

Recall that squares are non-negative:

(𝑎 − 𝑏)2 + 𝑎2𝑏 + 𝑏2𝑎 − 2𝑎𝑏 ≥ 0
𝑎2 − 2𝑎𝑏 + 𝑏2 + 𝑎2𝑏 + 𝑏2𝑎 − 2𝑎𝑏 ≥ 0

𝑎2 + 𝑎2𝑏 + 𝑏2 + 𝑏2𝑎 ≥ 4𝑎𝑏
𝑎2(𝑏 + 1) + 𝑏2(𝑎 + 1) ≥ 4𝑎𝑏

14
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Recommended Problem 3.10. Let 𝑎, 𝑏, 𝑐 and 𝑑 be integers. Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐
and 𝑐 ∣ 𝑑, then 𝑎 ∣ 𝑑.

Proof. Let 𝑎, 𝑏, 𝑐, and 𝑑 be integers where 𝑎 ∣ 𝑏, 𝑏 ∣ 𝑐, and 𝑐 ∣ 𝑑.

Recall the transitivity of divisibility: for integers 𝑥, 𝑦, and 𝑧, if 𝑥 ∣ 𝑦 and 𝑦 ∣ 𝑧, then 𝑥 ∣ 𝑧.

Then, 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑐 implies 𝑎 ∣ 𝑐. Likewise, 𝑎 ∣ 𝑐 and 𝑐 ∣ 𝑑 implies 𝑎 ∣ 𝑑.

Recommended Problem 3.11. Prove that the product of any four consecutive integers is
one less than a perfect square.

Proof. The statement is equivalently expressed that for any integer 𝑘, 𝑘(𝑘+1)(𝑘+2)(𝑘+3) = 𝑟2 −1
for some positive integer 𝑟.

Let 𝑘 be an integer. The product 𝑘(𝑘 + 1)(𝑘 + 2)(𝑘 + 3) expands to 𝑘4 + 6𝑘3 + 11𝑘2 + 6𝑘. As a
fourth-degree polynomial, its square root would be a quadratic.

Expanding algebraically, the square of a quadratic in 𝑥, 𝑎𝑥2 + 𝑏𝑥 + 𝑐, is 𝑎2𝑥4 + 2𝑎𝑏𝑥3 + (2𝑎𝑐 +
𝑏2)𝑥2 + 2𝑏𝑐𝑥 + 𝑐2.

Notice that when 𝑎 = 𝑐 = 1 and 𝑏 = 3, this formula becomes 𝑥4+6𝑥3+11𝑥2+6𝑥+1. The coefficients
on 𝑥 are precisely our original product (with a constant +1). Therefore, 𝑥4 + 6𝑥3 + 11𝑥2 + 6𝑥 =
(𝑥2 + 3𝑥 + 1)2 − 1 for all real 𝑥.

We can now let 𝑟 = 𝑘2 + 3𝑘 + 1, which is a positive integer such that

𝑟2 − 1 = (𝑘2 + 3𝑘 + 1)2 − 1
= 𝑘4 + 6𝑘3 + 11𝑘2 + 6𝑘 + 1 − 1
= 𝑘(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

and conclude that the statement is true.

Recommended Problem 3.12. Let 𝑥, 𝑦 ∈ ℝ. Prove that if 𝑥𝑦 +2𝑥−3𝑦 −6 < 0, then 𝑥 < 3
or 𝑦 < −2.

Proof. Let 𝑥 and 𝑦 be real solutions to 𝑥𝑦 + 2𝑥 − 3𝑦 − 6 < 0.

Notice that the inequality factors to (𝑥 − 3)(𝑦 + 2) < 0. This is true when 𝑥 and 𝑦 are non-zero
and have opposite signs: either 𝑥 < 3 and 𝑦 > −2, or 𝑥 > 3 and 𝑦 < −2. Therefore, either 𝑥 < 3
or 𝑦 < −2.

Recommended Problem 3.13. Is the following implication true for all integers 𝑎, 𝑏 and 𝑐?
Prove that your answer is correct.

𝑎 ∣ 𝑏 if and only if 𝑎𝑐 ∣ 𝑏𝑐

Solution. The statement is false. Consider the counterexample 𝑎 = 2, 𝑏 = 3, and 𝑐 = 0. Then, the
backwards implication’s hypothesis is true (0 ∣ 0) but the conclusion is false (2 ∤ 3).

15
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Recommended Problem 3.14. Let 𝑛 be an integer. Prove that 2 ∣ (𝑛4 − 3) if and only if
4 ∣ (𝑛2 + 3).

Proof. Consider the two implications of the biconditional statement:

(⇒) Let 𝑛 be an integer where 2 divides 𝑛4 −3. This means there is an integer 𝑘 where 𝑛4 −3 = 2𝑘.
Notice that this means 𝑛4 − 3 is even, so 𝑛4 = 2(𝑘 + 1) + 1 is odd. Even numbers raised to the
fourth power remain even, so 𝑛 must be odd. Therefore, 𝑛 = 2𝑚 + 1 for some integer 𝑚.

Now, expand 𝑛2 + 3:

𝑛2 + 3 = (2𝑚 + 1)2 + 3
= 4𝑚2 + 4𝑚 + 1 + 3
= 4(𝑚2 + 𝑚 + 1)

Because 𝑚2 + 𝑚 + 1 is an integer, 4 ∣ (𝑛2 + 3).

(⇐) Let 𝑛 be an integer where 4 divides 𝑛2 +3. This means there is an integer 𝑘 where 𝑛2 +3 = 4𝑘
or 𝑛2 = 4𝑘 − 3, and

𝑛2 = 4𝑘 − 3
𝑛4 = (4𝑘 − 3)2

𝑛4 = 16𝑘2 − 24𝑘 + 9
𝑛4 − 3 = 16𝑘2 − 24𝑘 + 6

= 2(8𝑘2 − 12𝑘 + 3)

Because 8𝑘2 − 12𝑘 + 3 is an integer, 2 ∣ (𝑛4 − 3).

Therefore, since both expressions imply the other, 2 ∣ (𝑛4 − 3) if and only if 4 ∣ (𝑛2 + 3).

Recommended Problem 3.15. Let 𝑥 and 𝑦 be integers. Prove that if 𝑥𝑦 = 0 then 𝑥 = 0 or
𝑦 = 0.

Proof. Consider the contrapositive, 𝑥 ≠ 0 and 𝑦 ≠ 0 implies 𝑥𝑦 ≠ 0.

Let 𝑥 and 𝑦 be non-zero integers. WLOG, take 𝑥 ≤ 𝑦.

Now, take cases of the signs of 𝑥 and 𝑦:

• If 0 < 𝑥 ≤ 𝑦, then 𝑥𝑦 > 0, since two positive numbers’ product is a positive number.

• 𝑥𝑦 is also positive when 𝑥 ≤ 𝑦 < 0, with two negative numbers.

• When 𝑥 < 0 < 𝑦, i.e. the signs are opposite, 𝑥𝑦 < 0.

Since 𝑥𝑦 can never be 0 for any combination of non-zero integers, the contrapositive, and by
extension, the original implication, is true.

16
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Recommended Problem 3.16. Prove that ∀𝑎, 𝑏 ∈ ℤ, [(𝑎 ∣ 𝑏 ∧ 𝑏 ∣ 𝑎) ⟺ 𝑎 = ±𝑏].

Proof. Let 𝑎 and 𝑏 be integers. Suppose 𝑎 divides 𝑏 and vice versa. Equivalently, integers 𝑝 and 𝑞
exist such that 𝑎 = 𝑝𝑏 and 𝑏 = 𝑞𝑎. Substituting, 𝑎 = 𝑝𝑏 = 𝑝(𝑞𝑎) ⟺ 1 = 𝑝𝑞 ⟺ 𝑝 = 1

𝑞 .

The only integers of the form 1
𝑘 with integer 𝑘 are 1 and -1. Therefore, 𝑝 = 1

𝑞 if and only if 𝑝 = ±1,
i.e., 𝑎 = ±𝑏.

Recommended Problem 3.17. Let 𝑎 be an integer. Prove that 𝑎2 + 2𝑎 − 3 is even if and
only if 𝑎 is odd.

Proof. Consider the two implications of the biconditional statement:

(⇒) Let 𝑎 be an odd integer, or, 𝑎 = 2𝑘 + 1 for some integer 𝑘. Then,

2𝑎2 + 2𝑎 − 3
= (2𝑘 + 1)2 + 2(2𝑘 + 1) − 3
= 4𝑘2 + 4𝑘 + 1 + 4𝑘 + 2 − 3
= 4𝑘2 + 8𝑘 − 2
= 2(2𝑘2 + 4𝑘 − 1)

which is even, because 2𝑘2 + 4𝑘 − 1 is an integer.

(⇐) Consider the contrapositive, where even 𝑎 implies odd 𝑎2 + 2𝑎 − 3. Let 𝑎 be an even integer,
i.e., 𝑎 = 2𝑘 for some integer 𝑘. Then,

𝑎2 + 2𝑎 − 3 = (2𝑘)2 + 2(2𝑘) − 3
= 4𝑘2 − 4𝑘 − 3
= 2(2𝑘2 − 2𝑘 − 2) + 1

which is odd, because 2𝑘2 − 2𝑘 − 2 is an integer. Since the contrapositive is true, the original
implication is also true.

Therefore, since both implications hold, the statement is true.

Recommended Problem 3.18. Prove or disprove each of the following for any integers 𝑥
and 𝑦.

(a) If 2 ∤ 𝑥𝑦 then 2 ∤ 𝑥 and 2 ∤ 𝑦.

(b) If 2 ∤ 𝑦 and 2 ∤ 𝑥 then 2 ∤ 𝑥𝑦.

Proof. First, notice that if 2 ∣ 𝑛 for an integer 𝑛, then 𝑛 = 2𝑘 for some integer 𝑘. This is the
definition of saying 𝑛 is even. Therefore, 2 ∤ 𝑛 is the same as saying 𝑛 is not even, i.e., 𝑛 is
odd.
Let 𝑥 and 𝑦 be odd integers. Equivalently, 𝑥 = 2𝑝 + 1 and 𝑦 = 2𝑞 + 1 for some integers 𝑝
and 𝑞. Substituting into 𝑥𝑦, (2𝑝 + 1)(2𝑞 + 1) = 2𝑝𝑞 + 2𝑝 + 2𝑞 + 1 = 2(𝑝𝑞 + 𝑝 + 𝑞) + 1. By
definition, since 𝑝𝑞 + 𝑝 + 𝑞 is an integer, 𝑥𝑦 is odd.
Therefore, 𝑥 and 𝑦 are odd if and only if 𝑥𝑦 is odd, so (a) and (b) are both true.
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(c) If 10 ∤ 𝑥𝑦 then 10 ∤ 𝑥 and 10 ∤ 𝑦.

Proof. Consider the contrapositive, “if 10 ∣ 𝑥 and 10 ∣ 𝑦 then 10 ∣ 𝑥𝑦”. Let 𝑥 and 𝑦 be integers
where 10 divides both.
This means 𝑥 = 10𝑛 and 𝑦 = 10𝑚 for some integers 𝑛 and 𝑚. Then, 𝑥𝑦 = (10𝑛)(10𝑚) =
10(10𝑛𝑚), and since 10𝑛𝑚 is an integer, 10 ∣ 𝑥𝑦.
Since the contrapositive, the original implication is true.

(d) If 10 ∤ 𝑥 and 10 ∤ 𝑦 then 10 ∤ 𝑥𝑦.

Proof. For a counterexample, let 𝑥 = 5 and 𝑦 = 2. 10 ∤ 𝑥 and 10 ∤ 𝑦 since 2 < 5 < 10.
However, 𝑥𝑦 = 10 and 10 ∣ 10, so the statement is false.

Recommended Problem 3.19. For every odd integer 𝑛, prove that there exists a unique
integer 𝑚 such that 𝑛2 = 8𝑚 + 1.

Proof. Let 𝑛 be an odd integer, i.e., 𝑛 = 2𝑘 + 1 for some other integer 𝑘. Then, 𝑛2 = (2𝑘 + 1)2 =
4𝑘2 + 4𝑘 + 1. We must show that 8𝑚 = 4𝑘2 + 4𝑘 ⟺ 2𝑚 = 𝑘2 + 𝑘, or, 𝑘2 + 𝑘 is even. Now,
consider 𝑘’s parity:

Suppose 𝑘 is even. Then, 𝑘 = 2𝑝 for an integer 𝑝 and 𝑘2 + 𝑘 = 4𝑝2 + 2𝑝 = 2(2𝑝2 + 𝑝), which means
that 𝑘2 + 𝑘 is even.

Now, suppose 𝑘 is odd. Then, 𝑘 = 2𝑝+1 for an integer 𝑝 and 𝑘2 +𝑘 = 4𝑝2 +6𝑝+2 = 2(2𝑝2 +3𝑝+1),
which means that 𝑘2 + 𝑘 is even.

Since 𝑘 is either even or odd, 𝑘2 + 𝑘 is even for all 𝑘.

Therefore, 𝑚 = 𝑘2+𝑘
2 is an integer, but recall 𝑘 = 𝑛−1

2 , so:

𝑚 =
𝑘2 + 𝑘

2 =
(𝑛−1

2 )
2

+ 𝑛−1
2

2 =
(𝑛−1)2

4 + 𝑛−1
2

2 =
(𝑛 − 1)2 + 2(𝑛 − 1)

8 =
𝑛2 − 1

8

is the same integer, but 𝑚 = 𝑛2−1
8 if and only if 𝑛2 = 8𝑚 + 1, so the statement is true.

Recommended Problem 3.20. Prove the following statements.

(a) There is no smallest positive real number.

Proof. Suppose, for a contradiction, that there is a smallest positive real number 𝑛. Now,
consider 𝑛

2 .
This number is still real (ℝ is closed under division). 𝑛

2 is positive because 𝑛 and 2 are
positive. Therefore, 𝑛

2 is a positive real number.
Clearly 𝑛

2 < 𝑛, so the supposition must be false. Therefore, there is no smallest positive real
number.

(b) For every even integer 𝑛, 𝑛 cannot be expressed as the sum of three odd integers.
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Proof. We will prove by the contrapositive. Let 𝑟, 𝑠, and 𝑡 be arbitrary integers so 2𝑟 + 1,
2𝑠 + 1, and 2𝑡 + 1 are odd.
Then, 𝑟 + 𝑠 + 𝑡 = 2𝑟 + 2𝑠 + 2𝑡 + 3 = 2(𝑟 + 𝑠 + 𝑡 + 1) + 1, so this sum is odd.
Therefore, the sum of three odd integers is always odd, and no even integer may be expressed
as such a sum.

(c) Let 𝑎, 𝑏 ∈ ℤ. If 𝑎 is an even integer and 𝑏 is an odd integer, then 4 ∤ (𝑎2 + 2𝑏2).

Proof. Let 𝑎 and 𝑏 be integers and suppose, for a contradiction, that the negation is true.
Then, 𝑎 is even, 𝑏 is odd, and 4 ∣ (𝑎2 + 2𝑏2).
Rewrite 𝑎 = 2𝑛 and 𝑏 = 2𝑚 + 1 with some integers 𝑛 and 𝑚. Now, expand 𝑎2 + 2𝑏2 =
(2𝑛)2 + 2(2𝑚 + 1)2 = 4𝑛2 + 8𝑚2 + 8𝑚 + 2.
We can extract a factor of four, and get 4 ∣ (4(𝑛2 + 2𝑚2 + 2𝑚) + 2). Then, 4 must divide 2,
which is a contradiction.
Therefore, the negation is false, so the original statement is true.

(d) For every integer 𝑚 with 2 ∣ 𝑚 and 4 ∤ 𝑚, there are no integers 𝑥 and 𝑦 that satisfy
𝑥2 + 3𝑦2 = 𝑚.

Proof. Those negations are ugly so we can consider the contrapositive:

If 𝑥2 + 3𝑦2 = 𝑚 has integer solutions in 𝑥 and 𝑦, 𝑚 is odd or 4 ∣ 𝑚.

Notice that 2 ∤ 𝑚 ∨ 4 ∣ 𝑚 ≡ 4 ∣ 𝑚.
Suppose integers 𝑥 and 𝑦 so 𝑥2 + 3𝑦2 = 𝑚 exist. Break into cases for 𝑥 and 𝑦’s parities.

• If 𝑥 and 𝑦 are odd, they can respectively be expressed as 2𝑝 + 1 and 2𝑞 + 1 for integers 𝑝
and 𝑞. Then, 𝑚 = (2𝑝 + 1)2 + 3(2𝑞 + 1)2 = 4𝑝2 + 4𝑝 + 1 + 3(4𝑞2 + 4𝑞 + 1). This simplifies
to 4(𝑝2 + 3𝑞2 + 𝑝 + 3𝑞 + 1), so 𝑚 ∣ 4.

• If 𝑥 and 𝑦 are even, let 𝑥 = 2𝑝 and 𝑦 = 2𝑞. Then, 𝑚 = (2𝑝)2 + 3(2𝑞)2 = 4𝑝2 + 12𝑞2 =
4(𝑝2 + 3𝑞2), so 𝑚 ∣ 4.

• If 𝑥 is odd and 𝑦 is even, let 𝑥 = 2𝑝 + 1 and 𝑦 = 2𝑞. Then, 𝑚 = (2𝑝 + 1)2 + 3(2𝑞)2 =
4𝑝2 + 4𝑝 + 1 + 3(4𝑞2) = 2(2𝑝2 + 2𝑝 + 6𝑞2) + 1, so 𝑚 is odd.

• If 𝑥 is even and 𝑦 is odd, let 𝑥 = 2𝑝 and 𝑦 = 2𝑞 + 1. Then, 𝑚 = (2𝑝)2 + 3(2𝑞 + 𝑞)2 =
4𝑝2 + 3(4𝑞2 + 4𝑞2 + 1) = 2(2𝑝2 + 6𝑞2 + 6𝑞 + 1) + 1, so 𝑚 is odd.

Therefore, either 4 divides 𝑚 or 𝑚 is odd, so the contrapositive, and by extension the original
statement, is true.

(e) The sum of a rational number and an irrational number is irrational.

Proof. First, recall that rational numbers are those which can be expressed by 𝑝
𝑞 for integers

𝑝 and 𝑞.
Let 𝑥 be a rational number and suppose for a contradiction that 𝑦 is irrational such that 𝑥+𝑦
is rational.
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Then, 𝑥 = 𝑝
𝑞 for integers 𝑝 and 𝑞. Also, 𝑥 + 𝑦 = 𝑛

𝑚 for integers 𝑛 and 𝑚. Substituting,
𝑝
𝑞 + 𝑦 = 𝑛

𝑚 . Rearranging,

𝑝
𝑞 + 𝑦 =

𝑛
𝑚 ⟺ 𝑝 + 𝑦𝑞 =

𝑞𝑛
𝑚 ⟺ 𝑦 =

𝑞𝑛 − 𝑚𝑝
𝑞𝑚

but if 𝑦 equals the ratio of two integers (𝑞𝑛 − 𝑚𝑝 and 𝑞𝑚), by definition, 𝑦 is rational.
Therefore, by contradiction, the sum of a rational number and an irrational number is irra-
tional.

(f) Let 𝑥 be a non-zero real number. If 𝑥 + 1
𝑥 < 2, then 𝑥 < 0.

Proof. Let 𝑥 be a non-zero real such that 𝑥 + 1
𝑥 < 2. Then,

𝑥 +
1
𝑥 < 2

𝑥 +
1
𝑥 − 2 < 0

𝑥2 + 1 − 2𝑥
𝑥 < 0

(𝑥 − 1)2

𝑥 < 0

Because (𝑥 − 1)2 is a square, so is always non-negative, 1
𝑥 < 0, which is true if and only if

𝑥 < 0.

3.3 Challenges

Challenge 3.1. Let 𝑛 be an integer. Prove that if 2 ∣ 𝑛 and 3 ∣ 𝑛, then 6 ∣ 𝑛.

Proof. Let 𝑛 be an integer such that 2 ∣ 𝑛 and 3 ∣ 𝑛. Then, there exist integers 2𝑝 = 𝑛 and 3𝑞 = 𝑛.
Equivalently, 6𝑝 = 3𝑛 and 6𝑞 = 2𝑛. Subtracting, 𝑛 = 6(𝑝 − 𝑞), and since 𝑝 − 𝑞 is an integer,
6 ∣ 𝑛.

Challenge 3.2. Let 𝑎, 𝑏, 𝑐 ∈ ℝ. Prove that if 𝑎2 + 𝑏2 + 𝑐2 = 1, then −1/2 ≤ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≤ 1.

Proof. Let 𝑎, 𝑏, and 𝑐 be real numbers. Recall that squares of reals are non-negative. Then, notice
that we can create 2𝑎𝑏-type terms in squares of binomials:

0 ≤ (𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2

0 ≤ 2𝑎2 + 2𝑏2 + 2𝑐2 − 2𝑎𝑏 − 2𝑏𝑐 − 2𝑐𝑎
0 ≤ (𝑎2 + 𝑏2 + 𝑐2) − (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)

𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≤ 1
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Likewise, we can create these terms in the square of a trinomial:

0 ≤ (𝑎 + 𝑏 + 𝑐)2

0 ≤ 𝑎2 + 𝑏2 + 𝑐2 + 2𝑎𝑏 + 2𝑏𝑐 + 2𝑐𝑎
−(𝑎2 + 𝑏2 + 𝑐2) ≤ 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)

−
1
2 ≤ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎

Therefore, combining these inequalities, −1
2 ≤ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≤ 1, as desired.

Challenge 3.3. Show that if 𝑝 and 𝑝2 + 2 are prime, then 𝑝3 + 2 is also prime.

Challenge 3.4. Express the following statement in symbolic form and prove that it is true.

There exists a real number 𝐿 such that for every positive real number 𝜖, there
exists a positive real number 𝛿 such that for all real numbers 𝑥, if |𝑥| < 𝛿, then
|3𝑥 − 𝐿| < 𝜖.

Proof. In symbolic form, with ℝ+ = {𝑥 ∈ ℝ ∶ 𝑥 > 0}:

∃𝐿 ∈ ℝ, ∀𝜖 ∈ ℝ+, ∃𝛿 ∈ ℝ+, ∀𝑥 ∈ ℝ, |𝑥| < 𝛿 ⟹ |3𝑥 − 𝐿| < 𝜖

We propose 𝐿 = 0. Let 𝜖 > 0. Select 𝛿 = 𝜖
3 . Now, suppose that |𝑥| < 𝛿. Then, |3𝑥 − 𝐿| = |3𝑥| =

3|𝑥| < 3𝛿 = 3 𝜖
3 = 𝜖, as desired.

Challenge 3.5. Prove that there are no positive integers 𝑎 and 𝑏 such that 𝑏4 + 𝑏 + 1 = 𝑎4.

Challenge 3.6. Prove that the length of at least one side of a right-angled triangle with integer
side lengths must be divisible by 3.
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Chapter 4

Mathematical Induction

4.1 Warm-Up Exercises

Warm-Up Exercise 4.1. Evaluate
8

∑
𝑖=3

2𝑖 and
5

∏
𝑗=1

𝑗
3 .

Solution. Simply expand along the sum/product:

8
∑
𝑖=3

2𝑖 = 23 + 24 + 25 + 26 + 27 + 28 = 8 + 16 + 32 + 64 + 128 + 256 = 504

and
5

∏
𝑗=1

𝑗
3 =

1
3 ⋅

2
3 ⋅

3
3 ⋅

4
3 ⋅

5
3 =

120
243 =

40
81

Warm-Up Exercise 4.2. Let 𝑥 be a real number. Using the Binomial Theorem, expand
(𝑥 − 1

𝑥)
7
.

Solution. Recall the Binomial Theorem, that (𝑎 + 𝑏)𝑛 = ∑𝑛
𝑘=0 (𝑛

𝑘)𝑎𝑛−𝑘𝑏𝑘. Now, substitute 𝑎 = 𝑥
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and 𝑏 = − 1
𝑥 .

(𝑥 −
1
𝑥)

7
=

7
∑
𝑘=0

(
7
𝑘)𝑥7−𝑘 (−

1
𝑥)

𝑘

=
7

∑
𝑘=0

(
7
𝑘)𝑥7−𝑘𝑥−𝑘(−1)𝑘

=
7

∑
𝑘=0

(
7
𝑘)(−1)𝑘𝑥7−2𝑘

= 𝑥7 − 7𝑥7−2 + 21𝑥7−4 − 35𝑥7−6 + 35𝑥7−8 − 21𝑥7−10 + 7𝑥7−12 − 𝑥7−14

= 𝑥7 − 7𝑥5 + 21𝑥3 − 35𝑥 +
35
𝑥 −

21
𝑥3 +

7
𝑥5 −

1
𝑥7

4.2 Recommended Problems

Recommended Problem 4.1. Prove the following statements by induction.

(a) For all 𝑛 ∈ ℕ,
𝑛

∑
𝑖=1

(2𝑖 − 1) = 𝑛2.

Proof. We will induct the statement 𝑃(𝑛) ≡ ∑𝑛
𝑖=1(2𝑖 − 1) = 𝑛2 on 𝑛.

(Base Case) When 𝑛 = 1, the left-hand side is

1
∑
𝑖=1

(2𝑖 − 1) = 2(1) − 1

= 1
= 12

which is the right-hand side, so 𝑃(1) holds.
(Inductive Step) Now, suppose that 𝑃(𝑘) holds for an arbitrary 𝑘. Then, we take the left-hand
side of 𝑃(𝑘 + 1)

𝑘+1
∑
𝑖=1

(2𝑖 − 1) = (2(𝑘 + 1) − 1) +
𝑘

∑
𝑖=1

(2𝑖 − 1)

= (2𝑘 + 1) + 𝑘2 by inductive hypothesis
= (𝑘 + 1)2

as desired to show that if 𝑃(𝑘) holds, then 𝑃(𝑘 + 1) holds.
Therefore, by induction, 𝑃(𝑛) holds for all 𝑛.

(b) For all 𝑛 ∈ ℕ,
𝑛

∑
𝑖=0

𝑟𝑖 =
1 − 𝑟𝑛+1

1 − 𝑟 where 𝑟 is any real number such that 𝑟 ≠ 1.
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Proof. Let 𝑟 be an arbitrary real other than 1. We will induct the statement 𝑃(𝑛) ≡ ∑𝑛
𝑖=0 𝑟𝑖 =

1−𝑟𝑛+1

1−𝑟 on 𝑛.
(Base Case) For 𝑛 = 1, substitute into the LHS and expand the summation:

1
∑
𝑖=0

𝑟𝑖 = 𝑟0 + 𝑟1 = 1 + 𝑟 = (1 + 𝑟)
1 − 𝑟
1 − 𝑟 =

1 − 𝑟2

1 − 𝑟

This is precisely the RHS of the equality, so 𝑃(1) holds.
(Inductive Step) Now, suppose that 𝑃(𝑘) holds for an arbitrary 𝑘. Again, expand the sum-
mation but for the LHS of 𝑃(𝑘 + 1):

𝑘+1
∑
𝑖=0

𝑟𝑖 = 𝑟𝑘+1 +
𝑘

∑
𝑖=0

𝑟𝑖

= 𝑟𝑘+1 +
1 − 𝑟𝑘+1

1 − 𝑟 by inductive hypothesis

=
(𝑟𝑘+1)(1 − 𝑟) + 1 − 𝑟𝑘+1

1 − 𝑟

=
𝑟𝑘+1 − 𝑟𝑘+2 + 1 − 𝑟𝑘+1

1 − 𝑟

=
1 − 𝑟𝑘+2

1 − 𝑟

which is the other side of the equality. We have proved that if 𝑃(𝑛) holds, then 𝑃(𝑛 + 1)
holds. Therefore, by induction, 𝑃(𝑛) holds for all natural 𝑛.

(c) For all 𝑛 ∈ ℕ,
𝑛

∑
𝑖=1

𝑖
(𝑖 + 1)!

= 1 −
1

(𝑛 + 1)!
.

Proof. We will induct the statement 𝑃(𝑛) ≡ ∑𝑛
𝑖=1

𝑖
(𝑖+1)! = 1 − 1

(𝑛+1)! on 𝑛.

First, verify the base case, 𝑃(1). Then, we let 𝑛 = 1 and have

1
∑
𝑖=1

𝑖
(𝑖 + 1)!

= 1 −
1
2!

Expanding the summation, we can show that 𝑃(1) holds:

1
∑
𝑖=1

𝑖
(𝑖 + 1)!

=
1
2! =

1
2 = 1 −

1
2 = 1 −

1
2!

Now, suppose 𝑃(𝑘) is true for some 𝑘, and consider 𝑃(𝑘 + 1):

𝑛+1
∑
𝑖=1

𝑖
(𝑖 + 1)!

= 1 −
1

(𝑛 + 2)!
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Like above, we take out a term of the summation and simplify, so we have

𝑘+1
∑
𝑖=1

𝑖
(𝑖 + 1)!

=
𝑘 + 1

(𝑘 + 2)!
+

𝑘
∑
𝑖=1

𝑖
(𝑖 + 1)!

=
𝑘 + 1

(𝑘 + 2)!
+ 1 −

1
(𝑘 + 1)!

by inductive hypothesis

= 1 +
(𝑘 + 1) − (𝑘 + 2)

(𝑘 + 2)!

= 1 −
1

(𝑘 + 2)!

as required. We have proven 𝑃(1) and that 𝑃(𝑘) implies 𝑃(𝑘 + 1), so, by induction, 𝑃(𝑛) is
true for all natural 𝑛.

(d) For all 𝑛 ∈ ℕ,
𝑛

∑
𝑖=1

𝑖
2𝑖 = 2 −

𝑛 + 2
2𝑛 .

Proof. For induction on 𝑛, let 𝑃(𝑛) ≡ ∑𝑛
𝑖=1

𝑖
2𝑖 = 2 − 𝑛+2

2𝑛 .
Verify the base case 𝑃(1):

1
∑
𝑖=1

𝑖
2𝑖 =

1
2 = 2 −

3
2 = 2 −

1 + 2
21

Suppose that 𝑃(𝑘) holds for some 𝑘, and consider 𝑃(𝑘 + 1). Now,

𝑛+1
∑
𝑖=1

𝑖
2𝑖 =

𝑘 + 1
2𝑘+1 +

𝑛
∑
𝑖=1

𝑖
2𝑖

=
𝑘 + 1
2𝑘+1 + 2 −

𝑘 + 2
2𝑘 by inductive hypothesis

= 2 +
𝑘 + 1 − 2(𝑘 + 2)

2𝑘+1

= 2 −
𝑘 + 3
2𝑘+1

as required. Because 𝑃(1) holds and 𝑃(𝑘) implies 𝑃(𝑘 + 1), by induction, 𝑃(𝑛) holds for all
𝑛.

(e) For all 𝑛 ∈ ℕ, where 𝑛 ≥ 4, 𝑛! > 𝑛2.

Proof. We will prove by induction on 𝑛. Let 𝑃(𝑛) be the statement 𝑛! > 𝑛2.
To verify the base case 𝑃(4), notice that 4! = 24, that 42 = 16, and that 24 > 16.
Now, suppose that 𝑃(𝑘) is true for some 𝑘 ≥ 4. We must show that 𝑃(𝑘 + 1) holds, i.e.,
(𝑘 + 1)! > (𝑘 + 1)2.
First, notice that 𝑥2 > 𝑥 + 1 for all 𝑥 ≥ 4. Then, we can state the inductive hypothesis as
𝑘! > 𝑘 + 1. Multiplying both sides by 𝑘 + 1 gives (𝑘 + 1)! > (𝑘 + 1)2, as desired.
Therefore, by induction, 𝑛! > 𝑛2 for all 𝑛 ≥ 4.
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(f) For all 𝑛 ∈ ℕ, 4𝑛 − 1 is divisible by 3.

Proof. Induct the statement “4𝑛 − 1 is divisible by 3” on 𝑛.
For the base case, let 𝑛 = 1 so 41 − 1 = 3 and 3 is obviously divisible by 3.
Now, suppose that 4𝑘 − 1 is divisible by 3 for some natural number 𝑘. By definition, there
exists an integer 𝑎 where 4𝑘 − 1 = 3𝑎.
Consider when 𝑛 = 𝑘 + 1. Rearranging, 4𝑘+1 − 1 = (4𝑘+1 − 4) + 3 = 4(4𝑘 − 1) + 3. By our
inductive hypothesis, this is equal to 4(3𝑎) + 3 = 3(4𝑎 + 1). Then, since 4𝑘+1 − 1 can be
written as 3𝑏 for some integer 𝑏 (namely, 𝑏 = 4𝑎 + 1), it is by definition divisible by 3.
Therefore, by induction, 4𝑛 − 1 is divisible by 3 for all 𝑛 ∈ ℕ.

Recommended Problem 4.2. Let 𝑥 be a real number. Find the coefficient of 𝑥19 in the
expansion of (2𝑥3 − 3𝑥)9.

Solution. Recall the Binomial Theorem, (𝑎 + 𝑏)𝑛 = ∑𝑛
𝑘=0 (𝑛

𝑘)𝑎𝑛−𝑘𝑏𝑘. Let 𝑎 = 2𝑥3, 𝑏 = −3𝑥, and
𝑛 = 9. Then, we have (2𝑥3 − 3𝑥)9 = ∑9

𝑘=0 (9
𝑘)29−𝑘(−3)𝑘𝑥27−2𝑘. We only care about when the

exponent on 𝑥 is 19, i.e., 27 − 2𝑘 = 19 ⟹ 𝑘 = 4. On this term of the summation, we have
(9

4)25(−3)4𝑥19.

The coefficient is (9
4)25(−3)4 = 126 ⋅ 32 ⋅ 81 = 326592.

Recommended Problem 4.3. Let 𝑛 be a non-negative integer. Prove that
𝑛

∑
𝑘=0

(
𝑛
𝑘) = 2𝑛.

Proof. We will induct the statement 𝑃(𝑛) ≡ ∑𝑛
𝑘=0 (𝑛

𝑘) = 2𝑛 on 𝑛 ≥ 0.

For the base case, 𝑃(0), we have

0
∑
𝑘=0

(
0
𝑘) = (

0
0) = 1 = 20.

Now, suppose 𝑃(𝑚) is true for some 𝑚 ≥ 0. Consider the summation in 𝑃(𝑚 + 1):

𝑚+1
∑
𝑘=0

(
𝑚 + 1

𝑘 ) = (
𝑚 + 1
𝑚 + 1) +

𝑚
∑
𝑘=0

(
𝑚 + 1

𝑘 )

= (
𝑚 + 1
𝑚 + 1) +

𝑚
∑
𝑘=0

((
𝑚
𝑘 ) + (

𝑚
𝑘 − 1)) by Pascal’s identity

= (
𝑚 + 1
𝑚 + 1) +

𝑚
∑
𝑘=0

(
𝑚
𝑘 ) +

𝑚
∑
𝑘=0

(
𝑚

𝑘 − 1)

= 1 + 2𝑘 +
𝑚

∑
𝑘=0

(
𝑚

𝑘 − 1) by inductive hypothesis
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Recall that negative binomial coefficients are undefined, so we can change the variable in the
summation with 𝑗 = 𝑘 + 1 and ignore the 𝑘 = 0 term. Add and subtract a (𝑚

𝑚) term to round out
the summation and apply the IH once more:

𝑚+1
∑
𝑘=0

(
𝑚 + 1

𝑘 ) = 1 + 2𝑘 +
𝑚−1
∑
𝑗=0

(
𝑚
𝑗 )

= 1 + 2𝑘 +
𝑚−1
∑
𝑗=0

(
𝑚
𝑗 ) + (

𝑚
𝑚) − (

𝑚
𝑚)

= 1 + 2𝑘 +
𝑚

∑
𝑗=0

(
𝑚
𝑗 ) − 1

= 1 + 2𝑘 + 2𝑘 − 1 by inductive hypothesis
= 2𝑘+1

which is what we wanted to show that 𝑃(𝑚 + 1) is true.

Therefore, by induction, 𝑃(𝑛) is true for all non-negative integer 𝑛.

Recommended Problem 4.4. Let 𝑛 be a non-negative integer. Prove by induction on 𝑘
that ∑𝑘

𝑗=0 (𝑛+𝑗
𝑗 ) = (𝑛+𝑘+1

𝑘 ) for all non-negative integers 𝑘.

Proof. Let 𝑛 ≥ 0 be an integer, and let 𝑃(𝑘) be the statement ∑𝑘
𝑗=0 (𝑛+𝑗

𝑗 ) = (𝑛+𝑘+1
𝑘 ). We will

induct 𝑃(𝑘) on 𝑘.

For the base case, let 𝑘 = 0. Then, 𝑃(𝑘) reads ∑0
𝑗=0 (𝑛+𝑗

𝑗 ) = (𝑛+1
0 ). The summation only has one

term, so we have (𝑛
0) = (𝑛+1

0 ) which is true for all 𝑛 (since (𝑎
0) = 1 for all 𝑎).

Now, suppose that 𝑃(𝑠) holds for some non-negative integer 𝑠.

This means that ∑𝑠
𝑗=0 (𝑛+𝑗

𝑗 ) = (𝑛+𝑠+1
𝑠 ). Now, consider the left-hand side of 𝑃(𝑠 + 1):

𝑠+1
∑
𝑗=0

(
𝑛 + 𝑗

𝑗 ) = (
𝑛 + 𝑠 + 1

𝑠 + 1 ) +
𝑠

∑
𝑗=0

(
𝑛 + 𝑗

𝑗 )

= (
𝑛 + 𝑠 + 1

𝑠 + 1 ) + (
𝑛 + 𝑠 + 1

𝑠 ) by inductive hypothesis

= (
𝑛 + 𝑠 + 2

𝑠 + 1 ) by Pascal’s identity

which is exactly the right-hand side. Since 𝑃(𝑛) is true for 𝑛 = 0 and 𝑃(𝑠) implies 𝑃(𝑠 + 1), it
holds for all 𝑛 ≥ 0 by induction.

Recommended Problem 4.5. The sequence 𝑥1, 𝑥2, 𝑥3, … is defined recursively by 𝑥1 = 8,
𝑥2 = 32, and 𝑥𝑖 = 2𝑥𝑖−1 + 3𝑥𝑖−2 for all integers 𝑖 ≥ 3. Prove that for all 𝑛 ∈ ℕ, 𝑥𝑛 =
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2 × (−1)𝑛 + 10 × 3𝑛−1.

Proof. We will strongly induct the statement 𝑃(𝑛), 𝑥𝑛 = 2(−1)𝑛 + 10(3)𝑛−1, on 𝑛.

For a base case, let 𝑛 = 1. Then, 2(−1)1 + 10(3)0 = −2 + 10 = 8, which is the defined value of
𝑥1. For another, let 𝑛 = 2. Then, 2(−1)2 + 10(3)1 = 2 + 30 = 32, which is the defined value of 𝑥2.
Therefore, 𝑃(1) and 𝑃(2) hold.

Now, for some 𝑚 ≥ 3, suppose 𝑃(𝑛) holds for all 𝑛 < 𝑚. Specifically, 𝑃(𝑚−1) and 𝑃(𝑚−2) hold.

Consider the definition of 𝑥𝑚:

𝑥𝑚 = 2𝑥𝑚−1 + 3𝑥𝑚−2

= 2 (2(−1)𝑚−1 + 10(3)𝑚−2) + 3 (2(−1)𝑚−2 + 10(3)𝑚−3)
= 4(−1)𝑚−1 + 20(3)𝑚−2 + 6(−1)𝑚−2 + 30(3)𝑚−3

= 4(−1)(−1)𝑚−2 + 6(−1)𝑚−2 + 20(3)(3)𝑚−3 + 30(3)𝑚−3

= 2(−1)𝑚−2 + 90(3)𝑚−3

= 2(−1)2(−1)𝑚−2 + 10(3)2(3)𝑚−3

= 2(−1)𝑚 + 10(3)𝑚−1

which is precisely 𝑃(𝑚).

Therefore, by strong induction, 𝑃(𝑛) is true for all 𝑛.

Recommended Problem 4.6. The sequence 𝑡1, 𝑡2, 𝑡3, … is defined recursively by 𝑡1 = 2 and
𝑡𝑛 = 2𝑡𝑛−1 + 𝑛 for all integers 𝑛 > 1. Prove that for all 𝑛 ∈ ℕ, 𝑡𝑛 = 5 × 2𝑛−1 − 2 − 𝑛.

Proof. Let 𝑃(𝑛) be the statement 𝑡𝑛 = 5 × 2𝑛−1 − 2 − 𝑛. We will induct 𝑃(𝑛) on 𝑛.

We first verify base cases: 𝑛 = 1, hypothesized as 𝑡1 = 5(2)0 −2−1 = 2, which matches the defined
value; and 𝑛 = 2, for which 𝑡2 is defined as 2(2) + 2 = 6 and we hypothesize 𝑡2 = 5(2)1 − 2 − 2 = 6.

Now, let 𝑚 be an integer above 2 and suppose that 𝑃(𝑚 − 1) holds. Consider the definition of 𝑡𝑚:

𝑡𝑚 = 2𝑡𝑚−1 + 𝑚
= 2 (5(2)𝑚−2 − 2 − (𝑚 − 1)) + 𝑚 by inductive hypothesis
= 2 (5(2)𝑚−2 − 𝑚 − 1) + 𝑚
= 5(2)𝑚−1 − 2𝑚 − 2 + 𝑚
= 5(2)𝑚−1 − 2 − 𝑚

This is exactly 𝑃(𝑚), so 𝑃(𝑚 − 1) implies 𝑃(𝑚).

Therefore, by induction, 𝑃(𝑛) is true for all natural 𝑛.

Recommended Problem 4.7. The Fibonacci sequence is defined as the sequence 𝑓1, 𝑓2, 𝑓3, …
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where 𝑓1 = 1, 𝑓2 = 1 and 𝑓𝑖 = 𝑓𝑖−1 + 𝑓𝑖−2 for 𝑖 ≥ 3. Use induction to prove the following
statements:

(a) For 𝑛 ≥ 2, 𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 = 𝑓𝑛+1 − 1.

Proof. We will induct the statement 𝑃(𝑛), ∑𝑛−1
𝑖=1 𝑓𝑖 = 𝑓𝑛+1 − 1 on 𝑛.

To verify the base case, 𝑛 = 2, substitute and notice 𝑓1 = 1 = 2 − 1 = 𝑓3 − 1.
Now, let 𝑚 > 2 and suppose 𝑃(𝑚) holds. Then,

𝑚−1
∑
𝑖=1

𝑓𝑖 = 𝑓𝑚+1 − 1

𝑓𝑚 +
𝑚−1
∑
𝑖=1

𝑓𝑖 = 𝑓𝑚 + 𝑓𝑚+1 − 1

𝑚
∑
𝑖=1

𝑓𝑖 = 𝑓𝑚+2 − 1

which is 𝑃(𝑚 + 1).
Therefore, by induction, 𝑃(𝑛) is true for all 𝑛 ≥ 2.

(b) Let 𝑎 =
1 +

√
5

2 and 𝑏 =
1 −

√
5

2 . For all 𝑛 ∈ ℕ, 𝑓𝑛 =
𝑎𝑛 − 𝑏𝑛

√
5

.

Proof. Let 𝑃(𝑛) be the statement 𝑓𝑛 = 𝑎𝑛−𝑏𝑛
√

5
. We will strongly induct 𝑃(𝑛) on 𝑛.

For the base cases, start with 𝑛 = 1. 𝑓1 is defined to be 1, and 𝑎−𝑏
√

5
=

√
5

√
5

= 1. Likewise, for

𝑛 = 2, 𝑓2 is defined as 1, and 𝑎2−𝑏2
√

5
= 𝑎−𝑏

√
5

(𝑎 + 𝑏) = (1)(1) = 1.

For our inductive step, first notice that 𝑎 and 𝑏 are the roots of 𝑥2 − 𝑥 − 1 = 0. Let 𝑥 be
either root.
Notice that for any 𝑛 ≥ 2, we have

0 = 𝑥2 − 𝑥 − 1
0 = 𝑥𝑛−2(𝑥2 − 𝑥 − 1)
0 = 𝑥𝑛 − 𝑥𝑛−1 − 𝑥𝑛−2

𝑥𝑛 = 𝑥𝑛−1 + 𝑥𝑛−2

Therefore, 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 and 𝑏𝑛 = 𝑏𝑛−1 + 𝑏𝑛−2 for any 𝑛 ≥ 2.
Now, let 𝑚 ≥ 2 and suppose 𝑃(𝑚 − 1) and 𝑃(𝑚 − 2) hold. Then, 𝑓𝑚 is defined by:

𝑓𝑚 = 𝑓𝑚−1 + 𝑓𝑚−2

=
𝑎𝑚−1 − 𝑏𝑚−1

√
5

+
𝑎𝑚−2 − 𝑏𝑚−2

√
5

=
(𝑎𝑚−1 + 𝑎𝑚−2) − (𝑏𝑚−1 + 𝑏𝑚−2)

√
5

=
𝑎𝑚 − 𝑏𝑚

√
5

Therefore, by strong induction, 𝑃(𝑛) holds for all 𝑛.
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Recommended Problem 4.8. Each of the following “proofs” by induction incorrectly “proved”
a statement that is actually false. State what is wrong with each proof.

(a) The proof does not consider the given definition 𝑥2 = 20, and 3(5)1 = 15 ≠ 20. Note that
the recursive definition only applies to 𝑥𝑖 for 𝑖 ≥ 3.

(b) The proof erroneously assumes that 𝑛 = 2 always falls within the inductive hypothesis.
However, when proving the case 𝑛 = 2 with strong induction, the only given is 𝑛 = 1.

Recommended Problem 4.9. In a strange country, there are only 4 cent and 7 cent coins.
Prove that any integer amount of currency greater than 17 cents can always be formed.

Proof. Let 𝑃(𝑥) be the statement that there exist non-negative integer 𝑎 and 𝑏 where 𝑥 = 4𝑎 + 7𝑏.
We will strongly induct on 𝑥 > 17.

Verify a few base cases:
For 𝑃(18) (where 18 = 4(4) + 2), let 𝑎 = 1 and 𝑏 = 2, so 4(1) + 7(2) = 18.
For 𝑃(19) (where 19 = 4(4) + 3), let 𝑎 = 3 and 𝑏 = 1, so 4(3) + 7(1) = 19.
For 𝑃(20) (where 20 = 4(5) + 0), let 𝑎 = 5 and 𝑏 = 0, so 4(5) + 7(0) = 20.
For 𝑃(21) (where 21 = 4(5) + 1), let 𝑎 = 0 and 𝑏 = 3, so 4(0) + 7(3) = 21.

Now, suppose for some 𝑛 > 21, 𝑃(𝑚) holds for all 𝑚 < 𝑛. Specifically, 𝑃(𝑛 − 4) holds. That is,
𝑛 − 4 = 4𝑎0 + 7𝑏0 for some 𝑎0 and 𝑏0. Equivalently, 𝑛 = 4(𝑎0 + 1) + 7𝑏0. If we let 𝑎 = 𝑎0 + 1 and
𝑏 = 𝑏0, it follows that 𝑃(𝑛) holds.

Therefore, by strong induction, 𝑃(𝑥) is true for all 𝑥 > 17.

4.3 Challenges

Challenge 4.1. Prove that for every positive integer, there exists a unique way to write the
integer as the sum of distinct non-consecutive Fibonacci numbers.

Proof. Let 𝑓𝑖 denote the 𝑖th Fibonacci number, i.e., 𝑓1 = 0, 𝑓2 = 1, 𝑓𝑛+1 = 𝑓𝑛 + 𝑓𝑛−1. Note that
we proceed without loss of generality with increasing lists of Fibonacci numbers.

We begin by proving inductively that 𝑓𝑛 > 𝑓𝑘1
+ ⋯ + 𝑓𝑘𝑚

where 𝑘1 < ⋯ < 𝑘𝑚 < 𝑛 and 𝑘1 + 1 ≠ 𝑘2,
𝑘2 + 1 ≠ 𝑘3, etc. That is, the 𝑘𝑖 are increasing, and non-consecutive. For the cases 𝑛 = 0 and
𝑛 = 1, no such sums can exist. When 𝑛 = 2, the only such sum is 𝑓0, and 0 < 𝑓2 = 1.

Suppose that 𝑛 ≥ 2 and 𝑓𝑛−2 > 𝑓𝑟1
+ ⋯ + 𝑓𝑟𝑠

with the 𝑟𝑖 increasing and non-consecutive. Then,
since 𝑘𝑚 < 𝑛, 𝑘𝑚 ≤ 𝑛 − 1 and we have

𝑓𝑘1
+ ⋯ + 𝑓𝑘𝑚−1

+ 𝑓𝑘𝑚
≤ 𝑓𝑘1

+ ⋯ + 𝑓𝑘𝑚−1
+ 𝑓𝑛−1

< 𝑓𝑛−2 + 𝑓𝑛−1 by inductive hypothesis
= 𝑓𝑛 (4.1)
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Now, let 𝑃(𝑛) be the statement that all positive integers 𝑥 < 𝑓𝑛, 𝑥 = ∑𝑚
𝑖=1 𝑓𝑘𝑖

for unique, increasing,
non-consecutive 𝑘𝑖.

For the base cases 𝑃(1), 𝑃(2), and 𝑃(3) there are no positive integers 𝑥 < 0 or 𝑥 < 1. For the
base case 𝑃(4), the only positive integer less than 𝑓4 = 2 is 𝑥 = 1. Trivially, we can uniquely write
𝑓1 + 𝑓3 = 0 + 1 = 1.

For the inductive step, suppose that 𝑃(𝑛) holds for some 𝑛 ≥ 4. Let 𝑓𝑛 ≤ 𝑥 < 𝑓𝑛+1.

If 𝑥 is 𝑓𝑛, then we may write 𝑥 = 𝑓1 + 𝑓𝑛. That is, 𝑥 = ∑2
𝑖=1 𝑓𝑘𝑖

with increasing, non-consecutive
𝑘1 = 1 and 𝑘2 = 𝑛.

Otherwise, write 𝑥 = 𝑑 + 𝑓𝑛 where 0 < 𝑑 < 𝑓𝑛+1 − 𝑓𝑛 = 𝑓𝑛−1. We now have, 𝑑 < 𝑓𝑛−1 < 𝑓𝑛
with positive integer 𝑑. By the inductive hypothesis, 𝑑 = ∑𝑚

𝑖=1 𝑓𝑘𝑖
for unique, increasing, non-

consecutive 𝑘𝑖. Then, since 𝑑 < 𝑓𝑛−1 < 𝑓𝑛, none of the 𝑘𝑖s can be 𝑛 or 𝑛 − 1. Finally, let 𝑘𝑚+1 = 𝑛
so that 𝑥 = ∑𝑚+1

𝑖=1 𝑓𝑘𝑖
has increasing, non-consecutive 𝑓𝑘𝑖

.

Now, we show that the integers 𝑘𝑖 are unique. Suppose 𝑥 = ∑𝑚+1
𝑖=1 𝑓𝑘𝑖

= ∑𝑚+1
𝑖=1 𝑓ℓ𝑖

. We show that
𝑘𝑖 = ℓ𝑖 for all 𝑖.

Since both sums are increasing, the largest 𝑘𝑚+1 is 𝑛. If 𝑓ℓ𝑚+1
> 𝑓𝑛, then the sum is greater than

𝑓𝑛+1. But 𝑥 < 𝑓𝑛+1, so this is a contradiction. If 𝑓ℓ𝑚+1
< 𝑓𝑛, then by eq. (4.1), the sum is less than

𝑓𝑛. But 𝑥 ≥ 𝑓𝑛, so this is again a contradiction. Thus, ℓ𝑚+1 = 𝑛 = 𝑘𝑚+1.

Then, ∑𝑚
𝑖=1 𝑓ℓ𝑖

= 𝑥 − 𝑓𝑛 = 𝑑. However, the inductive hypothesis gives that ∑𝑚
𝑖=1 𝑘𝑖 is a unique

representation of 𝑑. It follows that the remaining ℓ𝑖 = 𝑘𝑖 for all 𝑖 ≤ 𝑚.

Therefore, since we have proven 𝑃(𝑛 + 1), by induction, 𝑃(𝑛) holds for all 𝑛.

Challenge 4.2. Find a formula for the minimum steps required to solve the Tower of Hanoi
puzzle with three pegs with 𝑛 rings. Prove that your answer is correct.
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Chapter 5

Sets

5.1 Warm-Up Exercises

Warm-Up Exercise 5.1. Let 𝒰 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, 𝐴 = {2, 4, 6, 9}, and 𝐵 = {4, 5, 6, 7}.

(a) Calculate the following:
i. 𝐴 ∪ 𝐵 = {2, 4, 5, 6, 7, 9}
ii. 𝐴 ∩ 𝐵 = {4, 6}
iii. 𝐴 = 𝒰 − 𝐴 = {1, 3, 5, 7, 8}
iv. 𝐵 = 𝒰 − 𝐵 = {1, 2, 3, 8, 9}
v. 𝐴 − 𝐵 = {2, 9}
vi. 𝐵 − 𝐴 = {5, 7}

(b) Are 𝐴 and 𝐵 disjoint? No, since 4 is in both sets.

(c) Give a set 𝐶 such that 𝐶 ⊆ 𝐵. Let 𝐶 = 𝐵.

(d) Give a set 𝐷 such that 𝐷 ⊊ 𝐴. Let 𝐷 = {2}.

Warm-Up Exercise 5.2. Suppose 𝑆 and 𝑇 are two sets. Prove that if 𝑆 ∩𝑇 = 𝑆, then 𝑆 ⊆ 𝑇.
Is the converse true?

Proof. Let 𝑆 and 𝑇 be arbitrary sets such that their intersection is 𝑆. We must show that any
element of 𝑆 is an element of 𝑇.

Consider an element 𝑠 in 𝑆. But 𝑆 is equal to 𝑆 ∩ 𝑇. Elements of an intersection are elements of
the original sets, so 𝑠 ∈ 𝑇, as desired.

For the converse, consider another two sets, 𝑆1 and 𝑇1, where 𝑆1 ⊆ 𝑇1. This means that all elements
of 𝑆1 are elements of 𝑇1, that is, all elements of 𝑆1 are elements of both 𝑆1 and 𝑇1. But this is just
the definition of the intersection of 𝑆1 and 𝑇1. Therefore, the converse is also true.
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Warm-Up Exercise 5.3. Give an example of three sets 𝐴, 𝐵, and 𝐶 such that 𝐵 ≠ 𝐶 and
𝐵 − 𝐴 = 𝐶 − 𝐴.

Solution. Let 𝐴 = {1}, 𝐵 = {2} and 𝐶 = {1, 2}. Then, 𝐵 − 𝐴 = {2} and 𝐶 − 𝐴 = {2}.

5.2 Recommended Problems

Recommended Problem 5.1. Let 𝐴 be a subset of the universe 𝒰. Prove that 𝐴 ∪ 𝐴 = 𝒰.

Proof. Recall that the complement of a set 𝑆 with respect to a universe 𝒰 is defined as the set
{𝑥 ∈ 𝒰 ∶ ¬(𝑥 ∈ 𝑆)}. Recall also that the union of two sets 𝑋 and 𝑌, again with universe 𝒰, is
defined as the set 𝑋 ∪ 𝑌 = {𝑥 ∈ 𝒰 ∶ 𝑥 ∈ 𝑋 ∨ 𝑥 ∈ 𝑌 }.

Then, 𝐴 ∪ 𝐴 = {𝑥 ∈ 𝒰 ∶ 𝑥 ∈ 𝐴 ∨ ¬(𝑥 ∈ 𝐴)}. The disjunction of any logical statement with its
negation is a tautology, so this property is true for all elements of 𝒰. Therefore, the resulting set
is simply 𝒰.

Recommended Problem 5.2. Let 𝑆 and 𝑇 be two sets which are subsets of the universe 𝒰.
Prove that

(𝑆 ∪ 𝑇 ) − (𝑆 ∩ 𝑇 ) = (𝑆 − 𝑇 ) ∪ (𝑇 − 𝑆).

Proof. Let 𝑆 and 𝑇 be arbitrary subsets of 𝒰, and 𝑥 be an arbitrary element of 𝒰 such that it is an
element of the left-hand side. We prove by showing that the left and right-hand sides are subsets
of another, that is, the following universally quantified biconditional holds:

∀𝑥 ∈ 𝒰, 𝑥 ∈ (𝑆 ∪ 𝑇 ) − (𝑆 ∩ 𝑇 ) ⟺ 𝑥 ∈ (𝑆 − 𝑇 ) ∪ (𝑇 − 𝑆)

This can be done by rewriting both sides in set-builder notation and applying logical equivalencies.

(𝑆 ∪ 𝑇 ) − (𝑆 ∩ 𝑇 ) = {𝑥 ∈ 𝒰 ∶ (𝑥 ∈ 𝑆 ∪ 𝑇 ) ∧ (𝑥 ∉ 𝑆 ∩ 𝑇 )}
= {𝑥 ∈ 𝒰 ∶ (𝑥 ∈ 𝑆 ∨ 𝑥 ∈ 𝑇 ) ∧ ¬(𝑥 ∈ 𝑆 ∧ 𝑥 ∈ 𝑇 )}
= {𝑥 ∈ 𝒰 ∶ (𝑥 ∈ 𝑆 ∨ 𝑥 ∈ 𝑇 ) ∧ (¬(𝑥 ∈ 𝑆) ∨ ¬(𝑥 ∈ 𝑇 ))}

Now, distributing, we have the property:

(𝑥 ∈ 𝑆 ∧ 𝑥 ∉ 𝑆) ∨ (𝑥 ∈ 𝑆 ∧ 𝑥 ∉ 𝑇 ) ∨ (𝑥 ∈ 𝑇 ∧ 𝑥 ∉ 𝑆) ∨ (𝑥 ∈ 𝑇 ∧ 𝑥 ∉ 𝑇 )

which can be equivalently expressed by removing falsities:

(𝑥 ∈ 𝑆 ∧ 𝑥 ∉ 𝑇 ) ∨ (𝑥 ∈ 𝑇 ∧ 𝑥 ∉ 𝑆).

Now, we can apply the definitions of unions and complements in reverse:

(𝑆 ∪ 𝑇 ) − (𝑆 ∩ 𝑇 ) = {𝑥 ∈ 𝒰 ∶ (𝑥 ∈ 𝑆 ∧ 𝑥 ∉ 𝑇 ) ∨ (𝑥 ∈ 𝑇 ∧ 𝑥 ∉ 𝑆)}
= {𝑥 ∈ 𝒰 ∶ (𝑥 ∈ 𝑆 ∧ 𝑥 ∉ 𝑇 )} ∪ {𝑥 ∈ 𝒰 ∶ (𝑥 ∈ 𝑇 ∧ 𝑥 ∉ 𝑆)}
= (𝑆 − 𝑇 ) ∪ (𝑇 − 𝑆)
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Recommended Problem 5.3. Let 𝐴 = {𝑛 ∈ ℤ ∶ 2 ∣ 𝑛} and 𝐵 = {𝑛 ∈ ℤ ∶ 4 ∣ 𝑛}. Let 𝑛 ∈ ℤ.
Prove that 𝑛 ∈ (𝐴 − 𝐵) if and only if 𝑛 = 2𝑘 for some odd integer 𝑘.

Proof. We prove the biconditional by proving both implications.

(⇒) Let 𝑛 be an arbitrary integer element of 𝐴 − 𝐵, i.e., 𝑛 ∈ 𝐴 but 𝑛 ∉ 𝐵. Then, the defining
property of 𝐴 holds but that of 𝐵 does not. Therefore, 2 ∣ 𝑛 but 4 ∤ 𝑛.

Since 2 ∣ 𝑛, it may be written as 𝑛 = 2𝑞 for some integer 𝑞.

If 𝑞 is even, then 𝑛 = 2(2𝑝) for some integer 𝑝. That means 𝑛 = 4𝑝, so 𝑛 ∣ 4, which is a contradiction.
Therefore, 𝑞 must be odd, and 𝑛 may be written as 𝑛 = 2𝑘 for an odd integer 𝑘 = 𝑞.

(⇐) Let 𝑛 be an arbitrary integer such that 𝑛 = 2𝑘 for some odd integer 𝑘. It immediately follows
that 2 ∣ 𝑛 and 𝑛 ∈ 𝐴.

Also, since 𝑘 is odd, 𝑛 = 2(2𝑑 +1) = 4 (𝑑 + 1
2) for another integer 𝑑. 𝑑 + 1

2 will never be an integer,
so 4 ∤ 𝑛, which means 𝑛 ∉ 𝐵.

However, 𝑛 ∈ 𝐴 and 𝑛 ∉ 𝐵 is precisely the definition of 𝑛 ∈ (𝐴 − 𝐵).

Therefore, since both implications hold, the statement is true.

Recommended Problem 5.4. Prove that there exist sets 𝐴, 𝐵, and 𝐶 such that 𝐴∪𝐵 = 𝐴∪𝐶
and 𝐵 ≠ 𝐶.

Proof. Let 𝐴 = {1, 2}, 𝐵 = {1}, and 𝐶 = {2}. Clearly, 𝐵 ≠ 𝐶.

We have 𝐴 ∪ 𝐵 = {1, 2} and 𝐴 ∪ 𝐶 = {1, 2}, which are equal.

Recommended Problem 5.5. Prove or disprove. If 𝐴, 𝐵, and 𝐶 are sets, then 𝐴∩(𝐵∪𝐶) =
(𝐴 ∩ 𝐵) ∪ 𝐶.

Solution. Let 𝐴, 𝐵, and 𝐶 be arbitrary sets. We disprove by showing (𝐴 ∩ 𝐵) ∪ 𝐶 is not a subset
of 𝐴 ∩ (𝐵 ∪ 𝐶).

Let 𝑥 be an element of 𝐶 that is not an element of 𝐴. Then, it is clearly an element of (𝐴 ∩ 𝐵) ∪ 𝐶,
since it is an element of 𝐶 and all elements of either set in a union are elements of the union.

However, it is not an element of 𝐴 ∩ (𝐵 ∪ 𝐶). Since it is an intersection, all such elements are
elements of 𝐴, which 𝑥 is not.

Therefore, (𝐴 ∩ 𝐵) ∪ 𝐶 ⊈ 𝐴 ∩ (𝐵 ∪ 𝐶). Set equality is defined by bidirectional subsets, so the sets
cannot be equal.

Recommended Problem 5.6. Prove there is a unique set 𝑇 such that for every set 𝑆,
𝑆 ∪ 𝑇 = 𝑆.
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Proof. We suppose that 𝑇 = ⌀, that is, 𝑇 is the set with no elements, and prove it.

(Existence) Since there are no elements in 𝑇, it may be written as 𝑇 = {𝑥 ∶ 𝑃} where 𝑃 is a false
logical statement.

Now, the union 𝑆 ∪ 𝑇 is {𝑥 ∶ 𝑥 ∈ 𝑆 ∨ 𝑃}. but a statement disjoined with false gives itself, so we
have {𝑥 ∶ 𝑥 ∈ 𝑆}, which is just 𝑆.

(Uniqueness) Let 𝐴 and 𝐵 be empty sets.

Then, ∀𝑥 ∈ 𝒰, 𝑥 ∈ 𝐴 ⟹ 𝑥 ∈ 𝐵 is vacuously true, since the hypothesis is always false by definition.
Therefore, 𝐴 ⊆ 𝐵.

Likewise, ∀𝑥 ∈ 𝒰, 𝑥 ∈ 𝐵 ⟹ 𝑥 ∈ 𝐴 is vacuously true. Therefore, 𝐵 ⊆ 𝐴.

Since both 𝐴 and 𝐵 are mutual subsets, 𝐴 = 𝐵, and the empty set is unique.

5.3 Challenges

Challenge 5.1. The symmetric difference of two sets 𝐴 and 𝐵, denoted 𝐴 △ 𝐵, is defined as

𝐴 △ 𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴).

Prove that (𝐴 △ 𝐵) △ 𝐶 = 𝐴 △ (𝐵 △ 𝐶).

Proof. We will prove using logical equivalences.

Consider the left-hand side. By the given definition,

(𝐴 △ 𝐵) △ 𝐶 = ((𝐴 − 𝐵) ∪ (𝐵 − 𝐴)) △ 𝐶
= (((𝐴 − 𝐵) ∪ (𝐵 − 𝐴)) − 𝐶) ∪ (𝐶 − ((𝐴 − 𝐵) ∪ (𝐵 − 𝐴)))

which is a mess, so we re-express as a logical expression in set-builder notation. That is, {𝑥 ∶ 𝑃 (𝑥)}
for some open sentence 𝑃(𝑥). For convenience, let 𝑎 ≡ 𝑥 ∈ 𝐴, 𝑏 ≡ 𝑥 ∈ 𝐵, and 𝑐 ≡ 𝑥 ∈ 𝐶.

𝑃(𝑥) ≡ (((𝑎 ∧ ¬𝑏) ∨ (𝑏 ∧ ¬𝑎)) ∧ ¬𝑐) ∨ (𝑐 ∧ ¬((𝑎 ∧ ¬𝑏) ∨ (𝑏 ∧ ¬𝑎)))
≡ (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑏 ∧ ¬𝑎 ∧ ¬𝑐) ∨ (𝑐 ∧ ¬(𝑎 ∧ ¬𝑏) ∧ ¬(𝑏 ∧ ¬𝑎))
≡ (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑏 ∧ ¬𝑎 ∧ ¬𝑐) ∨ (𝑐 ∧ (¬𝑎 ∨ 𝑏) ∧ (¬𝑏 ∨ 𝑎))

We now digress from this (also enormous) expression to simplify the last term. Recall in RP 5.2,
we proved (𝑋 ∨ 𝑌 ) ∧ (¬𝑋 ∨ ¬𝑌 ) ≡ (𝑋 ∧ 𝑌 ) ∨ (¬𝑋 ∧ ¬𝑌 ). We may now apply this equivalence with
𝑋 ≡ ¬𝑎 and 𝑌 ≡ 𝑏.

𝑃(𝑥) ≡ (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑏 ∧ ¬𝑎 ∧ ¬𝑐) ∨ (𝑐 ∧ ((¬𝑎 ∧ 𝑏) ∨ (¬𝑏 ∧ 𝑎)))
≡ (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑏 ∧ ¬𝑎 ∧ ¬𝑐) ∨ (𝑐 ∧ ¬𝑎 ∧ 𝑏) ∨ (𝑐 ∧ ¬𝑏 ∧ 𝑎)
≡ (𝑎 ∧ 𝑏 ∧ 𝑐) ∨ (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (¬𝑎 ∧ 𝑏 ∧ ¬𝑐) ∨ (¬𝑎 ∧ ¬𝑏 ∧ 𝑐)

Now, consider the right-hand side. By the given definition,

𝐴 △ (𝐵 △ 𝐶) = 𝐴 △ ((𝐵 − 𝐶) ∪ (𝐶 − 𝐵))
= (𝐴 − ((𝐵 − 𝐶) ∪ (𝐶 − 𝐵))) ∪ (((𝐵 − 𝐶) ∪ (𝐶 − 𝐵)) − 𝐴)
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which we may express as {𝑥 ∶ 𝑄(𝑥)} for some open sentence 𝑄(𝑥).

𝑄(𝑥) ≡ (𝑎 ∧ ¬((𝑏 ∧ ¬𝑐) ∨ (𝑐 ∧ ¬𝑏))) ∨ (((𝑏 ∧ ¬𝑐) ∨ (𝑐 ∧ ¬𝑏)) ∧ ¬𝑎)
≡ (𝑎 ∧ (¬(𝑏 ∧ ¬𝑐) ∧ ¬(𝑐 ∧ ¬𝑏))) ∨ ((𝑏 ∧ ¬𝑐 ∧ ¬𝑎) ∨ (𝑐 ∧ ¬𝑏 ∧ ¬𝑎))
≡ (𝑎 ∧ (¬𝑏 ∨ 𝑐) ∧ (¬𝑐 ∨ 𝑏)) ∨ (¬𝑎 ∧ 𝑏 ∧ ¬𝑐) ∨ (¬𝑎 ∧ ¬𝑏 ∧ 𝑐)

Applying the identity we just discovered, namely, 𝑋 ∧ (¬𝑌 ∨ 𝑍) ∧ (¬𝑍 ∨ 𝑌 ) ≡ (𝑋 ∧ 𝑌 ∧ 𝑍) ∨ (𝑋 ∧
¬𝑌 ∧ ¬𝑍), for 𝑋 ≡ 𝑎, 𝑌 ≡ 𝑏, and 𝑍 ≡ 𝑐.

𝑄(𝑥) ≡ (𝑎 ∧ 𝑏 ∧ 𝑐) ∨ (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (¬𝑎 ∧ 𝑏 ∧ ¬𝑐) ∨ (¬𝑎 ∧ ¬𝑏 ∧ 𝑐)

but this is exactly 𝑃(𝑥). Therefore, the right-hand side may be expressed {𝑥 ∶ 𝑃 (𝑥)}, which is
precisely the left-hand side.
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Chapter 6

The Greatest Common Divisor

6.1 Warm-Up Exercises

Warm-Up Exercise 6.1. What is the remainder when −98 is divided by 7?

Solution. −98 7 = −14, so the remainder is 0.

Warm-Up Exercise 6.2. Calculate gcd(10, −65).

Solution. We have 10 = 2 ⋅ 5 and −65 = −1 ⋅ 5 ⋅ 13, so the GCD is 5.

Warm-Up Exercise 6.3. Let 𝑎, 𝑏, 𝑐 ∈ ℤ. Consider the implication 𝑆: If gcd(𝑎, 𝑏) = 1 and
𝑐 ∣ (𝑎 + 𝑏), then gcd(𝑏, 𝑐) = 1. Fill in the blanks to complete a proof of 𝑆.

(a) Since gcd(𝑎, 𝑏) = 1, by Bézout’s Lemma , there exist integers 𝑥 and 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 1.
(b) Since 𝑐 ∣ (𝑎 + 𝑏), by definition , there exists an integer 𝑘 such that 𝑎 + 𝑏 = 𝑐𝑘.
(c) Substituting 𝑎 = 𝑐𝑘 − 𝑏 into the first equation, we get 1 = (𝑐𝑘 − 𝑏)𝑥 + 𝑏𝑦 = 𝑏(−𝑥 + 𝑦) + 𝑐(𝑘𝑥).
(d) Since 1 is a common divisor of 𝑏 and 𝑐 and −𝑥 + 𝑦 and 𝑘𝑥 are integers, gcd(𝑏, 𝑐) = 1 by

the GCD Characterization Theorem .

Warm-Up Exercise 6.4. Disprove: For all integers 𝑎, 𝑏, and 𝑐, if 𝑎 ∣ (𝑏𝑐), then 𝑎 ∣ 𝑏 or 𝑎 ∣ 𝑐.

Proof. We prove the negation, there are integers 𝑎, 𝑏, and 𝑐 where 𝑎 ∣ 𝑏𝑐, 𝑎 ∤ 𝑏, and 𝑎 ∤ 𝑐.

Let 𝑎 = 15, 𝑏 = 5, and 𝑐 = 3. Clearly, 𝑎 ∤ 𝑏 and 𝑎 ∤ 𝑐. However, 𝑏𝑐 = 15, and 15 ∣ 15.

6.2 Recommended Problems
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Recommended Problem 6.1.

(a) Use the Extended Euclidean Algorithm to find three integers 𝑥, 𝑦 and 𝑑 = gcd(1112, 768)
such that 1112𝑥 + 768𝑦 = 𝑑.

Solution. Apply the EEA with 𝑥 = 1112 and 𝑦 = 768.

𝑥 𝑦 𝑟 𝑞
1 0 1112
0 1 768
1 −1 344 1

−2 3 80 2
9 −13 24 4

−29 42 8 3
96 −139 0 3

Therefore, we have that 𝑑 = gcd(1112, 768) = 8, and that

1112(−29) + 768(42) = 8

That is, our solution is when 𝑥 = −29 and 𝑦 = 42.

(b) Determine integers 𝑠 and 𝑡 such that 768𝑠 − 1112𝑡 = gcd(768, −1112).

Solution. Since the GCD is invariant under sign changes, we immediately know that gcd(768, −1112) =
8. We also have that 1112(−29) + 768(42) = 8. But this is the same as saying 768(42) −
1112(29) = 8, so 𝑠 = 42 and 𝑡 = 29.

Recommended Problem 6.2. Prove that for all 𝑎 ∈ ℤ, gcd(9𝑎 + 4, 2𝑎 + 1) = 1.

Proof. Let 𝑎 be an integer. We must show that 9𝑎+4 and 2𝑎+1 are coprime. Recall the Coprimeness
Characterization Theorem: it suffices to find integers 𝑎 and 𝑏 such that (9𝑎 + 4)𝑎 + (2𝑎 + 1)𝑏 = 1.

Choose 𝑎 = −2 and 𝑏 = 9. Then,

(9𝑎 + 4)𝑎 + (2𝑎 + 1)𝑏 = −2(9𝑎 + 4)𝑎 + 9(2𝑎 + 1)
= −18𝑎 − 8 + 18𝑎 + 9
= 1

as desired. Therefore, gcd(9𝑎 + 4, 2𝑎 + 1) = 1.

Recommended Problem 6.3. Let gcd(𝑥, 𝑦) = 𝑑 for integers 𝑥 and 𝑦. Express gcd(18𝑥 +
3𝑦, 3𝑥) in terms of 𝑑 and prove that you are correct.
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Proof. Let 𝑥 and 𝑦 be integers with GCD 𝑑.

We may apply GCD With Remainders to reduce 𝑔 = gcd(18𝑥 + 3𝑦, 3𝑥). We have 18𝑥 + 3𝑦 =
6(3𝑥) + 3𝑦, so 𝑔 = gcd(3𝑥, 3𝑦).

Now, 𝑑 ∣ 𝑥 and 𝑑 ∣ 𝑦, so we can find integers 𝑚 and 𝑛 where 𝑥 = 𝑑𝑚 and 𝑦 = 𝑑𝑛. Multiplying
through by 3, we have 3𝑥 = (3𝑑)𝑚 and 3𝑦 = (3𝑑)𝑛. It follows that 3𝑑 ∣ 3𝑥 and 3𝑑 ∣ 3𝑦, that is, 3𝑑
is a common divisor of 3𝑥 and 3𝑦.

By Bézout’s Lemma, there are integers 𝑠 and 𝑡 where 𝑥𝑠 + 𝑦𝑡 = 𝑑. Again multiplying through by
3, we have (3𝑥)𝑠 + (3𝑦)𝑡 = 3𝑑.

Therefore, by the GCD Characterization Theorem, gcd(3𝑥, 3𝑦) = 3𝑑.

Recommended Problem 6.4. Let 𝑎, 𝑏 ∈ ℤ. Prove that if gcd(𝑎, 𝑏) = 1, then gcd(2𝑎 + 𝑏, 𝑎 +
2𝑏) ∈ {1, 3}.

Proof. Let 𝑎 and 𝑏 be coprime integers.

Applying GCD WR, we have that 2𝑎 + 𝑏 = 2(𝑎 + 2𝑏) − 3𝑏, so gcd(2𝑎 + 𝑏, 𝑎 + 2𝑏) = gcd(𝑎 + 2𝑏, −3𝑏).
The properties of GCD state this is equivalent to gcd(3𝑏, 𝑎 + 2𝑏).

The GCD of 3𝑏 and 𝑎 + 2𝑏 must divide both 3𝑏 and 𝑎 + 2𝑏. The positive divisors of 3𝑏 are 1, 3, and
any positive divisor 𝑑 ≥ 2 of 𝑏. We show that no such divisors of 𝑏 also divide 𝑎 + 2𝑏.

Suppose for a contradiction that an integer 𝑑 ≥ 2 divides both 𝑏 and 𝑎 + 2𝑏. Then, by DIC,
𝑑 ∣ ((𝑎 + 2𝑏) − 2(𝑏)), that is, 𝑑 ∣ 𝑎. This means that 𝑑 is a common divisor of 𝑎 and 𝑏. However,
𝑎 and 𝑏 are coprime, meaning 𝑑 = 1. This is a contradiction since 1 ≱ 2. Therefore, no positive
divisor of 𝑏, other than 1, also divides 𝑎 + 2𝑏.

It follows that gcd(2𝑎 + 𝑏, 𝑎 + 2𝑏) can only be 1 or 3, as desired.

Recommended Problem 6.5. Prove that for all integers 𝑎, 𝑏 and 𝑘, if 𝑏 ≠ 0, then gcd(𝑎, 𝑏) ≤
gcd(𝑎𝑘, 𝑏).

Proof. Let 𝑎, 𝑏, and 𝑘 be integers where 𝑏 is non-zero. Also, let 𝑑 = gcd(𝑎, 𝑏) and 𝑔 = gcd(𝑎𝑘, 𝑏).
We must show 𝑑 ≤ 𝑔.

We will apply the GCD from Prime Factorization. For convenience, we define 𝑝𝑛 to be the 𝑛th

prime. First, by UPF, we are guaranteed to be able to write 𝑎 = 𝑝𝛼1
1 𝑝𝛼2

2 ⋯ 𝑝𝛼𝑛𝑛 , 𝑏 = 𝑝𝛽1
1 𝑝𝛽2

2 ⋯ 𝑝𝛽𝑛𝑛 ,
and 𝑘 = 𝑝𝜅1

1 𝑝𝜅2
2 ⋯ 𝑝𝜅𝑛𝑛 , with non-negative 𝛼𝑖, 𝛽𝑖, and 𝜅𝑖. Notice that we may write 𝑎𝑘 as a product

of primes: 𝑝𝛼1+𝜅1
1 𝑝𝛼2+𝜅2

2 ⋯ 𝑝𝛼𝑛+𝜅𝑛𝑛 .

Now, by GCD PF, we have 𝑑 = 𝑝𝛿1
1 𝑝𝛿2

2 ⋯ 𝑝𝛿𝑛𝑛 , where 𝛿𝑖 = min({𝛼𝑖, 𝛽𝑖}) for all integers 1 ≤ 𝑖 ≤ 𝑘.
Likewise, we have 𝑔 = 𝑝𝛾1

1 𝑝𝛾2
2 ⋯ 𝑝𝛾𝑛𝑛 , where 𝛾𝑖 = min({𝛼𝑖 + 𝜅𝑖, 𝛽𝑖}).

We will show that 𝛿𝑖 ≤ 𝛾𝑖 for all 𝑖, from which it follows 𝑑 ≤ 𝑔. Let 𝑖 be arbitrary.

If 𝛼𝑖 ≤ 𝛽𝑖 ≤ 𝛼𝑖 + 𝜅𝑖, then we have 𝛿𝑖 = 𝛼𝑖 and 𝛾𝑖 = 𝛽𝑖. It follows that 𝛿𝑖 ≤ 𝛾𝑖. Otherwise,
𝛽𝑖 ≤ 𝛼𝑖 ≤ 𝛼𝑖 + 𝜅𝑖, so 𝛿𝑖 = 𝛽𝑖 and 𝜅𝑖 = 𝛼𝑖. We again have 𝛿𝑖 ≤ 𝛾𝑖.
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Therefore, since every exponent in the prime factorization of 𝑑 is less than or equal to the core-
sponding exponent in the prime factorization of 𝑔, it must be the case that 𝑑 ≤ 𝑔.

Recommended Problem 6.6. Prove that for all integers 𝑎, 𝑏 and 𝑐: if 𝑎 ∣ 𝑐 and 𝑏 ∣ 𝑐 and
gcd(𝑎, 𝑏) = 1, then 𝑎𝑏 ∣ 𝑐.

Proof. Let 𝑎, 𝑏, and 𝑐 be integers such that 𝑎 and 𝑏 divide 𝑐, and 𝑎 and 𝑏 are coprime.

Then, there exist integers 𝑚 and 𝑛 such that 𝑎𝑚 = 𝑐 and 𝑏𝑛 = 𝑐. Also, by the CCT, there exist
integers 𝑠 and 𝑡 such that 𝑎𝑠 + 𝑏𝑡 = 1.

Then, 𝑐𝑎𝑠 + 𝑐𝑏𝑡 = 𝑐, so (𝑏𝑛)𝑎𝑠 + (𝑎𝑚)𝑏𝑡 = 𝑐. It follows that 𝑎𝑏(𝑛𝑠 + 𝑚𝑡) = 𝑐, so 𝑎𝑏 ∣ 𝑐.

Recommended Problem 6.7. Let 𝑎, 𝑏, 𝑐 ∈ ℤ. Prove that if gcd(𝑎, 𝑏) = 1 and 𝑐 ∣ 𝑎, then
gcd(𝑏, 𝑐) = 1.

Proof. Let 𝑎, 𝑏, and 𝑐 be integers such that gcd(𝑎, 𝑏) = 1 and 𝑐 ∣ 𝑎.

Then, 𝑛𝑐 = 𝑎 for some integer 𝑛 and, by Bézout’s Lemma, 𝑎𝑠 + 𝑏𝑡 = 1. Substituting, (𝑛𝑐)𝑎 + 𝑏𝑡 =
𝑏𝑡 + 𝑐(𝑛𝑎) = 1 for integers 𝑡 and 𝑛𝑎, so by the CCT, gcd(𝑏, 𝑐) = 1.

Recommended Problem 6.8. Let 𝑎 and 𝑏 be integers. Prove that if gcd(𝑎, 𝑏) = 1, then
gcd(𝑎𝑚, 𝑏𝑛) = 1 for all 𝑚, 𝑛 ∈ ℕ. You may use the result which is proved in Example 14 in
the notes.

Proof. Recall that Example 14 proved that for all integers 𝑎, 𝑏, and natural numbers 𝑛, if gcd(𝑎, 𝑏) =
1, then gcd(𝑎, 𝑏𝑛) = 1. Therefore, it suffices to let 𝑐 = 𝑏𝑛 and prove that gcd(𝑎, 𝑐) = 1 implies
gcd(𝑎𝑚, 𝑐) = 1.

In fact, we may simplify the problem further. If we show that the arguments of the GCD are
commutative, then we may again use the result from Example 14. Let 𝑥 and 𝑦 be coprime integers,
that is, gcd(𝑥, 𝑦) = 1. By Bézout’s Lemma, there exist 𝑠 and 𝑡 such that 𝑥𝑠 + 𝑦𝑡 = 1. Equivalently,
𝑦𝑡 + 𝑥𝑠 = 1, and by the CCT, gcd(𝑦, 𝑥) = 1.

Then, gcd(𝑎, 𝑐) = gcd(𝑐, 𝑎) = 1. By Example 14, gcd(𝑐, 𝑎𝑚) = 1, that is, gcd(𝑎𝑚, 𝑐) = gcd(𝑎𝑚, 𝑏𝑛) =
1, as desired.

Recommended Problem 6.9. Suppose 𝑎, 𝑏 and 𝑛 are integers. Prove that 𝑛 ∣ gcd(𝑎, 𝑛) ⋅
gcd(𝑏, 𝑛) if and only if 𝑛 ∣ 𝑎𝑏.

Proof (sooshi, CS Discord). Let 𝑎, 𝑏, and 𝑛 be integers. Then, let 𝑑 = gcd(𝑎, 𝑛) and 𝑐 = gcd(𝑏, 𝑛).
We prove both implications.
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(⇒) Suppose that 𝑛 ∣ 𝑑𝑐. Recall that by definition, 𝑑 ∣ 𝑎 and 𝑐 ∣ 𝑏. Then, we may write 𝑑𝑛 = 𝑎
and 𝑐𝑚 = 𝑏 for some integers 𝑛 and 𝑚. Multiplying together, 𝑑𝑐(𝑚𝑛) = 𝑎𝑏, that is, since 𝑚𝑛 is an
integer, 𝑑𝑐 ∣ 𝑎𝑏. By the transitivity of divisibility, 𝑛 ∣ 𝑑𝑐 and 𝑑𝑐 ∣ 𝑎𝑏 imply 𝑛 ∣ 𝑎𝑏, as desired.

(⇐) Suppose that 𝑛 ∣ 𝑎𝑏. We apply Bézout’s Lemma to rewrite 𝑑 = 𝑎𝑠 + 𝑛𝑡 and 𝑐 = 𝑏𝑥 + 𝑛𝑦
with integers 𝑠, 𝑡, 𝑥, and 𝑦. Multiplying together gives 𝑑𝑐 = 𝑎𝑏𝑠𝑥 + 𝑎𝑠𝑛𝑦 + 𝑏𝑥𝑛𝑡 + 𝑛2𝑡𝑦. This
factors to 𝑑𝑐 = (𝑎𝑏)(𝑠𝑥) + 𝑛(𝑎𝑠𝑦 + 𝑏𝑥𝑡 + 𝑛𝑡𝑦). Since we have both 𝑛 ∣ 𝑎𝑏 and 𝑛 ∣ 𝑛, by DIC,
𝑛 ∣ (𝑎𝑏)(𝑠𝑥) + 𝑛(𝑎𝑠𝑦 + 𝑏𝑥𝑡 + 𝑛𝑡𝑦). However, this is just 𝑛 ∣ 𝑑𝑐.

Therefore, since both implications hold, 𝑛 ∣ 𝑑𝑐 if and only if 𝑛 ∣ 𝑎𝑏.

Recommended Problem 6.10. How many positive divisors does 33480 have?

Solution. We may apply prime factorization to get 33480 = 23 ⋅ 33 ⋅ 5 ⋅ 31. Then, by DFPF, we have
that any positive divisor 𝑑 = 2𝛼 ⋅ 3𝛽 ⋅ 5𝛾 ⋅ 31𝛿 for integers 0 ≤ 𝛼 ≤ 3, 0 ≤ 𝛽 ≤ 3, 0 ≤ 𝛾 ≤ 1, and
0 ≤ 𝛿 ≤ 1.

That is, there are 4 choices for each of 𝛼 and 𝛽, and 2 choices for 𝛾 and 𝛿. Multiplying out, we
have 4 ⋅ 4 ⋅ 2 ⋅ 2 = 64 positive divisors.

Recommended Problem 6.11. Prove that for all integers 𝑎 and 𝑏, if 9𝑎2 = 𝑏4 where 𝑎, 𝑏 ∈ ℤ,
then 3 is a common divisor of 𝑎 and 𝑏.

Proof. Let 𝑎 and 𝑏 be integers such that 9𝑎2 = 𝑏4. Without loss of generality, let both 𝑎 and 𝑏 be
positive (if 𝑎 = 𝑏 = 0, then, trivially, 3 ∣ 𝑎 and 3 ∣ 𝑏).

By UFT, 𝑎 = 𝑝𝛼1
1 𝑝𝛼2

2 ⋯ 𝑝𝛼𝑘
𝑘 for 𝑘 distinct primes 𝑝𝑖 and non-negative integers 𝛼𝑖. Likewise, 𝑏 =

𝑝𝛽1
1 𝑝𝛽2

2 ⋯ 𝑝𝛽𝑘
𝑘 for non-negative integers 𝛽𝑖. Since 3 is prime, there is an 𝑛 where 𝑝𝑛 = 3.

It follows that 9𝑎2 has 2 + 2𝛼𝑛 factors of 3 and that 𝑏4 has 4𝛽𝑛 factors. Since 9𝑎2 = 𝑏4, by UFT,
2 + 2𝛼𝑛 = 4𝛽𝑛.

We have that 4𝛽𝑛 = 2 + 2𝛼𝑛 ≥ 2, so 𝛽𝑛 ≥ 1, which means 3 ∣ 𝑏.

However, if 𝛽𝑛 ≥ 1, then 2 + 2𝛼𝑛 = 4𝛽𝑛 ≥ 4, which means 𝛼𝑛 ≥ 1. That is, 3 ∣ 𝑎.

Therefore, 3 is a common divisor of 𝑎 and 𝑏.

Recommended Problem 6.12. Let 𝑛 ∈ ℕ. Prove that if 𝑝 is prime and 𝑝 ≤ 𝑛, then 𝑝 does
not divide 𝑛! + 1.

Proof. Let 𝑛 be a natural number, and 𝑝 be a prime number.

Since 𝑛! is defined as the product of all positive integers up to 𝑛 and 𝑝 ≤ 𝑛, 𝑝 clearly divides 𝑛.
Therefore, 𝑛! = 𝑘𝑝 for some integer 𝑘. Then, 𝑘 is the product of all positive integers up to 𝑛 except
𝑝. Since 𝑝 is prime, 𝑘 ∤ 𝑝.
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Then, we have 𝑛! + 1 = 𝑝(𝑘 + 1
𝑝), so 𝑝 ∣ (𝑛! + 1) only if 𝑘 + 1

𝑝 is an integer, which it clearly is not
(since 𝑝 ≥ 2). Therefore, 𝑝 ∤ (𝑛! + 1).

6.3 Challenges

Challenge 6.1. Prove that for any integer 𝑎 ≠ 1 and 𝑛 ∈ ℕ, gcd (𝑎𝑛−1
𝑎−1 , 𝑎 − 1) = gcd(𝑛, 𝑎−1).

Challenge 6.2. Let 𝑛 be a positive integer for which gcd(𝑛, 𝑛 + 1) < gcd(𝑛, 𝑛 + 2) < ⋯ <
gcd(𝑛, 𝑛 + 20). Prove that gcd(𝑛, 𝑛 + 20) < gcd(𝑛, 𝑛 + 21).

Challenge 6.3. Let 𝑎 and 𝑏 be nonnegative integers. Prove that gcd(2𝑎 − 1, 2𝑏 − 1) =
2 gcd(𝑎, 𝑏) − 1.

Challenge 6.4. An integer 𝑛 is perfect if the sum of all of its positive divisors (including 1
and itself) is 2𝑛.

(a) Is 6 a perfect number? Give reasons for your answer.

(b) Is 7 a perfect number? Give reasons for your answer.

(c) Prove the following statement: If 𝑘 is a positive integer and 2𝑘−1 is prime, then 2𝑘−1(2𝑘−
1) is perfect.

Challenge 6.5. Let 𝑎, 𝑏 ∈ ℤ. Prove that gcd(𝑎𝑛, 𝑏𝑛) = gcd(𝑎, 𝑏)𝑛 for all 𝑛 ∈ ℕ.
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Chapter 7

Linear Diophantine Equations

7.1 Warm-Up Exercises

Warm-Up Exercise 7.1. Find the complete integer solution to 7𝑥 + 11𝑦 = 3.

Solution. Begin by applying the EEA to determine one solution for 𝑥 and 𝑦:

𝑥 𝑦 𝑟 𝑞
1 0 7 0
0 1 11 0

−1 1 4 −1
2 −1 3 2

which gives 7(2) + 11(−1) = 3. Since 7 and 11 are prime, we immediately know their GCD is 1.
Now, apply the LDET to determine the complete solution set:

{(𝑥, 𝑦) ∶ 𝑥 = 2 + 11𝑛, 𝑦 = −1 − 7𝑛, 𝑛 ∈ ℤ}

Warm-Up Exercise 7.2. Find the complete integer solution to 28𝑥 + 60𝑦 = 10.

Solution. Begin by applying the EEA to find the GCD:

𝑦 𝑥 𝑟 𝑞
1 0 60 0
0 1 28 0
1 −4 4 2

−7 29 0 7

Therefore, gcd(28, 60) = 4. However, 4 ∤ 10, so there are no solutions to this equation.
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7.2 Recommended Problems

Recommended Problem 7.1. Find all non-negative integer solutions to 12𝑥 + 57𝑦 = 423.

Solution. Since 12 = 3 × 4 and 57 = 3 × 19, clearly gcd(12, 57) = 3. We also have that 423 ∣ 3, so
solutions exist. Applying EEA, we have

𝑦 𝑥 𝑟 𝑞
1 0 57 0
0 1 12 0
1 −4 9 4

−1 5 3 1

so our base solution is 12(5) + 57(−1) = 3. Multiplying through by 423
3 = 141, we have 12(705) +

57(−141) = 423. By the LDET, we arrive at our solution set in the integers:

{(𝑥, 𝑦) ∶ 𝑥 = 705 + 19𝑛, 𝑦 = −141 − 4𝑛, 𝑛 ∈ ℤ}

However, we want to restrict 𝑥 ≥ 0 and 𝑦 ≥ 0. Notice that 𝑥 ≥ 0 when 𝑛 ≥ −705
19 , that is, 𝑛 ≥ −37.

Likewise, 𝑦 ≥ 0 when 𝑛 ≤ −141
35 , that is, 𝑛 ≤ −36.

This just means that −37 ≤ 𝑛 ≤ −36, or 𝑛 = −37, −36. Therefore, the solution set is (𝑥, 𝑦) ∈
{(2, 7), (21, 3)}.

Recommended Problem 7.2. Prove or disprove the following implications:

(a) For all integers 𝑎, 𝑏, and 𝑐, if there exists an integer solution to 𝑎𝑥2+𝑏𝑦2 = 𝑐, then gcd(𝑎, 𝑏) ∣ 𝑐.

Proof. Let 𝑎, 𝑏, and 𝑐 be integers. Suppose there is an integer solution in 𝑥 and 𝑦 to the
equation 𝑎𝑥2 + 𝑏𝑦2 = 𝑐. Since 𝑥2 and 𝑦2 are integers, this is a solution to the equation
𝑎𝑠 + 𝑏𝑡 = 𝑐 with integers 𝑠 = 𝑥2 and 𝑡 = 𝑦2.
It immediately follows from the LDET that gcd(𝑎, 𝑏) ∣ 𝑐.

(b) For all integers 𝑎, 𝑏, and 𝑐, if gcd(𝑎, 𝑏) ∣ 𝑐, then there exists an integer solution to 𝑎𝑥2+𝑏𝑦2 = 𝑐.

Proof. Consider the counterexample where 𝑎 = 𝑏 = 1 and 𝑐 = −2. We have that gcd(𝑎, 𝑏) =
gcd(1, 1) = 1 and clearly 1 ∣ −2.
We now have the equation (1)𝑥2 + (1)𝑦2 = −2. From the properties of integers, 𝑥2 ≥ 0 and
𝑦2 ≥ 0, so 𝑥2 +𝑦2 ≥ 0. Then, 𝑥2 +𝑦2 ≥ 0 but −2 is not non-negative. Therefore, no solutions
to 𝑥2 + 𝑦2 = −2 exist.

Recommended Problem 7.3. Consider the following statement: For all integers 𝑎, 𝑏, 𝑐, and
𝑥0, there exists an integer 𝑦0 such that 𝑎𝑥0 + 𝑏𝑦0 = 𝑐.
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(a) Carefully write down the negation of this statement and prove that this negation is true.

Proof. We prove the negation:

There exist integers 𝑎, 𝑏, 𝑐, and 𝑥0 such that for all integers 𝑦0, 𝑎𝑥0 + 𝑏𝑦0 ≠ 𝑐.

Select 𝑎 = 𝑥0 = 1, 𝑏 = 0, and 𝑐 = 2. Let 𝑦0 be an integer. We must show that (1)(1)+(0)𝑦0 ≠
(2). This is just 1 ≠ 2, which is true independent of 𝑦0.

(b) Let 𝑎, 𝑏, 𝑐 ∈ ℤ. Fill in the blank to make the following statement true and prove that it is
true. 𝑏 is non-zero, 𝑏 ∣ 𝑎, and 𝑏 ∣ 𝑐 if and only if for all integers 𝑥0, there exists an integer 𝑦0
such that 𝑎𝑥0 + 𝑏𝑦0 = 𝑐.

Proof. Let 𝑎, 𝑏, and 𝑐 be integers.
We prove the biconditional by proving both implications.
(⇒) Suppose 𝑏 is non-zero, 𝑏 ∣ 𝑎, and 𝑏 ∣ 𝑐. We break into cases on 𝑎:
If 𝑎 = 0, then we must show that there exists a 𝑦0 such that 𝑏𝑦0 = 𝑐. This follows immediately
from the fact that 𝑏 ∣ 𝑐.
If 𝑎 is non-zero, it follows that gcd(𝑎, 𝑏) = |𝑏|. Then, since 𝑏 ∣ 𝑐, we have gcd(𝑎, 𝑏) ∣ 𝑐. We
may now apply the LDET. The solution set to the linear Diophantine equation 𝑎𝑥0 + 𝑏𝑦0 = 𝑐
is

{(𝑥0, 𝑦0) ∶ 𝑥0 = 𝑥 +
𝑏

|𝑏|
𝑛, 𝑦0 = 𝑦 +

𝑎
|𝑏|

𝑛, 𝑛 ∈ ℤ}

for some initial solution (𝑥, 𝑦). Since 𝑛 ranges through all integers, we may drop the absolute
value bars. Then, 𝑥0 = 𝑥 + 𝑛, so every integer 𝑥0 appears in the solution set at 𝑛 = 𝑥0 − 𝑥,
with a corresponding 𝑦0.
Alternatively stated, for every integer 𝑥0, there exists a 𝑦0 such that 𝑎𝑥0 + 𝑏𝑦0 = 𝑐.
(⇐) Suppose that for all integers 𝑥0, we may choose an integer 𝑦0 so 𝑎𝑥0 + 𝑏𝑦0 = 𝑐. Let 𝑥0
be an integer.
Suppose for a contradiction that 𝑏 = 0, so 𝑎𝑥0 = 𝑐. This is clearly not true for all 𝑎, 𝑐, and
𝑥0. Therefore, 𝑏 is non-zero.
Now, break into cases on 𝑎. Suppose that 𝑎 = 0. Then, we may find 𝑦0 such that 𝑏𝑦0 = 𝑐,
which is the same as saying 𝑏 ∣ 𝑐.
Suppose that 𝑎 is non-zero. Since both 𝑎 and 𝑏 are non-zero and 𝑎𝑥0 + 𝑏𝑦0 = 𝑐 is a solution
to the LDE 𝑎𝑥 + 𝑏𝑦 = 𝑐, the LDET applies, giving gcd(𝑎, 𝑏) ∣ 𝑐.
However, since the LDET applies, there is an entire solution set given by

{(𝑥, 𝑦) ∶ 𝑥 = 𝑥0 +
𝑏

gcd(𝑎, 𝑏)
𝑛, 𝑦 = 𝑦0 +

𝑎
gcd(𝑎, 𝑏)

𝑛, 𝑛 ∈ ℤ}

Now, recall that 𝑥0 is an arbitrary integer. Therefore, the values of 𝑥 given in the set above
must also span the integers, that is, any arbitrary integer 𝑥 may be written 𝑥0 + 𝑏

gcd(𝑎,𝑏)𝑛.

This implies that 𝑏
gcd(𝑎,𝑏) = 1, that is, 𝑏 = gcd(𝑎, 𝑏), since GCD is positive.

Therefore, 𝑏 is non-zero, gcd(𝑎, 𝑏) = 𝑏 divides 𝑐, and by definition, 𝑏 divides 𝑎.
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Recommended Problem 7.4. Suppose 𝑎 and 𝑏 are integers. Prove that {𝑎𝑥 + 𝑏𝑦 ∶ 𝑥, 𝑦 ∈
ℤ} = {𝑛 gcd(𝑎, 𝑏) ∶ 𝑛 ∈ ℤ}.

Proof. Let 𝑎 and 𝑏 be integers with GCD 𝑑. We prove {𝑎𝑥 + 𝑏𝑦 ∶ 𝑥, 𝑦 ∈ ℤ} = {𝑛𝑑 ∶ 𝑛 ∈ ℤ} by
mutual containment.

(⊆) Let 𝑥 and 𝑦 be integers. Then, since 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏, 𝑑 ∣ (𝑎𝑥 + 𝑏𝑦). This means we may write
𝑎𝑥 + 𝑏𝑦 as 𝑛𝑑, as desired.

(⊇) Let 𝑛 be an integer. By Bézout’s Lemma, we may write 𝑑 = 𝑥𝑠 + 𝑦𝑡 for integers 𝑠 and 𝑡.
Multiplying through by 𝑛, we have 𝑛𝑑 = (𝑛𝑠)𝑥 + (𝑛𝑡)𝑦. We may let 𝑎 = 𝑛𝑠 and 𝑏 = 𝑛𝑡, which are
integers, and have 𝑛𝑑 = 𝑎𝑥 + 𝑏𝑦 as desired.

Therefore, since the sets are mutually contained, they are equal.

Note: This is essentially a restatement of Jerry Wang’s GCD derivation by subgroups.

7.3 Challenge

Challenge 7.1. For how many integer values of 𝑐 does 8𝑥 + 5𝑦 = 𝑐 have exactly one solution
where both 𝑥 and 𝑦 are strictly positive integers?
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Chapter 8

Congruence and Modular Arithmetic

8.1 Warm-Up Exercises

Warm-Up Exercise 8.1. Is 7386458999999992324343123 divisible by 11?

Solution. We may simply apply Proposition 9 from the course notes: an integer is divisible by 11
if the difference of the sums of the even and odd digits is divisible by 11.

The even digits are 7 + 8 + 4 + 8 + 9 + 9 + 9 + 9 + 3 + 4 + 4 + 1 + 3 = 78 and the odd digits are
3 + 6 + 5 + 9 + 9 + 9 + 9 + 2 + 2 + 3 + 3 + 2 = 62. We have 78 − 62 = 16 which is not divisible by 11.

Therefore, 11 ∤ 7386458999999992324343123.

Warm-Up Exercise 8.2. For each linear congruence, determine the complete solution, if a
solution exists.

(a) 3𝑥 ≡ 11 (mod 18)

Solution. Notice that gcd(3, 18) = 3 and 3 ∤ 11. Therefore, by LCT, there are no solutions.

(b) 4𝑥 ≡ 5 (mod 21)

Solution. Notice that gcd(4, 21) = 1 and 1 ∣ 5. Therefore, LCT guarantees a set of solutions
where 𝑥 ≡ 𝑥0 (mod 21) for some particular solution 𝑥0.
By inspection, 21 + 4(−4) = 5, so 4(−4) ≡ 5 (mod 21).
Therefore, the set of solutions is 𝑥 ∈ [−4]21 = [17]21.

Warm-Up Exercise 8.3. Complete the addition and multiplication tables for ℤ5.
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Solution. The elements of ℤ5 are {[0], [1], [2], [3], [4]}:

+ [0] [1] [2] [3] [4]
[0] [0] [1] [2] [3] [4]
[1] [1] [2] [3] [4] [0]
[2] [2] [3] [4] [0] [1]
[3] [3] [4] [0] [1] [2]
[4] [4] [0] [1] [2] [3]

× [0] [1] [2] [3] [4]
[0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4]
[2] [0] [2] [4] [1] [3]
[3] [0] [3] [1] [4] [2]
[4] [0] [4] [3] [2] [1]

Warm-Up Exercise 8.4. What is the remainder when 1443 is divided by 41?

Solution. Since 41 is prime and 41 ∤ 14, we may apply Fermat’s Little Theorem.

1441−1 = 1440 ≡ 1 (mod 41)

Now, simply apply modular arithmetic: 142 = 196 ≡ −9 (mod 41), and 143 = 14 ⋅ 142 ≡ 14 ⋅ −9 ≡
−3 (mod 41). Finally, 1440 ⋅ 143 = 1443 ≡ 1 ⋅ −3 ≡ 38 (mod 41). Therefore, the remainder is
38.

Warm-Up Exercise 8.5. Solve

𝑥 ≡ 7 (mod 11)
𝑥 ≡ 5 (mod 12)

Solution. We apply the Chinese Remainder Theorem since gcd(11, 12) = 1. Solutions to the first
equation are 𝑥 ≡ 7, 18, 29, 40, 51, 62, 73, 84, 95, 106, 117, 128 (mod 132). Solutions to the second are
𝑥 ≡ 5, 17, 29, 41, 53, 65, 77, 89, 101, 113, 125 (mod 132). The unique solution common to these is
𝑥 ≡ 29 (mod 132).

Warm-Up Exercise 8.6. What is the smallest non-negative integer 𝑥 such that 2000 ≡ 𝑥
(mod 37)?

Solution. Simply reduce using the division algorithm, which guarantees a minimal non-negative
remainder below 37: we have 2000 = 37(54) + 2, so 2000 ≡ 2 (mod 37).

8.2 Recommended Problems
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Recommended Problem 8.1. Is 27129 + 6140 divisible by 14? Justify your answer.

Solution. We simplify with 27 ≡ −1 (mod 14) and 61 ≡ 5 (mod 14):

27129 + 6140 ≡ (−1)128+1 + (5)40 (mod 14)
≡ −1 + 532+8 (mod 14)

Now, we can repeatedly square 5 to calculate 532 and 58.

52 ≡ 25 ≡ 11 (mod 14)
54 ≡ 121 ≡ 9 (mod 14)
58 ≡ 81 ≡ 11 (mod 14)
516 ≡ 121 ≡ 9 (mod 14)
532 ≡ 81 ≡ 11 (mod 14)

Substituting back,

27129 + 6140 ≡ −1 + (11)(11) ≡ 120 ≡ 8 (mod 14)

Therefore, the remainder is 8 by CTR, which is not 0, so 14 ∤ (27129 + 6140).

Recommended Problem 8.2. Prove Congruence Power (CP): For all positive integers 𝑛 and
integers 𝑎 and 𝑏, if 𝑎 ≡ 𝑏 (mod 𝑚), then 𝑎𝑛 ≡ 𝑏𝑛 (mod 𝑚).

Proof. Let 𝑎 and 𝑏 be integers congruent mod 𝑚. We prove by induction on 𝑛. Let 𝑃(𝑛) denote
the statement that 𝑎𝑛 ≡ 𝑏𝑛 (mod 𝑚).

The base case 𝑃(1), 𝑎1 ≡ 𝑏1 (mod 𝑚) follows from the hypothesis.

Now, let 𝑘 be a positive integer. Suppose 𝑃(𝑘 − 1) holds, that is, 𝑎𝑘−1 ≡ 𝑏𝑘−1 (mod 𝑚). Since
𝑎 ≡ 𝑏 (mod 𝑚), we may write 𝑎 = 𝑏 + 𝑝𝑚 for some integer 𝑝. By our inductive hypothesis, we
write 𝑎𝑘−1 = 𝑏𝑘−1 + 𝑞𝑚 for some integer 𝑞.

Multiplying these equations together,

(𝑎)(𝑎𝑘−1) = (𝑏 + 𝑝𝑚)(𝑏𝑘−1 + 𝑞𝑚)
𝑎𝑘 = 𝑏𝑘 + 𝑏𝑘−1𝑝𝑚 + 𝑏𝑞𝑚 + 𝑝𝑞𝑚2

𝑎𝑘 − 𝑏𝑘 = (𝑏𝑘−1𝑝 + 𝑏𝑞 + 𝑝𝑞𝑚)𝑚

which, since 𝑏𝑘−1𝑝+𝑏𝑞+𝑝𝑞𝑚 is an integer, implies 𝑚 divides 𝑎𝑘−𝑏𝑘. By the definition of congruence,
𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑚), which is exactly 𝑃(𝑘).

Therefore, by induction, 𝑃(𝑛) is true for all positive integer 𝑛.
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Recommended Problem 8.3. What is the remainder when 31412001 is divided by 17?

Solution. First, notice that 3141 ≡ 13 (mod 17). We also have that 31412 ≡ 132 ≡ −1 (mod 17).
Therefore, 31412001 ≡ 3141(31412)1000 ≡ 13(−1)1000 ≡ 13 (mod 17). By CTR, the remainder is
13.

Recommended Problem 8.4. Solve 49𝑥177 + 37𝑥26 + 3𝑥2 + 𝑥 + 1 ≡ 0 (mod 7).

Solution. First, notice that 49𝑥177 ≡ 0 (mod 7) for any integer 𝑥 since 7 ∣ 49. Also, 37 ≡ 2
(mod 7), so 37𝑥26 ≡ 2𝑥26 ≡ 2(𝑥2)13 (mod 7) for any integer 𝑥. Additionally, by CFlT, 𝑥7 ≡ 𝑥
(mod 7) for any integer 𝑥, so 2𝑥26 ≡ 2𝑥7(3)+5 ≡ 2(𝑥7)3(𝑥5) ≡ 2𝑥8 ≡ 2𝑥2 (mod 7) for any integer 𝑥.

Now, simply test every value of 𝑥 and find 5𝑥2 + 𝑥:

𝑥 (mod 7) 0 1 2 3 4 5 6
𝑥2 (mod 7) 0 1 4 2 2 4 1
5𝑥2 (mod 7) 0 5 6 3 3 6 5

5𝑥2 + 𝑥 (mod 7) 0 6 1 6 0 4 4

Now, since −1 ≡ 6 (mod 7), our solutions are 𝑥 ≡ 1, 3 (mod 7).

Recommended Problem 8.5. Solve

3𝑥 − 2 ≡ 7 (mod 11)
5 ≡ 4𝑥 − 1 (mod 9)

Solution. We can simplify these congruences by CAM to 3𝑥 ≡ 9 (mod 11) and 4𝑥 ≡ 6 (mod 9).
Since 11 is prime, we can apply CD to the first congruence to get 𝑥 ≡ 3 (mod 11). Then, 𝑥 = 11𝑘+3
for some integer 𝑘. Substituting,

4(11𝑘 + 3) ≡ 6 (mod 9)
44𝑘 ≡ −6 (mod 9)
−𝑘 ≡ −6 (mod 9)

𝑘 ≡ 6 (mod 9)

Therefore, 𝑘 = 9𝑛 + 6 for an integer 𝑛, and 𝑥 = 11(9𝑛 + 6) + 3 = 99𝑛 + 69. Equivalently, by
definition, 𝑥 ≡ 69 (mod 99).

Recommended Problem 8.6. The Chinese Remainder Theorem deals with the case where
the moduli are coprime. We now investigate what happens if the moduli are not coprime.
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(a) Consider the following two systems of linear congruences:

𝐴 ∶ {
𝑛 ≡ 2 (mod 12)
𝑛 ≡ 10 (mod 18)

𝐵 ∶ {
𝑛 ≡ 5 (mod 12)
𝑛 ≡ 11 (mod 18)

Determine which one has solutions and which one has no solutions. For the one with solutions,
give the complete solutions to the system. For the one with no solutions, explain why no
solutions exist.

Solution. Consider system 𝐴. By definition, numbers 𝑛 congruent to 10 modulo 18 are of the
from 𝑛 = 10 + 18𝑘 for some integer 𝑘. Substituting into the first congruence, 10 + 18𝑘 ≡ 2
(mod 12), that is, 6𝑘 ≡ 4 (mod 12). However, since gcd(6, 12) = 6 and 6 ∤ 4, there are no
valid values of 𝑘.
Consider system 𝐵. By definition, solutions to the second congruence are of the from 𝑛 =
11 + 18𝑘 for some integer 𝑘. Substituting, 11 + 18𝑘 ≡ 5 (mod 12), that is, 6𝑘 ≡ 6 (mod 12).
Since gcd(6, 12) = 6 and 6 ∣ 6, a solution exists. By inspection, 𝑘 = 1 is a solution. By LCT,
the set of all solutions is given by {𝑘 ∈ ℤ ∶ 𝑘 ≡ 1 (mod 2)}. Therefore, values for 𝑘 are of
the form 2𝑚 + 1 for some integer 𝑚. Backsubstituting, 𝑛 = 11 + 18(2𝑚 + 1) = 29 + 36𝑚.
Equivalently, the solution set for all 𝑛 is given by

{𝑛 ∈ ℤ ∶ 𝑛 ≡ 29 (mod 36)}

(b) Let 𝑎1 and 𝑎2 be integers, and let 𝑚1 and 𝑚2 be positive integers. Consider the following
system of linear congruences:

𝑆 ∶ {
𝑛 ≡ 𝑎1 (mod 𝑚1)
𝑛 ≡ 𝑎2 (mod 𝑚2)

Using your observations in (a), complete the following two statements. The system 𝑆 has
a solution if and only if 𝑎1 ≡ 𝑎2 (mod gcd(𝑚1, 𝑚2)) . If 𝑛0 is a solution to 𝑆, then the

complete solution is 𝑛 ≡ 𝑛0 (mod lcm(𝑚1, 𝑚2)) .

(c) Prove the first statement.

Proof. Let 𝑎1 and 𝑎2 be integers and let 𝑚1 and 𝑚2 be positive integers with GCD 𝑑. We
prove the biconditional by mutual implication.
(⇒) Suppose that 𝑎1 ≡ 𝑎2 (mod 𝑑). Solutions to the first congruence are of the form 𝑛 =
𝑎1 + 𝑚1𝑥 for some integer 𝑥. However, we may write 𝑎1 = 𝑎2 + 𝑑𝑘 with integer 𝑘, so we
have 𝑛 = 𝑎2 + 𝑑𝑘 + 𝑚1𝑥. Substituting, 𝑎2 + 𝑑𝑘 + 𝑚1𝑥 ≡ 𝑎2 (mod 𝑚2), that is, 𝑚1𝑥 ≡ −𝑑𝑘
(mod 𝑚2).
By LCT, this has a solution 𝑥0 because gcd(𝑚1, 𝑚2) = 𝑑 and 𝑑 ∣ −𝑑𝑘, and all solutions are
given by 𝑥 = 𝑥0 + 𝑚2𝑦 for some integer 𝑦. Backsubstituting, 𝑛 = 𝑎1 + 𝑚1(𝑥0 + 𝑚2𝑦) =
𝑎1 + 𝑚1𝑥0 + 𝑚1𝑚2𝑦. Therefore, the system 𝑆 has solutions.
(⇐) Suppose that 𝑆 has a solution. Then, there is some 𝑛 such that 𝑛 = 𝑎1 +𝑚1𝑝 = 𝑎2 +𝑚2𝑞
for integers 𝑝 and 𝑞. Rearranging, 𝑎1 − 𝑎2 = 𝑚1𝑝 + 𝑚2𝑞. This is an LDE in 𝑎1 − 𝑎2. By the
LDET, it has solutions if and only if gcd(𝑚1, 𝑚2) ∣ (𝑎1 − 𝑎2). This is equivalent by definition
to saying 𝑎1 ≡ 𝑎2 (mod 𝑑).
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Recommended Problem 8.7. Solve 𝑥3 ≡ 17 (mod 99).

Solution. We can split the modulus to simplify the problem: 99 = 3×3×11. By SMT, we can solve
three simultaneous congruences. However, since 3 appears twice, those congruences are redundant.
Then, we may equivalently solve the simultaneous congruences

𝑥3 ≡ 17 ≡ 2 (mod 3) and 𝑥3 ≡ 17 ≡ 6 (mod 11)

For the first congruence, we make a table

𝑥 (mod 3) 0 1 2
𝑥2 (mod 3) 0 1 1
𝑥3 (mod 3) 0 1 2

and see from the last row that the solution is all 𝑥 such that 𝑥 ≡ 2 (mod 3). Repeating for the
second congruence, we make a table

𝑥 (mod 11) 0 1 2 3 4 5 6 7 8 9 10
𝑥2 (mod 11) 0 1 4 9 5 3 3 5 9 4 1
𝑥3 (mod 11) 0 1 8 5 9 4 7 2 6 3 10

and see again in the last row that the solution is all 𝑥 such that 𝑥 ≡ 8 (mod 11). Now, we apply
the Chinese Remainder Theorem. There must exist some 𝑥0 so the solution set is all 𝑥 congruent
to 𝑥0 modulo 33.

Note that solutions between 0 and 32 that are congruent to 8 modulo 11 are 8, 19, and 30. Of
these, only 8 is congruent to 2 modulo 3. Therefore, the solution is all 𝑥 such that 𝑥 ≡ 8 (mod 33),
or, equivalently,

𝑥 ≡ 8, 41, 74 (mod 99)

Recommended Problem 8.8. Solve 𝑥2 + 25𝑥 ≡ 54 (mod 63).

Solution. First, notice that 𝑥2 +25𝑥−54 factors as (𝑥−2)(𝑥+27). Split the modulus as 63 = 7×9,
so by SMT, we can solve two simultaneous congruences:

(𝑥 − 2)(𝑥 + 27) ≡ 0 (mod 7) (𝑥 − 2)(𝑥 + 27) ≡ 0 (mod 9)

Since −27 ≡ 1 (mod 7) and −27 ≡ 0 (mod 9), we can equivalently write 𝑥 ≡ 1, 2 (mod 7) and
𝑥 ≡ 0, 2 (mod 9).

Now, since 7 and 9 are coprime, we take all combinations of the above and apply CRT to each pair,
obtaining the set of solutions:

• If 𝑥 ≡ 1 (mod 7) and 𝑥 ≡ 0 (mod 9), then 𝑥 ≡ 36 (mod 63)

• If 𝑥 ≡ 1 (mod 7) and 𝑥 ≡ 2 (mod 9), then 𝑥 ≡ 29 (mod 63)
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• If 𝑥 ≡ 2 (mod 7) and 𝑥 ≡ 0 (mod 9), then 𝑥 ≡ 9 (mod 63)

• If 𝑥 ≡ 2 (mod 7) and 𝑥 ≡ 2 (mod 9), then 𝑥 ≡ 2 (mod 63)

Therefore, by CRT, 𝑥 ≡ 2, 9, 29, 36 (mod 63) are the only solutions.

Recommended Problem 8.9. Find the smallest positive integer 𝑎 such that 5𝑛13 + 13𝑛5 +
𝑎(9𝑛) ≡ 0 (mod 65) for all integers 𝑛.

Solution. Let 𝑛 be an integer. Since 65 = 5 × 13, we split the congruence with SMT:

5𝑛13 + 13𝑛5 + 𝑎(9𝑛) ≡ 0 (mod 5) 5𝑛13 + 13𝑛5 + 𝑎(9𝑛) ≡ 0 (mod 13)
3𝑛5 + 𝑎(4𝑛) ≡ 0 (mod 5) 5𝑛13 + 𝑎(9𝑛) ≡ 0 (mod 13)

Now, we apply CFℓT to both congruences to obtain

3𝑛 + 𝑎(4𝑛) ≡ 0 (mod 5) 5𝑛 + 𝑎(9𝑛) ≡ 0 (mod 13)
(3 + 4𝑎)𝑛 ≡ 0 (mod 5) (5 + 9𝑎)𝑛 ≡ 0 (mod 13)

This has a trivial solution when 𝑛 ≡ 0 (mod 65), but since 𝑛 is arbitrary, we must otherwise have
that 3 + 4𝑎 ≡ 0 (mod 5) and 5 + 9𝑎 ≡ 0 (mod 13) by CAD. We solve the simultaneous congruence

4𝑎 ≡ 2 (mod 5) 9𝑎 ≡ 8 (mod 13)

noting that since 5 and 13 are prime, solutions exist. In fact, we can bruteforce to find 𝑎 ≡ 3
(mod 5) and 𝑎 ≡ 11 (mod 13). Then, by the CRT, 𝑎 ≡ 63 (mod 65) and the smallest positive such
integer is 𝑎 = 63.

Recommended Problem 8.10. Prove that for distinct primes 𝑝 and 𝑞, (𝑝𝑞−1 + 𝑞𝑝−1) ≡ 1
(mod 𝑝𝑞).

Proof. Let 𝑝 and 𝑞 be distinct primes. Since 𝑞 − 1 and 𝑝 − 1 are positive integers, 𝑝𝑞−1 is a multiple
of 𝑝 and 𝑞𝑝−1 of 𝑞. By definition, 𝑝𝑞−1 ≡ 0 (mod 𝑝) and 𝑞𝑝−1 ≡ 0 (mod 𝑞). Since 𝑝 ∤ 𝑞 and
𝑞 ∤ 𝑝, by FℓT, we have 𝑞𝑝−1 ≡ 1 (mod 𝑝) and 𝑝𝑞−1 ≡ 1 (mod 𝑞). Therefore, by CAM, we have the
simultaneous congruences

(𝑝𝑞−1 + 𝑞𝑝−1) ≡ 1 (mod 𝑝)
(𝑝𝑞−1 + 𝑞𝑝−1) ≡ 1 (mod 𝑞)

As distinct primes, gcd(𝑝, 𝑞) = 1. Then, by SMT, (𝑝𝑞−1 + 𝑞𝑝−1) ≡ 1 (mod 𝑝𝑞).

Recommended Problem 8.11. If 𝑎 and 𝑏 are integers, 3 ∤ 𝑎, 3 ∤ 𝑏, 5 ∤ 𝑎, and 5 ∤ 𝑏, prove
that 𝑎4 ≡ 𝑏4 (mod 15)

Proof. Let 𝑥 be an integer where 3 ∤ 𝑥 and 5 ∤ 𝑥. We exhaust possibilities for 𝑥 (mod 15):
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𝑥 (mod 15) 1 2 4 7 8 11 13 14
𝑥2 (mod 15) 1 4 1 4 4 1 4 1
𝑥4 (mod 15) 1 1 1 1 1 1 1 1

Therefore, for any integer 𝑥 neither a multiple of 3 nor 5, 𝑥4 ≡ 1 (mod 15). It follows that for any
two integers 𝑎 and 𝑏, with both neither multiples of 3 nor 5, 𝑎4 ≡ 𝑏4 (mod 15).

8.3 Challenge

Challenge 8.1. A basket contains a number of eggs and when the eggs are removed 2, 3, 4, 5
and 6 at a time, there are 1, 2, 3, 4 and 5, respectively, left over. When the eggs are removed
7 at a time there are none left over. Assuming none of the eggs broke during the preceding
operations, determine the minimum number of eggs that were in the basket.

Solution. Let 𝑛 be the number of eggs in the basket. Since removing 6 eggs leaves at least 5 eggs,
𝑛 ≥ 11. We interpret the constraints as a system of linear congruences:

𝑛 ≡ 1 (mod 2) 𝑛 ≡ 2 (mod 3)
𝑛 ≡ 3 (mod 4) 𝑛 ≡ 4 (mod 5)
𝑛 ≡ 5 (mod 6) 𝑛 ≡ 0 (mod 7)

Note that all multiples of 7 are odd, so we may ignore the first condition. Also, we may write
𝑛 = 7𝑚 for some integer 𝑚 and simplify:

7𝑚 ≡ 𝑚 ≡ 2 (mod 3) 7𝑚 ≡ 3𝑚 ≡ 3 (mod 4)
7𝑚 ≡ 2𝑚 ≡ 4 (mod 5) 7𝑚 ≡ 𝑚 ≡ 5 (mod 6)

Since 3 and 4 are coprime, we apply CD to the second congruence, 𝑚 ≡ 1 (mod 4). By definition
and the first congruence, 𝑚 = 2 + 3𝑝 for an integer 𝑝. Apply CAM and CD:

2 + 3𝑝 ≡ 1 (mod 4) 2(2 + 3𝑝) ≡ 4 (mod 5) 2 + 3𝑝 ≡ 5 (mod 6)
3𝑝 ≡ 3 (mod 4) 6𝑝 ≡ 0 (mod 5) 3𝑝 ≡ 3 (mod 6)
𝑝 ≡ 1 (mod 4) 𝑝 ≡ 0 (mod 5) 3𝑝 ≡ 3 (mod 6)

We find by inspection that 𝑝 = 1 is a solution to the third congruence, so by LCT, it is equivalently
𝑝 ≡ 1 (mod 2) (i.e. 𝑝 is odd). However, this is also implied by the first congruence, leaving us with
two congruences. Since 4 and 5 are coprime, we may apply the Chinese Remainder Theorem. By
inspection, 𝑝 = 5 is a solution. Therefore, all 𝑝 are of the form 𝑝 ≡ 5 (mod 20) or 𝑝 = 5 + 20𝑞 for
an integer 𝑞.

It follows that 𝑚 = 2 + 3(5 + 20𝑞) = 17 + 60𝑞 and that 𝑛 = 7(17 + 60𝑞) = 119 + 420𝑞. Since
119 < 420, the lowest possible value of 𝑛 is 119 eggs.
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Chapter 9

The RSA Public-Key Encryption
Scheme

9.1 Warm-Up Exercises

Warm-Up Exercise 9.1. Given the public RSA encryption key (𝑒, 𝑛) = (5, 35), find the
corresponding decryption key (𝑑, 𝑛).

Solution. We factor 𝑛 and find that 𝑛 = 5 × 7. Therefore, 𝑝 = 5 and 𝑞 = 7.

We can now find the decryption key 𝑑 by solving 𝑒𝑑 ≡ 1 (mod (𝑝 − 1)(𝑞 − 1)):

5𝑑 ≡ 1 (mod 24)

By inspection, 𝑑 = 5 is a solution. Because we have 1 < 5 < (𝑝 − 1)(𝑞 − 1), this is in fact the
decryption key.

Therefore, the decryption key is (5, 35).

9.2 Recommended Problems

Recommended Problem 9.1. Suppose that in setting up RSA, Alice chooses 𝑝 = 47, 𝑞 = 37,
and 𝑒 = 25.

(a) What is Alice’s public key?

Solution. We have 𝑛 = 𝑝𝑞 = 1739, so Alice’s pubkey is (25, 1739).

(b) What is Alice’s private key?
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Solution. We solve the congruence 𝑒𝑑 ≡ 1 (mod (𝑝 − 1)(𝑞 − 1)) or 25𝑑 ≡ 1 (mod 1656) which
is equivalent to solving the LDE

25𝑑 + 1656𝑦 = 1

We do this with the good ‘ole EEA:

𝑦 𝑑 𝑟 𝑞
1 0 1656
0 1 25
1 −66 6 66

−4 265 1 4

and conclude that 𝑑 = 265 is a solution to our LDE. Since 1 < 265 < 1656, it is in fact the
decryption key. Therefore, Alice’s privkey is (265, 1739).

(c) Suppose Alice wishes to send Bob the message 𝑀 = 20. Bob’s public key is (23, 377) and
Bob’s private key is (263, 377). What is the cipher text corresponding to 𝑀?

Solution. We compute the ciphertext 𝐶 as 𝐶 ≡ 𝑀𝑒 (mod 𝑛) where 0 ≤ 𝐶 < 𝑛.
Substituting, 𝐶 ≡ 2023 (mod 377). We perform the computation by hand like the masochistic
math majors we are:

𝐶 ≡ 20 × 202 × 204 × 2016 (mod 377)
≡ 20 × 23 × 232 × 238 (mod 377)
≡ 20 × 23 × 152 × 1524 (mod 377)
≡ 20 × 23 × 152 × 1072 (mod 377)
≡ 83 × 152 × 139 (mod 377)
≡ 175 × 139 (mod 377)
≡ 197 (mod 377)

and since we have 0 ≤ 197 < 377, this is indeed our cyphertext.

Recommended Problem 9.2. Set up an RSA scheme using two-digit prime numbers. Select
values for the other variables and test encrypting and decrypting messages.

Solution. Let 𝑝 = 11 and 𝑞 = 13, the smallest two-digit prime numbers. Then, 𝑛 = 𝑝𝑞 = 143.
Choose 𝑒 coprime to (𝑝 − 1)(𝑞 − 1) = 120 to be 𝑒 = 23. To generate 𝑑, we solve 23𝑑 ≡ 1 (mod 120),
i.e., 23𝑑 + 120𝑦 = 1, with the EEA:

𝑦 𝑑 𝑟 𝑞
1 0 120
0 1 23
1 −5 5 5

−4 21 3 4
5 −26 2 1

−9 47 1 1
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Therefore, 𝑑 = 47, and we have the pubkey (23, 143) and privkey (47, 143).

Suppose we want to send the ASCII exclamation mark “!”, 𝑀 = 33. Then, we compute the
ciphertext 𝐶 ≡ 𝑀𝑒 (mod 𝑛), i.e., 𝐶 ≡ 3323 (mod 143). Expanding and reducing to the remainder,
𝐶 = 132.

We decrypt by taking 𝑅 ≡ 𝐶𝑑 (mod 𝑛), i.e., 𝑅 ≡ 13247 (mod 143). Since in decryption we know
𝑝 and 𝑞, we equivalently solve both

𝑅 ≡ 13247 (mod 11) and 𝑅 ≡ 13247 (mod 13)

Simplifying by FℓT, we obtain

𝑅 ≡ 1327 ≡ 0 (mod 11)
𝑅 ≡ 13211 ≡ 7 (mod 13)

By the CRT, there is a unique solution modulo 143. We notice by inspection that 13(2) + 7 = 33 =
11(3), so 𝑅 = 33 is the received message.

9.3 Challenge

Challenge 9.1. Write a computer program to implement RSA encryption and decryption.

Solution. Allow me to demonstrate just how overpowered Wolfram Mathematica is:

(* Generates RSA keypair by default *)
keys = GenerateAsymmetricKeyPair[];
msg = "This is cheating";
cyphertext = Encrypt[keys["PublicKey"], msg];
received = Decrypt[keys["PrivateKey"], cyphertext];

Oh, you meant actually do the calculations? Okay.

(* Generate random primes below 100 *)
{p, q} = RandomPrime[100, 2]; n = p*q;
(* Generate e as a random coprime *)
m = (p-1)(q-1);
e = RandomChoice@Pick[Range[m], CoprimeQ[m, Range[m]]];
(* Solve d automagically *)
d = D /. Solve[e*D == 1, D, Modulus -> 120][[1]];

(* Sample encryption/decryption of 42 *)
C = PowerMod[42,e,n];
R = PowerMod[C,d,n];

57



Chapter 10

Complex Numbers

10.1 Warm-Up Exercises

Warm-Up Exercise 10.1. Express
2 − 𝑖
3 + 4𝑖 in standard form.

Solution. Multiply numerator and denominator by the conjugate of the denominator:

2 − 𝑖
3 + 4𝑖 =

(2 − 𝑖)(3 − 4𝑖)
9 + 16 =

2 − 11𝑖
25 =

2
25 −

11
25𝑖

Warm-Up Exercise 10.2. Write 𝑥 =
9 + 𝑖
5 − 4𝑖 in polar form, 𝑟(cos 𝜃+𝑖 sin 𝜃), with 0 ≤ 𝜃 < 2𝜋.

Solution. We express first in standard form by multiplying through the conjugate:

9 + 𝑖
5 − 4𝑖 =

(9 + 𝑖)(5 + 4𝑖)
41 =

41 + 41𝑖
41 = 1 + 𝑖

We can geometrically interpret this as
√

2 cis 𝜋
4 .

Warm-Up Exercise 10.3. Write (
√

3 + 𝑖)4 in standard form.

Solution. We first place the quantity within the brackets in polar form. By inspection, this is
2 cis 𝜋

6 . Now, applying DMT, we have (2 cis 𝜋
6 )4 = 24 cis4 𝜋

6 = 16 cis 2𝜋
3 .

Expressing in standard form, 16(cos 2𝜋
3 + 𝑖 sin 2𝜋

3 ) = 16(−1
2 + 𝑖

√
3

2 ) = −8 + 8
√

3𝑖
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Warm-Up Exercise 10.4. Find all 𝑧 ∈ ℂ such that 𝑧5 = 1 and plot the solutions in the
complex plane.

(You may state values in polar form.)

Solution. Note that 1 = 1 cis 0. Applying the CRNT, we have that the five roots are given by
5√1 cis (2𝑘𝜋

𝑛 ) for 𝑘 = 0, 1, 2, 3, 4. These values are {1, cis 2𝜋
5 , cis 4𝜋

5 , cis 6𝜋
5 , cis 8𝜋

5 }. I am too lazy to
learn tikz to draw the diagram.

Warm-Up Exercise 10.5. Find all 𝑧 ∈ ℂ such that 𝑧2 =
1 + 𝑖
1 − 𝑖 .

Solution. Simplifying the fraction on the right-hand side, (1+𝑖)(1+𝑖)
2 = 1+2𝑖−1

2 = 𝑖. On the complex
plane, 𝑖 = 1 cis 𝜋

2 . Then, by CRNT, the solutions are cis 𝜋
4 and cis 5𝜋

4 . Evaluating to get standard
form, we have 𝑧 = ±(

√
2

2 +
√

2
2 𝑖).

10.2 Recommended Problems

Recommended Problem 10.1. Express the following complex numbers in standard form.

(a)
(
√

2 − 𝑖)2

(
√

2 + 𝑖)(1 −
√

2𝑖)

Solution. Multiply through conjugates of the denominator:

(
√

2 − 𝑖)2

(
√

2 + 𝑖)(1 −
√

2𝑖)
=

(1 − 2
√

2𝑖)(
√

2 − 𝑖)(1 +
√

2𝑖)
(3)(3)

=
(5 −

√
2𝑖)(

√
2 − 𝑖)

9

=
4
√

2 − 7𝑖
9

=
4
√

2
9 −

7
9𝑖

(b) (
√

5 − 𝑖
√

3)4

Solution. Let 𝑧 =
√

5 − 𝑖
√

3. We have 𝑧2 = 5 − 2
√

15𝑖 − 3 = 2 − 2
√

15𝑖. Finally, 𝑧4 = (𝑧2)2 =
4 − 8

√
15𝑖 − 60 = −56 − 8

√
15𝑖.
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Recommended Problem 10.2. Prove all of the Properties of Complex Arithmetic that were
not proved in the notes or in class.

Proof. Let 𝑢 = 𝑎+𝑏𝑖, 𝑣 = 𝑐+𝑑𝑖, and 𝑧 = 𝑓 +𝑔𝑖 be complex numbers. We must show the Properties
of Complex Arithmetic, i.e., that

(a) Complex addition is associative.
First, 𝑢 + 𝑣 = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 and (𝑢 + 𝑣) + 𝑧 = ((𝑎 + 𝑐) + 𝑓) + ((𝑏 + 𝑑) + 𝑔)𝑖. Then,
𝑣 + 𝑧 = (𝑐 + 𝑓) + (𝑑 + 𝑔)𝑖, so 𝑢 + (𝑣 + 𝑧) = (𝑎 + (𝑐 + 𝑓)) + (𝑏 + (𝑑 + 𝑔))𝑖. The result follows
by the associativity of real addition.

(b) Complex addition is commutative.
We have 𝑢 + 𝑣 = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 = (𝑐 + 𝑎) + (𝑑 + 𝑏)𝑖 = 𝑣 + 𝑢 by the commutativity of real
addition.

(c) The complex additive identity is 0 = 0 + 0𝑖. (Example 3, p. 159)

(d) A complex additive inverse −𝑧 exists. (Example 3, p. 159)

(e) Complex multiplication is associative.
By definition, 𝑢𝑣 = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖, so we have

(𝑢𝑣)𝑤 = ((𝑎𝑐 − 𝑏𝑑)𝑓 − (𝑎𝑑 + 𝑏𝑐)𝑔) + ((𝑎𝑐 − 𝑏𝑑)𝑔 + (𝑎𝑑 + 𝑏𝑐)𝑓)𝑖

We also have 𝑣𝑤 = (𝑐𝑓 − 𝑑𝑔) + (𝑐𝑔 + 𝑑𝑓)𝑖 and by extension

𝑢(𝑣𝑤) = (𝑎(𝑐𝑓 − 𝑑𝑔) − 𝑏(𝑐𝑔 + 𝑑𝑓)) + (𝑎(𝑐𝑔 + 𝑑𝑓) + 𝑏(𝑐𝑓 − 𝑑𝑔))𝑖
= (𝑎𝑐𝑓 − 𝑎𝑑𝑔 − 𝑏𝑐𝑔 − 𝑏𝑑𝑓) + (𝑎𝑐𝑔 + 𝑎𝑑𝑓 + 𝑏𝑐𝑓 − 𝑏𝑑𝑔)𝑖
= (𝑎𝑐𝑓 − 𝑏𝑑𝑓 − 𝑎𝑑𝑔 − 𝑏𝑐𝑔) + (𝑎𝑐𝑔 − 𝑏𝑑𝑔 + 𝑎𝑑𝑓 + 𝑏𝑐𝑓)𝑖
= ((𝑎𝑐 − 𝑏𝑑)𝑓 − (𝑎𝑑 + 𝑏𝑐)𝑔) + ((𝑎𝑐 − 𝑏𝑑)𝑔 + (𝑎𝑑 + 𝑏𝑐)𝑓)𝑖
= (𝑢𝑣)𝑤

as desired.

(f) Complex multiplication is commutative.
Again, 𝑢𝑣 = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 and 𝑣𝑢 = (𝑐𝑎 − 𝑑𝑏) + (𝑐𝑏 + 𝑑𝑎)𝑖. The result follows from
the commutativity of real multiplication and addition.

(g) The complex multiplicative identity is 1 = 1 + 0𝑖. (Example 3, p. 159)

(h) A complex multiplicative inverse 𝑧−1 exists iff 𝑧 ≠ 0. (Proposition 1, p. 159)

(i) Complex multiplication distributes over addition.
We have 𝑢 + 𝑣 = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖. Then,

𝑧(𝑢 + 𝑣) = (𝑓(𝑎 + 𝑐) − 𝑔(𝑏 + 𝑑)) + (𝑓(𝑏 + 𝑑) + 𝑔(𝑎 + 𝑐))𝑖
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Now, 𝑧𝑢 = (𝑓𝑎 − 𝑔𝑏) + (𝑓𝑏 + 𝑔𝑎)𝑖 and 𝑧𝑣 = (𝑓𝑐 − 𝑔𝑑) + (𝑓𝑑 + 𝑔𝑐)𝑖, so by definition,

𝑧𝑢 + 𝑧𝑣 = ((𝑓𝑎 − 𝑔𝑏) + (𝑓𝑐 − 𝑔𝑑)) + ((𝑓𝑏 + 𝑔𝑎) + (𝑓𝑑 + 𝑔𝑐))𝑖
= (𝑓𝑎 + 𝑓𝑐 − 𝑔𝑏 − 𝑔𝑑) + (𝑓𝑏 + 𝑓𝑑 + 𝑔𝑎 + 𝑔𝑐)𝑖
= (𝑓(𝑎 + 𝑐) − 𝑔(𝑏 + 𝑑)) + (𝑓(𝑏 + 𝑑) + 𝑔(𝑎 + 𝑐))𝑖
= 𝑧(𝑢 + 𝑣)

completing the proof.

Recommended Problem 10.3. Let 𝑛 ∈ ℕ. Prove that if 𝑛 ≡ 1 (mod 4), then 𝑖𝑛 = 𝑖.

Proof. Let 𝑛 be a natural number congruent to 1 modulo 4. Then, we may write 𝑛 = 4𝑘 + 1 for
some integer 𝑘. Notice that 𝑖4 = (𝑖2)2 = (−1)2 = 1.

Therefore, 𝑖4𝑘+1 = (𝑖4)𝑘𝑖1 = (1)𝑘𝑖 = 𝑖, as desired.

Recommended Problem 10.4. Find all 𝑧 ∈ ℂ which satisfy

(a) 𝑧2 + 2𝑧 + 1 = 0

Solution. Factor: 𝑧2 + 2𝑧 + 1 = (𝑧 + 1)2 so 𝑧 = −1 + 0𝑖 (by RP 10.6)

(b) 𝑧2 + 2 ̄𝑧 + 1 = 0

Solution. Let 𝑧 = 𝑎 + 𝑏𝑖 so ̄𝑧 = 𝑎 − 𝑏𝑖 for two real numbers 𝑎 and 𝑏. Then,

0 = 𝑧2 + 2 ̄𝑧 + 1
0 = (𝑎 + 𝑏𝑖)2 + 2(𝑎 − 𝑏𝑖) + 1
0 = (𝑎2 + 2𝑎 − 𝑏2 + 1) + (2𝑎𝑏 − 2𝑏)𝑖

which is true if and only if both 𝑎2 + 2𝑎 − 𝑏2 + 1 = 0 and 2𝑎𝑏 − 2𝑏 = 0.
The second equation implies 2𝑎𝑏 = 2𝑏 so 𝑎 = 1 or 𝑏 = 0.
If 𝑎 = 1 then 𝑎2 + 2𝑎 − 𝑏2 + 1 = 4 − 𝑏2 = 0, so 𝑏 = ±2.
If 𝑏 = 0, then 𝑎2 + 2𝑎 + 1 = (𝑎 + 1)2 = 0, so 𝑎 = −1.
Therefore, the solutions are −1 + 0𝑖, 1 + 2𝑖, and 1 − 2𝑖.

(c) 𝑧2 =
1 + 𝑖
1 − 𝑖

Solution. Simplify: 𝑧2 = (1+𝑖)2

2 = 2𝑖
2 = 𝑖. The square roots of 𝑖 are ±(

√
2

2 +
√

2
2 𝑖).
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Recommended Problem 10.5.

(a) Find all 𝑤 ∈ ℂ satisfying 𝑤2 = −15 + 8𝑖.

Solution. We rewrite 𝑤 = 𝑎+𝑏𝑖 for some reals 𝑎 and 𝑏. Then, (𝑎+𝑏𝑖)2 = (𝑎2 −𝑏2)+(2𝑎𝑏)𝑖 =
−15 + 8𝑖. Equating real and complex parts, 𝑎2 − 𝑏2 = −15 and 2𝑎𝑏 = 8.

Now, |𝑤2| = |𝑤𝑤| = |𝑤||𝑤| = |𝑤|2 by PM4. Then, 𝑎2 + 𝑏2 = √(−15)2 + (8)2 = 17. Solving
the system in 𝑎2 and 𝑏2, 𝑎2 = 1 and 𝑏2 = 16.
Therefore, 𝑎 = ±1 and 𝑏 = ±4. To satisfy 2𝑎𝑏 = 8, we must have 𝑧 = ±(1 + 4𝑖).

(b) Find all 𝑧 ∈ ℂ satisfying 𝑧2 − (3 + 2𝑖)𝑧 + 5 + 𝑖 = 0.

Solution. We apply the quadratic formula. The discriminant is a solution to 𝑤2 = (3 + 2𝑖)2 −
4(1)(5+𝑖) = (5+12𝑖)−(20+4𝑖) = −15+8𝑖. From above, a solution is 𝑤 = 1+4𝑖. Therefore,
the solutions are 𝑧 = (3+2𝑖)±(1+4𝑖)

2(1) .

The first is 𝑧 = (3+2𝑖)+(1+4𝑖)
2 = 2 + 3𝑖 and the second is 𝑧 = (3+2𝑖)−(1+4𝑖)

2 = 1 − 𝑖.

Recommended Problem 10.6. Let 𝑧, 𝑤 ∈ ℂ. Prove that if 𝑧𝑤 = 0 then 𝑧 = 0 or 𝑤 = 0.

Proof. Let 𝑧 and 𝑤 be complex numbers such that 𝑧𝑤 = 0. Suppose for a contradiction that both
𝑧 and 𝑤 are non-zero. Then, by PM1, |𝑧| ≠ 0 and |𝑤| ≠ 0. However, by PM4, |𝑧𝑤| = |𝑧||𝑤| ≠ 0,
which is a contradiction, since 𝑧𝑤 = 0.

Therefore, 𝑧 or 𝑤 is zero.

Recommended Problem 10.7. Let 𝑎, 𝑏, 𝑐 ∈ ℂ. Prove: if |𝑎| = |𝑏| = |𝑐| = 1, then 𝑎 + 𝑏 + 𝑐 =
1
𝑎 + 1

𝑏 + 1
𝑐 .

Proof. First, consider some arbitrary complex number 𝑧 = 𝑎 + 𝑏𝑖 with modulus 1. By definition,
𝑎2 + 𝑏2 = 12 = 1. Then, 𝑧−1 = 1

𝑎+𝑏𝑖 = 𝑎−𝑏𝑖
(𝑎+𝑏𝑖)(𝑎−𝑏𝑖) = 𝑎−𝑏𝑖

1 = 𝑎 − 𝑏𝑖 = ̄𝑧

Let 𝑎, 𝑏, and 𝑐 be complex numbers with modulus 1. From above, 𝑎−1 = ̄𝑎, 𝑏−1 = 𝑏̄, and 𝑐−1 = ̄𝑐.
The conclusion immediately follows from PCJ2:

𝑎 + 𝑏 + 𝑐 = ̄𝑎 + 𝑏̄ + ̄𝑐

=
1
𝑎 +

1
𝑏 +

1
𝑐

Recommended Problem 10.8. Find all 𝑧 ∈ ℂ satisfying 𝑧2 = |𝑧|2.
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Proof. Let 𝑧 be a complex number. Recall that |𝑧|2 = ̄𝑧𝑧 by PM3. Then, we have 𝑧2 = ̄𝑧𝑧 so
𝑧 = ̄𝑧, that is, 𝑧 − ̄𝑧 = 0. By PCJ3, this is true if 2 Im(𝑧)𝑖 = 0, which means that 𝑧 is purely real.
Therefore, 𝑧 is any purely real number.

Recommended Problem 10.9. Find all 𝑧 ∈ ℂ satisfying |𝑧 + 1|2 ≤ 3 and shade the corre-
sponding region in the complex plane.

Solution. We write 𝑧 = 𝑎 + 𝑏𝑖, so |𝑧 + 1|2 = |(𝑎 + 1) + 𝑏𝑖|2 = (√(𝑎 + 1)2 + 𝑏2)2 = (𝑎 + 1)2 + 𝑏2.
Then, we are shading the inside of the circle defined by (𝑎 + 1)2 + 𝑏2 = 3.

−3 −2 −1 0 1
−2

−1

0

1

2

Re(𝑧)

Im
(𝑧

)

This is the circle centered at (−1, 0) with radius
√

3.

Recommended Problem 10.10. Let 𝑧, 𝑤 ∈ ℂ such that 𝑧𝑤 ≠ 1. Prove that if |𝑧| = 1 or
|𝑤| = 1, then ∣

𝑧 − 𝑤
1 − 𝑧𝑤∣ = 1.

Proof (by sooshi). Let 𝑧 and 𝑤 be complex numbers such that 𝑧𝑤 ≠ 1. Suppose that |𝑧| = 1 or
|𝑤| = 1. If 𝑧 = 𝑤 and |𝑧| = |𝑤| = 1, then 𝑧𝑤 = 𝑧𝑧 = |𝑧|2 = 1. Therefore, 𝑧 ≠ 𝑤.

Now, consider the case when |𝑧| = 1. Then,

∣
𝑧 − 𝑤
1 − 𝑧𝑤∣ =

|𝑧 − 𝑤|
|1 − 𝑧𝑤|

=
|𝑧||𝑧 − 𝑤|
|𝑧||1 − 𝑧𝑤|

=
(1)|𝑧 − 𝑤|
|𝑧 − 𝑧𝑧𝑤|

=
|𝑧 − 𝑤|
|𝑧 − 𝑤|

= 1

Likewise, if |𝑤| = 1, then

∣
𝑧 − 𝑤
1 − 𝑧𝑤∣ =

|𝑧 − 𝑤|
|1 − 𝑧𝑤|

=
|𝑧 − 𝑤|

|𝑤𝑤 − 𝑧𝑤|
=

|𝑧 − 𝑤|
|𝑤||𝑤 − 𝑧|

=
|𝑧 − 𝑤|
|𝑤 − 𝑧|

= 1

since |𝑤 − 𝑧| = |−(𝑧 − 𝑤)| = |−1||𝑧 − 𝑤| = |𝑧 − 𝑤|, completing the proof.
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Recommended Problem 10.11. Show that for all complex numbers 𝑧, | Re(𝑧)| + | Im(𝑧)| ≤√
2|𝑧|.

Proof. Let 𝑧 = 𝑟 cis 𝜃 be a complex number. Then, |𝑧| = 𝑟, Re(𝑧) = 𝑟 cos 𝜃 and Im(𝑧) = 𝑟 sin 𝜃.
Due to the symmetry of sine and cosine, instead of taking absolute values, we restrict without loss
of generality to the first quadrant 0 ≤ 𝜃 ≤ 𝜋

2 . Now,

Re(𝑧) + Im(𝑧) = 𝑟(cos 𝜃 + sin 𝜃)

= 𝑟
√

2
√

2
2 (cos 𝜃 + sin 𝜃)

= 𝑟
√

2 (
√

2
2 cos 𝜃 +

√
2

2 sin 𝜃)

= 𝑟
√

2 (sin
𝜋
4 cos 𝜃 + cos

𝜋
4 sin 𝜃)

= 𝑟
√

2 sin (
𝜋
4 + 𝑥)

≤ 𝑟
√

2(1)

=
√

2|𝑧|

completing the proof.

Recommended Problem 10.12. Use De Moivre’s Theorem (DMT) to prove that sin 4𝜃 =
4 sin 𝜃 cos3 𝜃 − 4 sin3 𝜃 cos 𝜃 for all 𝜃 ∈ ℝ.

Proof. Let 𝜃 ∈ ℝ and note that by DMT, we have

(cos 𝜃 + 𝑖 sin 𝜃)4 = cos 4𝜃 + 𝑖 sin 4𝜃

so we may say that sin 4𝜃 = Im((cos 𝜃 + 𝑖 sin 𝜃)4). Expanding this quantity by hand,

(cos 𝜃 + 𝑖 sin 𝜃)4 = (cos2 𝜃 + 2𝑖 cos 𝜃 sin 𝜃 − sin2 𝜃)2

= cos4 𝜃 + sin4 𝜃 − 6 cos2 𝜃 sin2 𝜃 + 4𝑖 cos3 𝜃 sin 𝜃 − 4𝑖 sin3 𝜃 cos 𝜃
= (cos4 𝜃 − 6 cos2 𝜃 sin2 𝜃 + sin4 𝜃) + (4 cos3 𝜃 sin 𝜃 − 4 sin3 𝜃 cos 𝜃)𝑖

and we have that

sin 4𝜃 = Im((cos 𝜃 + 𝑖 sin 𝜃)4) = 4 cos3 𝜃 sin 𝜃 − 4 sin3 𝜃 cos 𝜃

as desired.

Recommended Problem 10.13. Let 𝑛 ∈ ℕ and 𝑎, 𝑏 ∈ ℝ. Show that 𝑧 = (𝑎+𝑏𝑖)𝑛 +(𝑎−𝑏𝑖)𝑛

is real.
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Proof. Let 𝑛 be a natural number and 𝑢 = 𝑎 + 𝑏𝑖 be a complex number. Then, 𝑢 = 𝑎 − 𝑏𝑖. It
inductively follows from PCJ4 and the associativity of multiplication that (𝑢)𝑛 = 𝑢𝑛.

Now, the fact that 𝑧 = 𝑢𝑛 + 𝑢𝑛 is real follows immediately from PCJ3.

Recommended Problem 10.14. An 𝑛-th root of unity is any complex solution to 𝑧𝑛 = 1.
Prove that if 𝑤 is an 𝑛-th root of unity, 1

𝑤 is also an 𝑛-th root of unity.

Proof. Let 𝑛 be a natural number and 𝑤 be an 𝑛-th root of unity, so 𝑤𝑛 = 1. Knowing that
1 = cis 0, the CNRT states that 𝑤 = cis(2𝑘𝜋

𝑛 ) for some 0 ≤ 𝑘 < 𝑛.

By PMℂ, notice that 𝑤 cis(−2𝑘𝜋
𝑛 ) = cis(2𝑘𝜋

𝑛 − 2𝑘𝜋
𝑛 ) = cis 0 = 1, so cis(−2𝑘𝜋

𝑛 ) is the multiplicative
inverse 𝑤−1 of 𝑤. Now, since cis is 2𝜋-periodic, we have

cis (−
2𝑘𝜋
𝑛 ) = cis (2𝜋 −

2𝑘𝜋
𝑛 ) = cis (

2𝑛𝜋 − 2𝑘𝜋
𝑛 ) = cis (

2(𝑛 − 𝑘)𝜋
𝑛 )

but since 0 ≤ 𝑘 < 𝑛, we also have that 0 ≤ 𝑛 − 𝑘 < 𝑛. Therefore, by the CNRT, 𝑤−1 is an 𝑛-th
root of unity.

Recommended Problem 10.15. A complex number 𝑧 is called a primitive 𝑛-th root of unity
if 𝑧𝑛 = 1 and 𝑧𝑘 ≠ 1 for all 1 ≤ 𝑘 ≤ 𝑛 − 1.

(a) For each 𝑛 = 1, 3, 5, 6 list all the primitive 𝑛-th roots of unity.

Solution. Recall that 1𝑥 = 1 for any real 𝑥. Applying the CNRT, there are 𝑛 𝑛-th roots of
unity, of the form

𝑧 = cis (
2𝜋𝑘
𝑛 )

for some integer 0 ≤ 𝑘 < 𝑛. Note that 1 is always an 𝑛-th root of unity but only a primitive
first root of unity. Therefore, we can ignore the case 𝑘 = 0.
The only primitive 1st root of unity is 1.

The primitive 3rd roots of unity are cis 2𝜋
3 =

√
3

2 − 1
2 𝑖 and cis 4𝜋

3 =
√

3
2 + 1

2 𝑖.
For this, we remain in polar form as calculating sines and cosines of fractions over 5 is pain.
The primitive 5th roots of unity are cis 0 = 1, cis 2𝜋

5 , cis 4𝜋
5 , cis 6𝜋

5 , and cis 8𝜋
5 .

The 6th roots of unity are cis 2𝜋𝑘
6 = cis 𝜋𝑘

3 . However, when 𝑘 = 2, 𝑘 = 3, and 𝑘 = 4, these
are also 2nd/3rd roots of unity. Thus, the primitive roots of unity are cis 𝜋

3 = 1
2 +

√
3

2 𝑖 and
cis 5𝜋

3 = 1
2 −

√
3

2 𝑖.

(b) Let 𝑧 be a primitive 𝑛-th root of unity. Prove the following statements:
i. For any 𝑗 ∈ ℤ, 𝑧𝑗 = 1 if and only if 𝑛 ∣ 𝑗.
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Proof. Let 𝑛 be a natural number, 𝑗 be an integer, and 𝑧 be a primitive 𝑛-th root of
unity so 𝑧𝑛 = 1. Proceed by mutual implication.
(⇒) Suppose 𝑧𝑗 = 1. By the Division Algorithm, 𝑗 = 𝑞𝑛+𝑟 for integers 𝑞 and 0 ≤ 𝑟 < 𝑛.
Then, 1 = 𝑧𝑗 = 𝑧𝑞𝑛+𝑟 = 𝑧𝑞𝑛𝑧𝑟 = (𝑧𝑛)𝑞𝑧𝑟 = 1𝑞𝑧𝑟 = 𝑧𝑟.
If 𝑟 = 0, then 𝑗 = 𝑞𝑛 and 𝑛 ∣ 𝑗. Otherwise, we have 1 ≤ 𝑟 ≤ 𝑛 − 1 and 𝑧𝑟 = 1, which is
a contradiction to the fact that 𝑧 is a primitive 𝑛-th root of unity.
Therefore, 𝑟 = 0 and 𝑛 ∣ 𝑗.
(⇐) If 𝑛 ∣ 𝑗 and 𝑗 = 𝑛𝑘 for an integer 𝑘, then 𝑧𝑗 = 𝑧𝑛𝑘 = (𝑧𝑛)𝑘 = 1𝑘 = 1.

ii. For any 𝑚 ∈ ℤ, if gcd(𝑚, 𝑛) = 1, then 𝑧𝑚 is a primitive 𝑛-th root of unity.

Proof (new and improved by sooshi). Let 𝑧 be a primitive 𝑛-th root of unity and 𝑚 an
integer coprime to 𝑛.
Suppose for a contradiction that 𝑧𝑚 is a 𝑘-th root of unity for some 1 ≤ 𝑘 < 𝑛. Then,
(𝑧𝑚)𝑘 = 𝑧𝑚𝑘 = 1. From above, this implies that 𝑛 ∣ 𝑚𝑘 and by CAD, 𝑛 ∣ 𝑘. However,
BBD gives that 𝑛 ≤ 𝑘, which is a contradiction.
Therefore, 𝑧𝑚 is a primitive 𝑛-th root of unity.

Recommended Problem 10.16. Let 𝑢 and 𝑣 be fixed complex numbers. Let 𝜔 be a non-real
cube root of unity. For each 𝑘 ∈ ℤ, define 𝑦𝑘 ∈ ℂ by the formula

𝑦𝑘 = 𝜔𝑘𝑢 + 𝜔−𝑘𝑣

(a) Compute 𝑦1, 𝑦2, and 𝑦3 in terms of 𝑢, 𝑣, and 𝜔.

Solution. From RP15(a), the only real cube root of unity is 1, so 𝜔 ≠ 1. In fact, 𝜔 = cis 𝑛𝜋
3

for either 𝑛 = 2 or 𝑛 = 4.
If 𝑛 = 2, then 𝜔−1 = cis −2𝜋

3 = cis 4𝜋
3 . If 𝑛 = 4, then 𝜔−1 = cis −4𝜋

3 = cis 2𝜋
3 .

However, using the standard form from RP15(a), cis 2𝜋
3 = cis 4𝜋

3 . Therefore, 𝜔−1 = 𝜔.

Now, 𝑦1 = 𝜔𝑢 + 𝜔𝑣, 𝑦2 = 𝜔2𝑢 + 𝜔2𝑣, and 𝑦3 = 𝜔3𝑢 + 𝜔3𝑣 = 𝑢 + 𝑣.

(b) Show that 𝑦𝑘 = 𝑦𝑘+3 for any 𝑘 ∈ ℤ.

Proof. Let 𝑘 be an integer. Then, knowing that both 𝜔 and 𝜔 are cube roots of unity,

𝑦𝑘+3 = 𝜔𝑘+3𝑢 + 𝜔𝑘+3𝑣
= 𝜔𝑘𝜔3𝑢 + 𝜔𝑘𝜔3𝑣
= 𝜔𝑘𝑢 + 𝜔𝑘𝑣
= 𝑦𝑘

completing the proof.

(c) Show that for any 𝑘 ∈ ℤ,

𝑦𝑘 − 𝑦𝑘+1 = 𝜔𝑘(1 − 𝜔)(𝑢 − 𝜔𝑘−1𝑣)
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Proof. Let 𝑘 be an integer. Expand the right-hand side:

𝜔𝑘(1 − 𝜔)(𝑢 − 𝜔𝑘−1𝑣) = (𝜔𝑘 − 𝜔𝑘+1)(𝑢 − 𝜔𝑘−1𝑣)
= 𝜔𝑘𝑢 − 𝜔2𝑘+1𝑣 − 𝜔𝑘+1𝑢 + 𝜔2𝑘+2𝑣
= (𝜔𝑘𝑢 + 𝜔2𝑘+2𝑣) − (𝜔𝑘+1𝑢 + 𝜔2𝑘+1𝑣)

To simplify, we show that 𝜔2𝑘+2 = 𝜔−𝑘. Equivalently, 𝜔2𝑘+2𝜔𝑘 = 𝜔3𝑘+2 = 1. Let 𝑗 = 𝑘 + 1.
Then,

𝜔3𝑘+2 = 𝜔3(𝑗−1)+2 = 𝜔3𝑗−1 = (𝜔3)𝑗𝜔−1 = 1𝑗𝜔−1 = 𝜔−1

as desired. Now, we have 𝜔2𝑘+2 = 𝜔−𝑘 and 𝜔2𝑘+1 = 𝜔−(𝑘+1) so

𝜔𝑘(1 − 𝜔)(𝑢 − 𝜔𝑘−1𝑣) = (𝜔𝑘𝑢 + 𝜔2𝑘+2𝑣) − (𝜔𝑘+1𝑢 + 𝜔2𝑘+1𝑣)
= (𝜔𝑘𝑢 + 𝜔−𝑘𝑣) − (𝜔𝑘+1𝑢 + 𝜔−(𝑘+1)𝑣)
= 𝑦𝑘 − 𝑦𝑘+1

10.3 Challenges

Challenge 10.1. Let 𝑧, 𝑤 ∈ ℂ.

(a) Prove that |𝑧 + 𝑤| ≤ |𝑧| + |𝑤|.

Proof. This is the Triangle Inequality, for which a geometric proof is provided in Chapter
10.3. In short, for complex numbers 𝑧 = 𝑎+𝑏𝑖 and 𝑤 = 𝑐 +𝑑𝑖, we consider a triangle △𝑂𝑍𝑊
with points 𝑂(0, 0), 𝑍(𝑎, 𝑏), and 𝑊(𝑐, 𝑑) in the complex plane. Then, |𝑧| = ℓ𝑂𝑍, |𝑤| = ℓ𝑂𝑊,
and |𝑧 + 𝑤| = ℓ𝑍𝑊. The length of one side of a triangle cannot exceed the sum of the lengths
of the other two sides.
Equivalently, ℓ𝑍𝑊 ≤ ℓ𝑂𝑍 + ℓ𝑂𝑊.

(b) Prove that ||𝑧| − |𝑤|| ≤ |𝑧 − 𝑤| ≤ |𝑧| + |𝑤|.

Proof. Let 𝑧 and 𝑤 be complex numbers. We prove the inequalities separately.
We apply the Triangle Inequality with 𝑧 and −𝑤. Then, |𝑧 + (−𝑤)| ≤ |𝑧| + | − 𝑤| but
| − 𝑤| = | − 1||𝑤| = |𝑤| by PM4, so we have |𝑧 − 𝑤| ≤ |𝑧| + |𝑤|.
Now, notice that |𝑧| = |(𝑧 − 𝑤) + 𝑤| ≤ |𝑧 − 𝑤| + |𝑤| so |𝑧| − |𝑤| ≤ |𝑧 − 𝑤|.
Likewise, |𝑤| = |(𝑤 − 𝑧) + 𝑧| ≤ |𝑤 − 𝑧| + |𝑧| so |𝑧| − |𝑤| ≥ −|𝑤 − 𝑧|.
Like the absolute value in ℝ, we have by PM4 |𝑤 − 𝑧| = | − 1||𝑧 − 𝑤| = 1|𝑧 − 𝑤| = |𝑧 − 𝑤|, so
if we combine the above two inequalities, we have ||𝑧| − |𝑤|| ≤ |𝑧 − 𝑤|.
Equivalently, using the same triangle from above, this follows from the fact that any one side
of a triangle is longer than the difference of the other two sides.
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Challenge 10.2. Let 𝑎, 𝑏, 𝑐 ∈ ℂ. Show that if
𝑏 − 𝑎
𝑎 − 𝑐 =

𝑎 − 𝑐
𝑐 − 𝑏 then |𝑏 − 𝑎| = |𝑎 − 𝑐| = |𝑐 − 𝑏|.

Challenge 10.3. Let 𝑛 ≥ 2 be an integer. Prove that

𝑛−1
∑
𝑘=0

cos (
2𝑘𝜋
𝑛 ) = 0 =

𝑛−1
∑
𝑘=0

sin (
2𝑘𝜋
𝑛 )

Proof (with help from Ainsley, Kenson, Mabel). Let 𝑛 ≠ 1 be a natural number. Then, we have
that the 𝑛-th roots of unity are given by

cos(
2𝑘𝜋
𝑛 ) + 𝑖 sin(

2𝑘𝜋
𝑛 )

for 𝑘 = 0, 1, 2, … , 𝑛 − 1. Let 𝑧 be the sum of the 𝑛-th roots of unity. Then,

𝑧 =
𝑛−1
∑
𝑘=0

(cos(
2𝑘𝜋
𝑛 ) + 𝑖 sin(

2𝑘𝜋
𝑛 ))

The conclusion can equivalently be stated as that Re(𝑧) = 0 and Im(𝑧) = 0. The only complex
number that satisfies this is 𝑧 = 0.

Now, let 𝑎 = cos(2𝜋
𝑛 ) + 𝑖 sin(2𝜋

𝑛 ), the root of unity with 𝑘 = 1. Then, we have that each root of
unity is given by 𝑎𝑗 for 𝑗 = 1, 2, … , 𝑛. Since 𝑛 ≠ 1, 𝑎 = cis 2𝜋

𝑛 ≠ 1 and 𝑧 = 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝑛−1.

Recall that the polynomial 𝑎𝑛 − 1 for 𝑛 ≥ 2 factors as (𝑎 − 1)(𝑎𝑛−1 + 𝑎𝑛−2 + ⋯ + 𝑎2 + 𝑎 + 1). It
follows that 𝑎𝑛 − 1 = 1 − 1 = 0 and 0 = (𝑎 − 1)𝑧 so, from above, 𝑎 ≠ 1 so 𝑧 = 0.
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Chapter 11

Polynomials

11.1 Warm-Up Exercises

Warm-Up Exercise 11.1. Find a real cubic polynomial whose roots include 1 and 𝑖.

Solution. Apply the Factor Thorem to create 𝑓(𝑥) = (𝑥−1)(𝑥−𝑖)(𝑥−𝑟). To ensure the polynomial
is real, make (𝑥 − 𝑟) the conjugate of (𝑥 − 𝑖), i.e., 𝑟 = −𝑖. Then, 𝑓(𝑥) = (𝑥 − 1)(𝑥2 + 1) =
𝑥3 − 𝑥2 + 𝑥 − 1.

Warm-Up Exercise 11.2. Divide 𝑓(𝑥) = 𝑥3 + 𝑥2 + 𝑥 + 1 by 𝑔(𝑥) = 𝑥2 + 4𝑥 + 3 to find the
quotient 𝑞(𝑥) and remainder 𝑟(𝑥) that satisfy the requirements of the Division Algorithm for
Polynomials (DAP)

Solution. Perform polynomial long division:

𝑥 − 3
𝑥2 + 4𝑥 + 3) 𝑥3 + 𝑥2 + 𝑥 + 1

− 𝑥3 − 4𝑥2 − 3𝑥
− 3𝑥2 − 2𝑥 + 1

3𝑥2 + 12𝑥 + 9
10𝑥 + 10

and conclude that 𝑞(𝑥) = 10𝑥 + 10 and 𝑟(𝑥) = 𝑥 − 3.

11.2 Recommended Problems

Recommended Problem 11.1. Let 𝑧 ∈ ℂ. Prove that (𝑥 − 𝑧)(𝑥 − 𝑧) ∈ ℝ[𝑥].
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Proof. Let 𝑧 be a complex number. Expand the product to obtain

(𝑥 − 𝑧)(𝑥 − 𝑧) = 𝑥2 − 𝑧𝑥 − 𝑧𝑥 + 𝑧𝑧
= 𝑥2 − (𝑧 + 𝑧)𝑥 + 𝑧𝑧

which is a polynomial in 𝑥 with coefficients 1, −(𝑧 + 𝑧), and 𝑧𝑧. Clearly, 1 ∈ ℝ. From PCJ3, we
have 𝑧 + 𝑧 = 2 Re 𝑧 so −(𝑧 + 𝑧) = −2 Re 𝑧 ∈ ℝ. Also, from PM3, 𝑧𝑧 = |𝑧|2 ∈ ℝ. Therefore, the
polynomial is a member of ℝ[𝑥].

Recommended Problem 11.2. Prove that there exists a polynomial in ℚ[𝑥] with the root
2 −

√
7.

Proof. We propose 𝑓(𝑥) = 𝑥2 − 4𝑥 − 3 ∈ ℚ[𝑥].

𝑓(2 −
√

7) = (2 −
√

7)2 − 4(2 −
√

7) − 3 = 11 − 4
√

7 − 8 + 4
√

7 − 3 = 0

Recommended Problem 11.3. For each of the following polynomials 𝑓(𝑥) ∈ 𝔽[𝑥], write
𝑓(𝑥) as a product of irreducible polynomials in 𝔽[𝑥].

(a) 𝑥2 − 2𝑥 + 2 ∈ ℂ[𝑥]

Solution. We apply the quadratic formula to find that 𝑥 = 2+
√

−4
2 = 1 + 𝑖. Then, we also

have 𝑥 = 1 − 𝑖 as a solution. Therefore, we may write in irreducible polynomials 𝑓(𝑥) =
(𝑥 − 1 − 𝑖)(𝑥 − 1 + 𝑖).

(b) 𝑥2 + (−3𝑖 + 2)𝑥 − 6𝑖 ∈ ℂ[𝑥]

Solution. By inspection, 𝑥 = −2 is a root. Divide by 𝑔(𝑥) = 𝑥 + 2 to obtain 𝑞(𝑥) = 𝑥 − 3𝑖.
Therefore, we write in irreducible polynomials 𝑓(𝑥) = (𝑥 + 2)(𝑥 − 3𝑖).

(c) 2𝑥3 − 3𝑥2 + 2𝑥 + 2 ∈ ℝ[𝑥]

Solution. The RRT gives 𝑥 = 1, −1, 2, −2, 1
2 , −1

2 as candidates for roots of 𝑓. We find that
𝑓(−1

2) = 0, so we divide by 𝑔(𝑥) = 2𝑥 + 1 to find 𝑞(𝑥) = 𝑥2 − 2𝑥 + 2. Now, the discriminant
of 𝑞 is negative, so it has no real solutions and is irreducible in ℝ[𝑥]. Therefore, we write
𝑓(𝑥) = (2𝑥 + 1)(𝑥2 − 2𝑥 + 2).

(d) 3𝑥4 + 13𝑥3 + 16𝑥2 + 7𝑥 + 1 ∈ ℝ[𝑥]

Solution. By inspection, 𝑥 = −1 is a root. Divide by 𝑔(𝑥) = 𝑥 + 1 to obtain 𝑞(𝑥) = 3𝑥3 +
10𝑥2 + 6𝑥 + 1. To find roots of this cubic, the RRT gives candidates 𝑥 = 1, −1, 1

3 , −1
3 .

In fact, 𝑞(−1
3) = 0. Dividing 𝑞(𝑥) by (3𝑥 + 1), we obtain the factor (𝑥2 + 3𝑥 + 1). The

discriminant of this quadratic is positive and it has roots −3
2 ±

√
5

2 . Therefore, 𝑓(𝑥) =
(𝑥 + 1)(3𝑥 + 1)(𝑥 − 3

2 +
√

5
2 )(𝑥 − 3

2 −
√

5
2 ).
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(e) 𝑥4 + 27𝑥 ∈ ℂ[𝑥]

Solution. Factor: 𝑓(𝑥) = 𝑥(𝑥3 + 27). The roots are 𝑥 = 0 and 𝑥 = 3√−27 = 33√−1. By the
CNRT, the cube roots of −1 are −1, 1

2 +
√

3
2 𝑖, and 1

2 −
√

3
2 𝑖. Therefore,

𝑓(𝑥) = 𝑥(𝑥 + 3)(𝑥 −
3
2 −

3
√

3
2 𝑖)(𝑥 −

3
2 +

3
√

3
2 𝑖)

Recommended Problem 11.4. Let 𝑔(𝑥) = 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 ∈ ℂ[𝑥] be a monic cubic
polynomial. Let 𝑧1, 𝑧2, and 𝑧3 be three roots of 𝑔(𝑥) such that

𝑔(𝑥) = (𝑥 − 𝑧1)(𝑥 − 𝑧2)(𝑥 − 𝑧3)

Prove that

𝑧1 + 𝑧2 + 𝑧3 = −𝑏
𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1 = 𝑐

𝑧1𝑧2𝑧3 = −𝑑

Proof. Let 𝑔 be a monic cubic polynomial over ℂ, where 𝑧1, 𝑧2, and 𝑧3 are its roots. Then, by
CPN, 𝑔(𝑥) = 𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = (𝑥 − 𝑧1)(𝑥 − 𝑧2)(𝑥 − 𝑧3) for some coefficients 𝑏, 𝑐, 𝑑 ∈ ℂ. We
expand using standard arithmetic:

𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = (𝑥 − 𝑧1)(𝑥 − 𝑧2)(𝑥 − 𝑧3)
= (𝑥2 − 𝑥𝑧1 − 𝑥𝑧2 + 𝑧1𝑧2)(𝑥 − 𝑧3)
= 𝑥3 − 𝑥2𝑧1 − 𝑥2𝑧2 + 𝑧1𝑧2𝑥 − 𝑥2𝑧3 − 𝑧1𝑧3𝑥 − 𝑧2𝑧3𝑥 − 𝑧1𝑧2𝑧3

= 𝑥3 − (𝑧1 + 𝑧2 + 𝑧3)𝑥2 + (𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1)𝑥 − 𝑧1𝑧2𝑧3

Recall that two polynomials are defined to be equal if and only if their coefficients agree. Therefore,
𝑏 = −(𝑧1 + 𝑧2 + 𝑧3), 𝑐 = 𝑧1𝑧2 + 𝑧2𝑧3 + 𝑧3𝑧1, and 𝑑 = −𝑧1𝑧2𝑧3 and the conclusion immediately
follows.

Recommended Problem 11.5. Using the Rational Roots Theorem, prove that
√

3 +
√

7 is
irrational.

Proof. Let 𝑎 =
√

3 +
√

7. Then, 𝑎2 = 10 + 2
√

21 and 𝑎2 − 10 = 2
√

21. Squaring again, 𝑎4 − 20𝑎2 +
100 = 84, i.e., 𝑎4 + 20𝑎2 − 16 = 0.

Now, we can let 𝑓(𝑥) = 𝑥4 − 20𝑥2 + 16 such that 𝑓(𝑎) = 0. The RRT gives that rational roots of 𝑓
are of the form 𝑝/𝑞 with coprime integers 𝑝 and 𝑞 where 𝑝 ∣ 16 and 𝑞 ∣ 1. The divisors of 1 are ±1
and of 16 are ±1, ±2, ±4, ±8, ±16. Note that 𝑓 is even, so we need only test 𝑥 = 1, 1

2 , 1
4 , 1

8 , 1
16 .

Now, 𝑓(1) = 5, 𝑓(1
2) = −175

16 , 𝑓(1
4) = −3775

256 , 𝑓(1
8) = −64255

4096 , and 𝑓( 1
16) = −1043455

65536 .

Therefore, 𝑓 has no rational roots. However, 𝑎 is a root of 𝑓, therefore, 𝑎 is irrational.
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Recommended Problem 11.6.

(a) Prove that for every prime 𝑝, there exists a polynomial 𝑓(𝑥) over ℤ𝑝, of degree 𝑝, such that
every element of ℤ𝑝 is a root of 𝑓(𝑥).

Proof. Let 𝑝 be a prime number. Then, ℤ𝑝 is a field. For each element [𝑛] ∈ ℤ𝑝, there
is a linear factor ([1]𝑥 − [𝑛]) ∈ ℤ𝑝[𝑥]. The product of polynomials is well-defined and is a
polynomial, so we may say that the polynomial 𝑓(𝑥) ∈ ℤ𝑝[𝑥]

𝑓(𝑥) = ∏
[𝑖]∈ℤ𝑝

([1]𝑥 − [𝑖])

has 𝑝 roots corresponding to each of the 𝑝 elements in ℤ𝑝. The degree of a product is the
sum of the degrees of the factors, but each factor is linear with degree 1 so the sum is simply
𝑝.

(b) Prove that for every prime 𝑝, there exists a polynomial 𝑓(𝑥) over ℤ𝑝, of degree 𝑝, which has
no roots in ℤ𝑝.

Proof. Let 𝑝 be a prime number and let 𝑔(𝑥) be the polynomial from (a) above for 𝑝. Then,
𝑔(𝑥) ≡ 0 (mod 𝑝) for any 𝑥 ∈ ℤ𝑝. Therefore, 𝑔(𝑥) ≢ 1 (mod 𝑝) for any 𝑥 and we may say
the polynomial 𝑓(𝑥) = 𝑔(𝑥) − 1 has no solutions in ℤ𝑝.

Recommended Problem 11.7. Suppose 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 ∈ ℂ[𝑥]
with degree 𝑛. We say 𝑓(𝑥) is palindromic if the coefficients 𝑎𝑗 satisfy

𝑎𝑛−𝑗 = 𝑎𝑗 for all 0 ≤ 𝑗 ≤ 𝑛

Prove that

(a) If 𝑓(𝑥) is a palindromic polynomial and 𝑐 ∈ ℂ is a root of 𝑓(𝑥), then 𝑐 must be non-zero, and
1
𝑐 is also a root of 𝑓(𝑥).

Proof. Let 𝑓(𝑥) ∈ ℂ[𝑥] be a palindromic polynomial with coefficients 𝑎𝑛 and root 𝑐 so

0 = 𝑎𝑛𝑐𝑛 + 𝑎𝑛−1𝑐𝑛−1 + ⋯ + 𝑎1𝑐 + 𝑎0

Since 𝑓(𝑥) has degree 𝑛, 𝑎𝑛 ≠ 0. As 𝑓(𝑥) is palindromic, 𝑎0 ≠ 0. Suppose that 𝑐 = 0 and
substitute above. We have that 𝑎0 = 0, which is a contradiction. Therefore, 𝑐 ≠ 0. Now,
multiplying through by 𝑐−𝑛, we have

0 = 𝑎𝑛 + 𝑎𝑛−1𝑐−1 + ⋯ + 𝑎1𝑐−𝑛+1 + 𝑎0𝑐−𝑛

but since 𝑓(𝑥) is palindromic we substitute 𝑎𝑛−𝑗 for 𝑎𝑗 and write

0 = 𝑎0 + 𝑎1 (
1
𝑐 ) + ⋯ + 𝑎𝑛−1 (

1
𝑐 )

𝑛−1
+ 𝑎𝑛 (

1
𝑐 )

𝑛

But this is just saying 𝑓(1
𝑐 ) = 0, that is, 1

𝑐 is a root of 𝑓(𝑥).
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(b) If 𝑓(𝑥) is a palindromic polynomial of odd degree, then 𝑓(−1) = 0.

Proof. Let 𝑓(𝑥) be a palindromic polynomial in ℂ with odd degree 𝑛 and coefficients 𝑎𝑛.
Since 𝑛 is odd, we have 𝑛 = 2𝑘 + 1 for some integer 𝑘. Then,

𝑓(−1) = 𝑎2𝑘+1(−1)2𝑘+1 + 𝑎2𝑘(−1)2𝑘 + ⋯ + 𝑎1(−1) + 𝑎0

and we apply the fact that 𝑎𝑛−𝑗 = 𝑎𝑗 for all 0 ≤ 𝑗 ≤ 𝑘 to get

𝑓(−1) = 𝑎0(−1)2𝑘+1 + 𝑎1(−1)2𝑘 + ⋯ + 𝑎𝑘(−1)𝑘+1 + 𝑎𝑘(−1)𝑘 + ⋯ + 𝑎1(−1) + 𝑎0

Notice that there are an even (𝑛 + 1 = 2𝑘 + 2) number of terms. We pair them by common
coefficients. Let 0 ≤ 𝑖 ≤ 𝑘. Then, the coefficient 𝑎𝑖 appears in the terms 𝑎𝑖(−1)2𝑘+1−𝑖 and
𝑎𝑖(−1)𝑖. The difference in the powers is 2(𝑘 − 𝑖) + 1, an odd number. Therefore, one is
even and the other is odd. Suppose WLOG that 𝑖 is even. Then, 𝑎𝑖(−1)2𝑘+1−𝑖 = −𝑎𝑖 and
𝑎𝑖(−1)𝑖 = 𝑎𝑖.
It follows that each term cancels its palindromic term, and the resulting sum is 0.

(c) If deg 𝑓 = 1 and 𝑓(𝑥) is a monic, palindromic polynomial, then 𝑓(𝑥) = 𝑥 + 1.

Proof. Let 𝑓(𝑥) be a first-degree polynomial in ℂ, that is, 𝑓(𝑥) = 𝑎1𝑥 + 𝑎0. Since 𝑓(𝑥) is
monic, its leading coefficient 𝑎1 is 1. However, since 𝑓(𝑥) is palindromic, 𝑎deg 𝑓−1 == 𝑎1−1 =
𝑎0 = 1 as well. Therefore, 𝑓(𝑥) = 𝑥 + 1.

11.3 Challenge

Challenge 11.1. We call a polynomial primitive if the greatest common divisor of all of its
coefficients is 1. Show that the product of two primitive polynomials is again primitive.
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