Ch 6: Power Series

(1) (1)	
O. I. INTRO. TO. FOWER SERIES	
Def. Power Series	
A power series is a series of the form	
$\int_{-\infty}^{\infty} a_n x^n = a_1 x + a_2 x_2^2 + \dots + a_n x_n + a_n x_n + \dots + a_n + a_n x_n + \dots + a_n + a_n x_n + \dots + a_n +$	
$\sum_{n=0}^{\infty} \alpha_n (\mathbf{x} - \alpha)^n = \alpha_n + \alpha_n (\mathbf{x} - \alpha)^2 + \dots (centered)$	
$= \sum_{i=0}^{n} \sum_{i=1}^{n} \sum_$	
The domain of a power series is the collection of all $x\in \mathbb{R}$ for which the power series converges.	
Note: $\sum_{a}a_{a}(x-a)^{n}$ will converge to as at $x=a$ (the center) so the domain is never empty	•
Note The Salara)" up follow	
$ E_{\text{res}} \cap (2^{\circ} - \alpha)^{\circ} = a_{\text{res}} (\alpha^{\circ} = 1)$	
2. If $a_0 = a_1 = \dots = a_{k} = 0$, then $\sum_{n=0}^{\infty} a_n(\infty - a)^n = \sum_{n=1}^{\infty} a_n(\infty - a)^n$ (discard terms with 0)	
bx. Find the domain of $\sum_{n=0}^{\infty} \overline{n!} = e^{nt}$.	
Use notion test. $\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} a_{n+1} = \sum_{n \to \infty} a_{n+1} = \sum_$	
$\lim_{n\to\infty} \left \frac{a^{(n+1)}}{a^{(n+1)}} - \frac{a^{(n+1)}}{a^{(n+1)}} - \frac{a^{(n+1)}}{a^{(n+1)}} \right = \frac{a^{(n+1)}}{a^{(n+1)}} = 0 > 1$	
This holds VacER so the domain is IR.	
5×2 tind the domain of $\sum_{i=0}^{\infty} (x-3)^{i}$	
Use noor test. [est these separately $\tilde{\Sigma}$ (-1) by the operation series	
$\lim_{n \to \infty} \left(\left (x-3)^n \right \right) = \lim_{n \to \infty} \left x-3 \right = \left x-3 \right $ For $x^{\pm} 4$, $\sum_{n=1}^{\infty} 1^n$ with $\ln z $, so both diverge	
We need $ x-3 < \Rightarrow - < x-3 < \Rightarrow 2 < x < 4$. The domain is (2,4).	
The Root test fails when $ x-3 =1$, when $x=2,4$.	
The L Fundamental Convenience Theorem for Power Series	
For $\sum_{n=1}^{\infty} a_n(x-a)^n$, one of the following must hold.	
1. The series converges only when $x = \alpha$, $[\alpha, \alpha]$	
2. The series converges $\forall x \in \mathbb{R}$; (- ∞ , ∞).	
3. JREIR) the series converges absolutely tor (x-al< K, diverges for (x-al>K, and a series absolutely tor (x-al< K, diverges for (x-al>K))	
unu may converge/ aver ge tor iz wi-n.	
Proof wlog	
Assume $a=0$ so our power series is $\sum_{n=0}^{\infty} a_n x^n$. Thus centered at 0. So it converges for $x=0$.	
Assume our power series converges for some nonzero x=x_6R.	
We show that it $ x_i < x_0 $, then $\sum_{i=1}^{n} a_i x_i^n $ converges.	
Since the univerges, the university of the Div test.	
lhus ansco" < eventually.	
$Thus a_{n}x_{o}^{n} = a_{n}x_{o}^{n} \cdot \left \frac{x_{i}^{n}}{x_{o}^{n}}\right \leq \left \frac{x_{i}^{n}}{x_{o}^{n}}\right \text{eventually}$	
Since $\sum_{i=1}^{\infty} \underline{x}_i ^n$ converges (represented to $ \underline{x}_i < 1$) $\sum_{i=1}^{\infty} \underline{a}_i x_i^n $ converges by converges $ \underline{a}_i < 1$	
$\sum_{n \in \mathbb{Z}} x_0 = \sum_{n \in \mathbb{Z}} x_0 x_0 x_0 x_0 x_0 = \sum_{n \in \mathbb{Z}} x_0 x_0 = \sum_{n \in \mathbb{Z}} x_0 $	

Note: The domain is always a single interval.

R is the radius of convergence.	The Interval of Convergence is the interval where it converges,	
I. ⇒ R=0.	I. ⇒ I={a}	
2. ⇒ R=∞.	2 ⇒ I=(-∞,∞)=R	
$3 \Rightarrow RE(0,\infty)$	$3 \Rightarrow I = (a-R, a+R), I = [a-R, a+R], I = (a-R, a+R], I = [a-R, a+R)$	1.

To find the radius, use the Ratio test (Ex.6 in 6.1 shows this can fail).

$\mathbf{E}_{\mathbf{x}} \begin{bmatrix} \sum_{n=1}^{\infty} \frac{2^n (\mathbf{x} - 3)^n}{\sqrt{n}} \end{bmatrix}$	² ∑ n! ∞ ⁿ
Use Ratio test: $\lim_{n \to \infty} \left \frac{2^{n+1}(x-3)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{2^n(x-3)^n} \right = \lim_{n \to \infty} \frac{2 x-3 \sqrt{n}}{\sqrt{n+1}} = 2 x-3 $ We need $2 x-3 < \Rightarrow x-3 < \frac{1}{2}$. So $R = \frac{1}{2}$. The second determinant for $x \in (2-\frac{1}{2}, 2+\frac{1}{2}) = (\frac{2}{2}, \frac{1}{2})$	Use Ratio test: $\lim_{n \to \infty} \left \frac{(n+1) \cdot x^{n+1}}{n \cdot x^n} \right = \lim_{n \to \infty} (n+1) x = \begin{cases} 0 & \text{if } x=0 \\ \infty & \text{if } x\neq \delta \end{cases}$ Diverges unless x=0. So R=0, I={0}
Check endpoints $x = \frac{5}{2} : \sum_{n=1}^{\infty} \frac{2^n (\frac{n}{2} - 3)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{2^n (-\frac{1}{2})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ Since $\frac{1}{2} > 0$ $\frac{1}{2} < \frac{1}{2}$ $\lim_{n \to \infty} \frac{1}{2} = 0$ as $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converse by AST	· · · · · · · · · · · · · · · · · · ·
Since $\int_{n}^{\infty} 0$, $\int_{n+1}^{\infty} \int_{n}^{\infty} \frac{2^{n}(\frac{1}{2}-3)}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{2^{n}(\frac{1}{2})}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges (p-series, $p = \frac{1}{2} \le 1$) $\therefore I = [\frac{5}{2}, \frac{1}{2}]$	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{l} F_{n,2} & \underset{n=2}{\overset{\infty}{\underset{n=2}{\overset{n+1}{\underset{n=2}{\overset{n+1}{\underset{n=2}{\overset{n+1}{\underset{n=2}{\overset{n}{\underset{n}{\underset{n=2}{\overset{n}{\underset{n}{\underset{n}{\underset{n}{\underset{n}{\underset{n}{\underset{n}{n$	· · · · · · · · · · · · · · · · · · ·
We need $\frac{1}{3} z < \Rightarrow z < 3$, So R=3 and open interval is (-3,3). Check endpoints $x_{=} -3$; $\sum_{i=1}^{\infty} \frac{(-1)^{n+1}(-3)^{n+1}}{2} = 3 \sum_{i=1}^{\infty} \frac{1}{1}$	· · · · · · · · · · · · · · · · · · ·
Note: $\frac{1}{h(n)} \ge \frac{1}{n}$ for $n \ge 2$. Since $\frac{1}{h}$ diverges (Harmonic Series), $\sum_{i=2}^{n} \frac{1}{h(n)}$ diverges by companison. $x = 3$. $\sum_{i=1}^{n} \frac{(1)^{n+1}(3)^{n+1}}{n} = 3\sum_{i=1}^{n} \frac{(1)^{n+1}}{n}$	· · · · · · · · · · · · · · · · · · ·
Since $\frac{1}{h(n)} > 0$, $\frac{1}{h(n)} < \frac{1}{h(n)} = 0$, so $\frac{2}{h(n)} < \frac{1}{h(n)} = 0$, so $\frac{2}{h(n)} < \frac{1}{h(n)} = 0$, so $\frac{2}{h(n)} = 0$.	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

6.2 Representing Functions as Power Series
A power series 互 an(x-a)" is a function whose domain is its interval of convergence.
We know one such function. Geometric series
$\frac{1}{1-\infty} = \sum_{n=0}^{\infty} \infty^n \text{for } _{\mathbf{x}} < (\mathbf{R}=1, \mathbf{I}=(-1,1))$
We don't need to check endpoints for geometric series.
Thm 4. Abel's Theorem
It that = 250 and x-a) has interval of convergence 1, then t is continuous on 1.
Thm.
$f(x) = \sum_{\alpha} a_{\alpha}(x-\alpha)^{\alpha}$ with radius R_{f} and interval of convergence I_{f} . (centered at) $g(x) = \sum_{\alpha} a_{\alpha}(x-\alpha)^{\alpha}$ with radius R_{g} and interval of convergence I_{g} .
$\int f(x) \pm q(x) = \sum_{n=1}^{\infty} (a_n \pm b_n) (x - a)^n$
If Re≠ Rg, then R=min{Re, Rg} and I=Ie∩Ig If Re= Re, then R> Re=Re
2. (x=a)*f(x)=x; an(x=a)** R=Rf and I=If.
3. If cER, c*0, a=0, (f(x)= $\sum_{k=0}^{\infty}a_{k}x^{k}$), then f(cx ^k)= $\sum_{k=0}^{\infty}a_{k}c^{k}x^{kn}$. If $R_{F} < \infty$, then $ cx^{k} < R_{F} \Rightarrow x < \sqrt{\frac{R_{F}}{ c }}$. So $R = \sqrt{\frac{R_{F}}{ c }}$. If $R_{F} = \infty$, then $R = \infty$. The interval is $I = \{x \in R \mid cx^{k} \in I_{F}\}$.
Ex. $f(x) = \frac{1}{5-x}$ centered at $x=0$. Ex.2 $f(x) = \frac{x^3}{x+2}$ centered at $x=0$.
$\frac{1}{5-x} = \frac{1}{5} \left(\frac{1}{1-\frac{x}{5}} \right) = \frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{x}{5} \right)^n = \sum_{n=0}^{\infty} \frac{x^n}{5^{n+1}} \qquad \qquad \frac{x^3}{x+2} = \frac{x^3}{2} \left(\frac{1}{1+\frac{x}{2}} \right) = \frac{x^3}{2} \left(\frac{1}{1-(-\frac{x}{2})} \right) = \frac{x^3}{2} \sum_{n=0}^{\infty} \left(\frac{-x}{2} \right)^n = \sum_{n=0}^{\infty} \left(\frac{(-1)^n x^{n+2}}{2^{n+1}} \right)$ for $ \frac{\pi}{5} < 1 \Rightarrow x < 5$ so $R = 5$, $I = (-5, 5)$. for $ \frac{\pi}{2} < 1 \Rightarrow x < 2$ so $R = 2$, $I = (-2, 2)$.
5.3 f(x)= $\frac{1}{2-x^2}$ contered at x=0. 5.4 f(x)= $\frac{2}{x}$ contered at x=7.
$\frac{1}{2-x^2} = \frac{1}{2} \left(\frac{1}{1-\frac{x^2}{2}} \right) = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x^2}{2} \right)^n = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^{n+1}} \qquad $
6.3 & 6.4 Differention and Integration of Power Series
For a power series 🛱 an(x-a), we can differentiate or integrate term-by-term.
Thm: If $f(x) = \sum_{n=1}^{\infty} a_n(x-a)^n$ with radius of convergence $R > 0$, then $f(x)$ is differentiable and integrable on $(a-R, a+R)$ we have radius doesn't change, but the interval may change. We need to check the endpoints if we differentiate/integrate. $f(x) = \sum_{n=1}^{\infty} na_n(x-a)^{n-1}$ both have radius of convergence R 2. $\int f(x) = \sum_{n=1}^{\infty} (\frac{a_n(x-a)^{n-1}}{n+1}) + C$

Ex. 1 Find a power series for In11+21 about 2=0. EC2 Find a power series for $f(x) = \frac{1}{(1-x)^3}$ about x = 0. We know $\frac{1}{1-x} = \sum_{n=1}^{\infty} x^n$ for |x| < 1, so R = 1. We know $\frac{1}{1-\infty} = \sum_{n=0}^{\infty} x^n$ for |x| < 1; so R = 1. We get $\frac{1}{1+\infty} = \frac{1}{1-(\infty)} = \sum_{n=0}^{\infty} (-\infty)^n = \sum_{n=0}^{\infty} (-1)^n \infty^n (R=1)$ Differentiate: $\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} nx^{n-1}$ (R=1) Integrate. $\ln|1+x| = \sum_{r=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1} + C$, R=1. Differentiate: $\frac{2}{(1-x)^3} = \sum_{n=1}^{\infty} n(n-1)x^{n-2}$ (R=1) Find C by subbing in x=0. (since we want a series for Inlx+11 explicitly) So $\frac{1}{(1-x)^3} = \frac{1}{2} \sum_{n=1}^{\infty} n(n-1) x^{n-2}$, R=1 and open interval is (-1,1), $\ln ||+0| = \sum_{n=0}^{\infty} \frac{(-1)^n 0^{n+1}}{n+1} + C \Rightarrow C=0$ Check endpants: x=1: $\frac{1}{2}\sum_{n=1}^{\infty} n(n-1)$ So $|n||+x| = \sum_{x=1}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}$, R=1 and open interval is (-1, 1). both diverge Div test x = -1: $\frac{1}{2} \sum_{n=1}^{\infty} u(n-1)(-1)^{n-2}$ Check endpoints. $x = 1: \sum_{n=0}^{\infty} \frac{(-1)^n (1)^{n+1}}{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ converges by AST ··· I=(-I, I) $\infty = -1 : \sum_{n=0}^{\infty} \frac{(-1)^n (-1)^{n+1}}{n+1} = \sum_{n=0}^{\infty} \frac{-1}{n+1} \text{ diverges (Harmonic Series)}$ ∴ I=(-1,1] **5**.3 Find a power series for $f(x) = \arctan(x)$ about x=0Ex.9 Evalute $\int_{2-x^2}^{1} dx$ as a power series about x=0. First, find a series for $\frac{1}{2-x^2}$. We will first find a series for $\frac{1}{1+x^2}$ $\frac{1}{1+x^{2}} = \frac{1}{1-(-x^{2})} = \sum_{n=0}^{\infty} (-x^{2})^{n} = \sum_{n=0}^{\infty} (-1)^{n} x^{2n} \quad \text{for } |-x^{2}| < | \quad (R=1)$ $\frac{1}{2-x^{5}} = \frac{1}{2} \left(\frac{1}{1-\frac{x^{5}}{2}} \right) = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x^{5}}{2} \right)^{n} = \sum_{n=0}^{\infty} \frac{x^{5n}}{2^{n+1}} \quad \text{for } |\frac{x^{5}}{2}| < |$ $\Rightarrow |x| < 2^{\frac{1}{2}} (R = 2^{\frac{1}{2}})$ So $\arctan(x) = \int \frac{1}{1+x^2} dx = \sum_{n=0}^{\infty} \left(\frac{(-1)^n x^{2n+1}}{2n+1} \right) + C$. Integrate. $\int \frac{1}{2-x^{5}} dx = \int \sum_{n=0}^{\infty} \frac{x^{5n}}{2^{n+1}} dx = \sum_{n=0}^{\infty} \left(\frac{x^{5n+1}}{2^{n+1}(5n+1)} \right) + C,$ Sub in x=0 to get C: $\arctan(0)=0+C \Rightarrow C=0$. (won't find C since we are evaluating an indefinite integral) $R=2^{\frac{1}{3}}$ and open interval is $(-2^{\frac{1}{3}}, 2^{\frac{1}{3}})$. So $\arctan(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$, R=1 and open interval is (-1, 1). Check endpoints. Check endpoints: $x = 2^{\frac{1}{2}} \sum_{n=1}^{\infty} \frac{(2^{\frac{1}{2}})^{5n+1}}{2^{n+1}(5n+1)} = \sum_{n=1}^{\infty} \frac{2^{\frac{1}{2}}}{2} \cdot \frac{1}{5n+1}$ diverges by LCT (with $\frac{1}{n}$) x = 1. $\sum_{n=0}^{\infty} \frac{(-1)^n (-1)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n+1}$ converges by AST. $x = -2^{\frac{1}{3}} \sum_{n=0}^{\infty} \left(\frac{(-2^{\frac{1}{3}})^{5n+1}}{2^{n+1}(5n+1)} \right) = \sum_{n=0}^{\infty} (-1^{5n+1} \cdot \frac{2^{\frac{1}{3}}}{2} \cdot \frac{1}{5n+1} \text{ converges by AST.}$ dc = -1, $\sum_{n=1}^{\infty} \frac{(-1)^n (1)^{2n+1}}{2n+1} = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$ converges by AST. ∴ I = [-2[‡], 2[‡]) ∴ I=[-1,1] We can use differentation to find another series ex $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$ Proof We know $R = \infty$ for that series. Let $q(\infty) = \sum_{n=0}^{\infty} \frac{\infty^n}{n!}$. Then $g'(x) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n!} = g(x)$. So g'(x) = g(x). Solve this ODE and we get $g(x) = Ce^x$, but by definition $g^{(0)} = 1$, so C = 1. ... q(x)=.e* .

			_					
f is n-times ditterentiable, then the n-th degree laylor rolynomial tor centered	.at :	c=a i	\$.					r
$\int_{n,a} (x) = \sum_{h=0}^{r} \frac{r(a)}{h!} (x^{-a})^{n} = f(a) + f(a)(x^{-a}) + \frac{r(a)(x^{-a})}{2} + \dots + \frac{r(a)(x^{-a})}{n!}$	• •		•			•		
	• •							
Taylor Remainders								
is n-times differentiable, then the n-th degree Taylor Remainder for centered	at :	c=a i	5					
$R_{r,n}(x) = f(x) - T_{r,n}(x)$								
	• •							
· · · · · · · · · · ·								
e error in using Index) to approximate floc) is								
Error = [K ₁₁ a(x)]								
······································								
m laylor's lheorem								
sume t is n+1 times ditterentiable on an interval 1 containing x=a.								
·x⊂1. Then ∃ a point c between x and a J								
$f(x) - T_{n,\alpha}(x) = R_{n,\alpha}(x) = \frac{f^{(1)}(x)}{(x+1)!} (x-\alpha)^{n+1}$								
ollary laglors inequality								
$ A_{\alpha}(x) \leq \frac{11(x-\alpha)}{(x+1)!}$ where $ f^{(n+1)}(x) \leq M \forall x$ between x and a.								
& 68 Taulor Series and Contempore					0			
a 0.0 rayor cares and contragate								
property $f(x) = \sum_{n=1}^{\infty} a_n (x-a)^n = a_n + a_n (x-a) + a_n (x-a)^2 + \dots$ for $ x-a < R$ for $R > 2$	0. •							
x=0,								
a_0								
$x) = a_1 + 2a_2(x-a) + 3a_3(x-a)^2 + \Rightarrow f'(a) = a_1$								
$x) = 2a_2(x-a) + 6a_3(x-a) + 12a_4(x-a)^2 + \Rightarrow f'(a) = 2a_2 \Rightarrow a_2 = \frac{f'(a)}{2}$								
$f^{(a)}(a)$								
general $a_n = -n!$								
n								
n. f(x) has a power series representation about x=a.	1.							
n f(x) has a power series representation about x=a. 1 f(x)=∑an(x-a)^ for 1x-a1< R, R>0, then								
n. f(x) has a power series representation about x=a. y f(x)=∑an(x-a) [°] for 1x-a1 <r, r="">O, then</r,>		•						
n. f(x) has a power series representation about x=a. y f(x)=∑an(x-a) [°] for 1x-a1< R, R>O, then an= <u>f⁽ⁿ⁾(a)</u> n!		•						
f(x) has a power series representation about $x=a$. $f(x) = \sum_{n=1}^{\infty} a_n(x-a)^n$ for $ x-a < R$, $R > 0$, then $a_n = \frac{f^{(n)}(a)}{n!}$ out is $f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!}$ (x-a)^n is the Toulor Series for f centered at $x = a$.		•	• •		•			
n: f(x) has a power series representation about $x=a$. y f(x)= $\sum_{n=1}^{\infty}a_n(x-a)^n$ for $ x-a < R$, $R > 0$, then $a_n = \frac{f^{(n)}(a)}{n!}$ n! nt is, $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ is the Taylor Series for f centered at $x=a$.		•	• •	 •	•	•	•	
n. f(x) has a power series representation about $x=a$. f(x)= $\sum_{n=0}^{\infty}a_n(x-a)^n$ for $ x-a < R$, $R > 0$, then $a_n = \frac{f^{(n)}(a)}{n!}$ in is, $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$ is the Taylor Series for f centered at $x=a$. $a_n = 0$ then $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} x^n$ is the Maclauria Series for f		•	• •	•	•	•	•	

Manipulating known series.
Differentiating/Integrating known series.
Using the Taylor Series formula.
you will get the Taylor Series for f. power series and concludes it must be the Taylor Series. It doesn't say every function is equal to its Taylor Series.

Ex. Find the Maclaurin series for $f(x) = \begin{cases} v_e & \text{if } x < -1 \\ e^x & \text{if } -1 \\ e^x & \text{if } -1 \\ e^x & e^x \end{cases}$
Since f ^(m) (0)=1 V n=0, so the Maclauren Senies is $\sum_{n=1}^{\infty}$ which converges VxER. However $e^x = \sum_{n=1}^{\infty} \frac{\pi}{n!}$ VxER. But f(3)= $e \neq e^3 = \sum_{n=1}^{\infty} \frac{\pi}{n!}$. So f(x) = $\sum_{n=1}^{\infty} \frac{\pi}{n!}$ VxER.
We need to determine if a function is equal to its Taylor Series on the interval of convergence. Notice that the partial sums of a Taylor Series, $\sum_{k=0}^{\frac{p}{2}} \frac{f^{(k)}(a)}{k!} (x-a)^k$, are the Taylor Polynomials, $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = T_{n,a}(x)$. We want to determine for which $x \in \mathbb{R}$ $f(x) = n \lim_{k \to \infty} T_{n,a}(x)$.
$\lim_{x \to \infty} R_{n,\alpha}(x) = 0.$ for each x where $R_{n,\alpha}(x) \to 0.$
Corollary Taylor's Inequality IF $ f^{(**)}(\vec{x}) \leq M \forall x-a \leq d$, then $ R_{n,a}(x) \leq \frac{M x-a \leq d}{(n+1)!}$ for $ x-a \leq d$.
Thm. Convergence Theorem for Taylor Series Assume f has derivatives of all orders on an interval I containing $\infty = a$. Assume $\exists M \in \mathbb{R} \ \exists f^{(m)}(\infty) \leq M \ \forall k \in \mathbb{N}$ and $\infty \in \mathbb{I}$ (bounded on the interval). Then, $f(\infty) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\alpha)}{n!} (\infty - a)^n \ \forall \infty \in \mathbb{I}$
$\frac{\operatorname{Proof}}{\operatorname{If}} = x = a, \text{ then } \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a)$ $\operatorname{Assume that} x_0 \in I \text{ and } x_0 \neq a. \text{ Since } f^{(k)}(x) \leq M \ \forall k \in \mathbb{N} \ \forall x \in I.$ $\operatorname{Taylors } \operatorname{Inequality gives} \ 0 \leq \operatorname{R}_{n,a}(x_0) \leq \frac{M x_0 - a ^{n+1}}{(n+1)!}.$
Since $\lim_{n\to\infty} \frac{M x_{\overline{x}}a ^{n+1}}{(n+1)!} = M \lim_{n\to\infty} \frac{ x_{\overline{x}}a ^{n+1}}{(n+1)!} = O (\text{using } \lim_{n\to\infty} \frac{x^n}{n!} = O).$
We have nimo R _{n/a} (x) =0 by Squeeze Ihm. ■
Corollary: $e^{x} = \sum_{n=0}^{\infty} \frac{2^{n}}{n!} \forall x \in \mathbb{R}.$ By Convergence Thin, $e^{x} = \sum_{n=0}^{\infty} \frac{\pi}{n!} \forall x \in [-B, B].$ Since B was arbitrary, so $e^{x} = \sum_{n=0}^{\infty} \frac{\pi}{n!} \forall x \in \mathbb{R}.$
Corollary. Both sinx and cosx are equal to their Maclaunin Series Vx∈R. By Convergence Thm, they're equal to their Maclaunin Series.

. Ех	, Fi	ind	the	Mac	lau	n'n i	Ser	ries	б	f((x)=	sín	(.).				. Б	, Fi	nd .t	he. M	aclau	เก่ก. ร	Seni	es fi	277Fl	(z)=	cost	z).				2n
	+(; 	x) =	Sin :	x, =	₹ 1	F(0) 2`(^)	=0 = 1	, .	n=(О. 1								· 09	5x=	<u>d</u> dz(4	sinx)	= <u>व</u>	Σ	(2n+	<u>.</u> 1)1	=∑_	(Zn+l	<u>: (ا-ا) ا</u> م+ا)ا	<u> </u>	• <u>Σ</u>	<u>(2</u>)	<u>.</u>
• •	f.(x) - x) =	205			F(0) F(0)	- I I = ()	,.)	n= n=	1. 7								•			• •		-11-0		0 consi	ant fe	erm fe	or pow				
	f ((x) =	- COi	م عدد	⇒ (F"(0) = -	-1	n=	- 3					•		•	• •		₹ (-	l) [°] x ² ″		. C PP		- 163	oc ain	we (18	eeb u	-01	• •		
	f	(x) =	sin	э¢.	⇒ł	F"((D)=	Ó,	ņ=	4								· co	5x=	n=0	(21)!	- 43		•								
	SÍ	nx :	= 1	x'	- 1		•+-	<u> </u> =	د ^ي -	+:	z?+	·	=Ŝ	(-1) (-)	<u>2</u>	1+1 1																
			00	Gin	್ತಿಬ	nti							n=0	. (2	n+11	:																
	Si	nx ³	= <u>∑</u>	(2	n+1))!	∀≍	£R	5.							•					• •				• •				•	• •		
• •	•				•										•	•	•	•			• •		•		• •		•			• •		
Ex,	l ĥ	nd ⁱ⁻	Tayl	or	Śe	ries	f	or (وند	ab	sút	X	= - 3		•	•		• •					•						•	• •		
	G	eed	ρο	wer	s	erie	sc	sf.	(x-	(-3))=	<u>ж</u> н	3																			
	ల	c = e	2.+*	3-3	= 6	2 ³ 6	2×+	3_	<u> </u>	- 5	<u>- (</u>	<u>c+3</u>	<u>)</u> -	= ² 2	<u>(</u>	:+3)	<u>)"</u>	∀x	ER	(R	-00)											
									e	· · · ·	Ð.	n!		<u>^</u> =	ъe	²n:																
с э			Ma	.t		Ċ			L	· 6	<u>ر ک</u>	. = .	.5.	÷	÷																	
. DX.4	- 「	nd	1-101	ciav	^⊺₽ _€	ר י היי	eri n	25	TDI ≜	יין 1' יין	بعت ۱۳	נ - נ ייי	x- (JUS	ľ																	
	×	ိုလ်ခ	səç =	= ,x'	<u>}</u>	; (2n	<u>, ii</u> a	<u>ر</u> ،	=.∑	ъ (2	<u>)</u>	χ ²		٠¥	x€l	R (R=a	x).														
															•	•		•			• •											
Б <u>к</u> .З	Fi.	nd 7	Taylo	r' S	Sen	ies	for	- 'fi	()	= 's	in x	. ak	x iut	x	= 끈	•		•			• •				• •				•	• •		
	در	مح.	' ہے۔ ء = د	اما	(~ -	. ፲-	+ -	بتر]		sin (~-	<u> </u> 二)	.ocl	(근)	. · + C	os(<u>구</u>),	in (Z	ار ا	• •		•						•	• •		
• •	9.1			r	رېد	47		4 J			~	47	, ,	7/ 	 n+l			475			• •				• •					• •		
									= 2	2	<u>ک</u>	<u>[-1)</u>	(ż- 	<u>쓶)</u>	_ +	12	-2	<u>(-1)</u>)"(<u></u>)	-끈)	•••••				• •				•			
										2.	1=0 An	21) لي را	n+) ∐∕	ו איז איז		. 2	- <u>n=</u>	Ð	(2n)													
									= 1	2	Σ	<u>(-1)</u>	<u>ر)</u> ام	<u>c-답</u>	Ľ	٩×٩	GR	(R	= 00`)												
										-																						
																					• •											
															•	•	•	•			• •				• •				•	• •		
					•										•	•	•	•			• •				• •				•	• •		
• •															•	•	•	•			• •				• •				•	• •		
																					• •				• •				•			
															•	•		•			• •											
• •																		•			• •								•	• •		
	•				•				•		•	•			•	•	•	•			• •	•	•						•	• •		
• •									•			•		•	•	•	•	• •			• •		•		• •				•	• •		
• •															•			•			• •				• •		•		•	• •		

69 Rippinial Socies	
We know the Binomial Theorem for $(1+z)^n$ where kEIN.	
$(1+2) = \sum_{n=0}^{\infty} {\binom{n}{2}} x^n$ where ${\binom{n}{2}} - \frac{n!(k-n)!}{n!(k-n)!}$	
We can extend kEIR and find its Maclaurin Series.	
$f(x) = (+x)^{k} \Rightarrow f(0) = 1$ $f'(x) = k(+x)^{k-1} \Rightarrow f'(0) = k$	
$f^{N}(x) = k(k-1)((1+x)^{k-2} \Rightarrow f^{N}(0) = k(k-1)$	
$f^{-}(x) = K(k-1)(k-(n-1))(1+x) \longrightarrow f^{-}(0) = K(k-1)(k-(n+1))$ We get $\sum_{i=1}^{n} \frac{k(k-1)(k-(n+1))}{k} x^{n}$ for the Maclawin Series.	
The Radius of Conversence for k≠0,1,2	The Interval of Convergence
$\lim_{n \to \infty} \left \frac{k(k-1) \dots (k-n+1)(k-n) x^{n+1}}{(n+1)!} \cdot \frac{n!}{k(k-1) \dots (k-n+1) x^n} \right = \lim_{n \to \infty} \left \frac{k-n}{n+1} \right =$	$scl = sc $ · $ f k > 0$, $k \notin \mathbb{N}$, then $\vec{I} = [-1, 1]$.
We need $ z < 1$, so $R=1$ and the open interval is (-1, 1).	• If $k \le -1$, then $I = (-1, 1)$.
· · · · · · · · · · · · · · · · · · ·	• If k=0,1,2,, then I=R.
Notation: $\binom{k}{n} = \frac{k(k-1)\dots(k-n+1)}{n!}$ the numerator are called the keep in mind.	e Binomial Coefficients.
$\operatorname{rear}(0) = 1.$	
First, we claim $(n^{2}i)(n+1) + (n^{2}n^{2} + (n^{2})K \text{ tor } n \ge 1.$	Let $g(x) = \frac{1}{(1+x)^{k}}$. Finally, show $g'(x) = 0$ for $x \in (-1, 1)$.
$\binom{k}{(n+1)} + \binom{k}{n} = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)} + \frac{k(k-1)\dots(k-n+1)}{n}$	$a'(x) = \frac{1}{1} \frac{(a)(1+2c)^2 - F(a)(1+3c)}{1}$
$\binom{k}{n+1}(n+1) + \binom{k}{n}n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!}(n+1) + \frac{k(k-1)\dots(k-n+1)}{n!}n$ $k(k-1)\dots(k-n+1) = k(k-1) \dots(k-n+1)$	$g'(x) = \frac{f'(x)(1+x)^{2k}}{(1+x)^{2k}}$ $f'(x)(1+x)^{k-} (1+x)f'(x)(1+x)^{k-1}$ by previous $f'(x)(1+x)^{k-1} (1+x)f'(x)(1+x)^{k-1}$
$\binom{k}{n+1}(n+1) + \binom{k}{n}n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!}(n+1) + \frac{k(k-1)\dots(k-n+1)}{n!}n$ $= \frac{k(k-1)\dots(k-n+1)}{n!}(k-n) + \frac{k(k-1)\dots(k-n+1)}{n!}n$ $= \binom{k}{k-1}(k-n) + \binom{k}{k-1}n$	$g'(x) = \frac{f'(x)(1+x)^{2k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k}}{(1+x)^{2k}}$
$\binom{k}{n+1}(n+1) + \binom{k}{n}n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!}(n+1) + \frac{k(k-1)\dots(k-n+1)}{n!}n$ $= \frac{k(k-1)\dots(k-n+1)}{n!}(k-n) + \frac{k(k-1)\dots(k-n+1)}{n!}n$ $= \binom{k}{n}(k-n) + \binom{k}{n}n$ $= \binom{k}{n}(k-n+n)$	$g'(x) = \frac{f'(x)(1+x)^{k} - f'(x)f'(1+x)^{k}}{(1+x)f'(x)(1+x)^{k}} = \frac{f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \frac{k(k-1)\dots(k-n+1)}{n!} (k-n) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) $ $ = \binom{k}{n} k $	$g'(x) = \frac{f'(x)(1+x)^{2k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$
$\binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n$ $= \frac{k(k-1)\dots(k-n+1)}{n!} (k-n) + \frac{k(k-1)\dots(k-n+1)}{n!} n$ $= \binom{k}{n}(k-n) + \binom{k}{n} n$ $= \binom{k}{n}(k-n+n)$ $= \binom{k}{n} k$ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf(x) = kf(x) \forall x \in (-1, 1)$.	$g'(x) = \frac{f'(x)(1+x)^{2k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in [-1, 1]$, which means g is constant on $(-1, 1]$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)(k-n+1)}{n!} n $ $ = \frac{k(k-1)(k-n+1)}{n!} (k-n) + \frac{k(k-1)(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) $ $ = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf'(x) = kf(x) \forall x f(-1,1).$ $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $	$g'(x) = \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)f'(x)(1+x)^{k-1}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in \{-1, 1\}$, which means g is constant on (-1, 1). Since $f(0) = 1$, we get $g(0) = \frac{1}{1} = 1$, so $g(x) = 1$ for $x \in \{-1, 1\}$. This implies $f(x) = (1+x)^{k}$ for $x \in \{-1, 1\}$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \frac{k(k-1)\dots(k-n+1)}{n!} (k-n) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) $ $ = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf'(x) = kf(x)$ $\forall x \in (-1, 1)$. $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $	$g'(x) = \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in (-1, 1)$, which means g is constant on (-1, 1). Since $f(0) = 1$, we get $g(0) = + = 1$, so $g(x) = 1$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \frac{k(k-1)\dots(k-n+1)}{n!} (k-n) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf'(x) = kf(x)$ $\forall xc(-1,1)$. $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $	$g'(x) = \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in (-1, 1)$, which means g is constant on $(-1, 1)$. Since $f(0) = 1$, we get $g(0) = \frac{1}{1} = 1$, so $g(x) = 1$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. Thm. Generalized Binomial Theorem Let $k \in \mathbb{R}$, then $\forall x \in (-1, 1)$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \frac{k(k-1)\dots(k-n+1)}{n!} (k-n) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf'(x) = kf(x)$ $\forall xc(-1,1)$. $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n+1} (n+1)x^n + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (n+1) + \binom{k}{n} n x^n $	$g'(x) = \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - (1+x)f'(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in (-1, 1)$, which means g is constant on $(-1, 1)$. Since $f(0) = 1$, we get $g(0) = \frac{1}{1} = 1$, so $g(x) = 1$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. Let $k \in \mathbb{R}$, then $\forall x \in (-1, 1)$. $(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}$ where ${k \choose n} = \frac{k(k-1)\dots(k-n+1)}{n!}$, ${k \choose 0} = 1$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \frac{k(k-1)\dots(k-n+1)}{n!} (k-n) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf'(x) = kf(x)$ $\forall xc(-1,1)$. $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (n+1)x^n + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (n+1) + \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (n+1) + \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (n+1) + \binom{k}{n} n x^n $	$g'(x) = \frac{f(x)(1+x)^{k} - (1+x)f(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - (1+x)f(x)(1+x)^{k-1}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k} - f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in (-1, 1)$, which means g is constant on $(-1, 1)$. Since $f(0) = 1$, we get $g(0) = \frac{1}{1} = 1$, so $g(x) = 1$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. Let $k \in \mathbb{R}$, then $\forall x \in (-1, 1)$. $(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}$ where ${k \choose n} = \frac{k(k-1)\dots(k-n+1)}{n!}$, ${k \choose 0} = 1$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \frac{k(k-1)\dots(k-n+1)}{n!} (k-n) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf'(x) = kf(x)$ $\forall x \in (-1, 1)$. $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (n+1) x^n + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (n+1) + \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (n+1) + \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{(n+1)} (x+1) + \binom{k}{n} n x^n $	$g'(x) = \frac{f(x)(1+x)^{2k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k}-(1+x)f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k}-f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$ So $g'(x) = 0 \forall x \in (-1,1), \text{ which means } g \text{ is constant on } (-1,1).$ Since $f(0) = 1$, we get $g(0) = \frac{1}{1} = 1$, so $g(x) = 1$ for $x \in (-1,1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1,1)$. Thus, Generalized Binomial Theorem Let $k \in \mathbb{R}$, then $\forall x \in (-1,1)$ $(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} = x^{n}$ where ${k \choose n} = \frac{k(k-1)\dots(k-n+1)}{n!}, {k \choose 0} = 1$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \frac{k(k-1)\dots(k-n+1)}{n!} (k-n) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) $ $ = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf'(x) = kf(x) \forall x \in (-1, 1).$ $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} (n+1)(n+1) x^n + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} k x^n - \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} k x^n - \sum_{n=1}^{\infty} previous $ $ = k + \sum_{n=1}^{\infty} \binom{k}{n} k x^n $	$g'(x) = \frac{f(x)(1+x)^{2k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k}-(1+x)f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= \frac{f'(x)(1+x)^{k}-f'(x)(1+x)^{k}}{(1+x)^{2k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in (-1, 1)$, which means g is constant on $(-1, 1)$. Since $f(0) = 1$, we get $g(0) = \frac{1}{1} = 1$, so $g(x) = 1$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. Let $k \in \mathbb{R}$, then $\forall x \in (-1, 1)$. $(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}$ where ${k \choose n} = \frac{k(k-1)\dots(k-n+1)}{n!}$, ${k \choose 0} = 1$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)\dots(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \frac{k(k-1)\dots(k-n+1)}{n!} (n+1) + \frac{k(k-1)\dots(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) $ $ = \binom{k}{n}(k-n+n) $ $ = \binom{k}{n} k $ $ \text{Let } f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n \text{. Next; we claim } f(x) + xf'(x) = kf(x) \forall x \mathcal{E}(-1,1). $ $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} (n+1)(n+1)x^n + \sum_{n=1}^{\infty} \binom{k}{n} n x^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} kx^n - b_n previous $ $ = k + \sum_{n=1}^{\infty} \binom{k}{n} kx^n $ $ = k \binom{1 + \sum_{n=1}^{\infty} \binom{k}{n} x^n $	$g'(x) = \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= \frac{f'(x)(1+x)^{k}}{(1+x)^{k}} - \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= \frac{f'(x)(1+x)^{k}}{(1+x)^{k}} - \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in (-1, 1)$, which means g is constant on $(-1, 1)$. Since $f(0) = 1$, we get $g(0) = + = 1$, so $g(x) = 1$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. Then. Generalized Binomial Theorem Let $k \in \mathbb{R}$, then $\forall x \in (-1, 1)$ $(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}$ where ${k \choose n} = \frac{k(k-1)\dots(k-n+1)}{n!}$, ${k \choose 0} = 1$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)(k-n+1)}{n!} n $ $ = \frac{k(k-1)(k-n+1)}{n!} (k-n) + \frac{k(k-1)(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) $ $ = \binom{k}{n}(k-n+n) $ $ = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^{n}$. Next, we claim $f(x) + xf'(x) = kf(x) \forall x f(-1,1)$. $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n} $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n} $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n} $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} (n+1)x^{n} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n} $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} kx^{n} - b_{n} previous $ $ = k + \sum_{n=1}^{\infty} \binom{k}{n} kx^{n} $ $ = k \binom{1 + \sum_{n=1}^{\infty} \binom{k}{n} x^{n} $ $ = k \binom{1 + \sum_{n=1}^{\infty} \binom{k}{n} x^{n} $ $ = k \binom{1 + \sum_{n=1}^{\infty} \binom{k}{n} x^{n} $ $ = k \binom{1 + \sum_{n=1}^{\infty} \binom{k}{n} x^{n} $ $ = k \binom{1 + \sum_{n=1}^{\infty} \binom{k}{n} x^{n} $	$g'(x) = \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= \frac{f'(x)(1+x)^{k}}{(1+x)^{k}} - \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= \frac{f'(x)(1+x)^{k}}{(1+x)^{k}} - \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= 0$ So $g'(x) = 0$ $\forall x \in \{-1, 1\}$, which means g is constant on (-1, 1). Since $f(0) = 1$, we get $g(0) = \frac{1}{1} = 1$, so $g(x) = 1$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. Then. Generalized Binomial Theorem Let $k \in \mathbb{R}$, then $\forall x \in (-1, 1)$ $(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}$ where ${k \choose n} = \frac{k(k-1)\dots(k-n+1)}{n!}$, ${k \choose 0} = 1$.
$ \binom{k}{n+1}(n+1) + \binom{k}{n} n = \frac{k(k-1)(k-n+1)(k-n)}{(n+1)!} (n+1) + \frac{k(k-1)(k-n+1)}{n!} n $ $ = \frac{k(k-1)(k-n+1)}{n!} (k-n) + \frac{k(k-1)(k-n+1)}{n!} n $ $ = \binom{k}{n}(k-n) + \binom{k}{n} n $ $ = \binom{k}{n}(k-n+n) = \binom{k}{n} k $ Let $f(x) = \sum_{n=0}^{\infty} \binom{k}{n} x^n$. Next, we claim $f(x) + xf'(x) = kf(x) \forall x f(-1,1).$ $ f'(x) + xf'(x) = \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^{n-1} + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} (n+1)x^n + \sum_{n=1}^{\infty} \binom{k}{n} nx^n $ $ = \binom{k}{1} + \sum_{n=1}^{\infty} \binom{k}{n} kx^n - b_n previous $ $ = k + \sum_{n=1}^{\infty} \binom{k}{n} kx^n $ $ = k \left(1 + \sum_{n=1}^{\infty} \binom{k}{n} x^n\right) $ $ = k \left(1 + \sum_{n=1}^{\infty} \binom{k}{n} x^n\right) $	$g'(x) = \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= \frac{f'(x)(1+x)^{k}}{(1+x)^{k}} - \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= \frac{f'(x)(1+x)^{k}}{(1+x)^{k}} - \frac{f'(x)(1+x)^{k}}{(1+x)^{k}}$ $= 0$ So $g'(x) = 0 \forall x \in \{-1, 1\}, \text{ which means } g \text{ is constant on } (-1, 1).$ Since $f(0) = 1$, we get $g(0) = \frac{1}{1} = 1$, so $g(x) = 1$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. This implies $f(x) = (1+x)^{k}$ for $x \in (-1, 1)$. Let $k \in \mathbb{R}$, then $\forall x \in (-1, 1)$. $(1+x)^{k} = \sum_{n=0}^{\infty} {k \choose n} x^{n}$ where ${k \choose n} = \frac{k(k-1)\dots(k-n+1)}{n!}, {k \choose 0} = 1$.

$x \mathcal{E}(-l, l).$ $\underbrace{1}_{x^{2n}} -x^{2} < \Rightarrow x < $ for $x \mathcal{E}(-l, l).$
e applications we will examine are Finding Sums. Evaluating Limits. Evaluating & Approximating Integrals.
· ·
of the known series and find the sum that way. e given series.
Ex.2 $\sum_{n=0}^{\infty} \left(\frac{(-1)^n x^{2n+1}}{2n+1}\right) + 4 = S(x)$ Differentiate: $S'(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n} = \sum_{n=0}^{\infty} (-x^2)^n = \frac{1}{1+x^2}$ So $S(x) = \int \frac{1}{1+x^2} dx = \arctan(x) + C$ But $S(0) = 4$, so $C = 4$. Thus $S(x) = \arctan(x) + 4$.
Ex. ⁴ Starting with $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, find $\sum_{n=0}^{\infty} \frac{nx^n}{7}$. $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \Rightarrow \frac{d}{dx} \left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^n} = \sum_{n=0}^{\infty} nx^{n-1}$ $\Rightarrow \frac{x}{(1-x)^n} = \sum_{n=0}^{\infty} nx^n$ $\Rightarrow \frac{x}{7(1-x)^2} = \sum_{n=0}^{\infty} \frac{nx^n}{7}$

Evaluating Limits

We can use Taylor Series to evalute limits, instead of using l'Hopital's Rule. This idea is similar to how we used Taylor Polynomials and Taylor's Approximation Thm I to evalute limits.

Evaluate with series and not l'Hopital's Rule.

$\frac{1}{100} \frac{e^{x}-1}{e^{x}} = e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{2} + \frac{x^{3}}{2$	62 lim 1-cosoc	$x = 1 - \frac{x^2}{2}$	<u>, x"</u>				
x+0 x 2! 3!	x*0 x ²	ws 1 2!	. 4!				
$= \lim_{n \to \infty} \frac{1 + 2x^2 + \frac{2x^2}{2!} + \frac{2x^3}{3!} + \dots - 1}{2!}$	<u>_ lim -(-×</u>	$\frac{1}{1} + \frac{2^{24}}{4!}$					
⁻ x→0 x	x+0	చి	0 0 0				
$= \lim_{x \to 1} \frac{2x^2}{2!} + \frac{x^3}{3!} + \frac{x^3}{3!}$	$= \lim_{n \to \infty} \frac{x^2 - \frac{x^4}{4!}}{\frac{2! - 4!}{4!}}$	• +	0 0 0	• • •		• • •	• • •
-x+0 x	x ²	•	• • •	• • •			
$-\lim_{x \to \infty} x_1, x_2, x_2, \dots $	_ lim _L _ = == .		• • •	• • •			
$= x \rightarrow 0 + \frac{1}{2!} + \frac{3!}{3!} + \dots + $	<u>41</u>	····	• • •	• • •			
			• • •	• • •			• • •
$F_{x,3} = e^{x} - \frac{x^{2}}{2} - x - 1 = e^{x} = [+x + \frac{x^{2}}{2!} +$	•		• • •	• • •			
$\frac{x+0}{\sin x - x} = \frac{x^3}{\sin x} + \frac{x^4}{51} - \frac{x^5}{51} + \frac{x^4}{51} - \frac{x^5}{51} + \frac{x^4}{51} - \frac{x^5}{51} - \frac{x^5}{51}$	· · · · · · ·			• • •			
$\lim_{k \to \infty} (+x+\frac{x^2}{2!}+) - \frac{x^2}{2!} - x - 1$							
$x = 0$ $(x - \frac{x^3}{x} + \frac{x^5}{x} - \frac{x^5}{x} - \frac{x^5}{x} + \frac{x^5}{x} - \frac{x^5}{x} + \frac{x^5}{x} - \frac{x^5}{x} + x$							
$\frac{1}{2} + \frac{1}{2} + \frac{1}$							
$= \lim_{x \to 0} -\frac{x}{x} + \frac{x}{x} - \frac{x}{x} + \frac{x}{x}$							
$= \lim_{x \to 0} \frac{3! 4! }{-\perp + x^2} = \frac{3!}{-\perp} = - $							
3i Gi 3i							
Evaluating Integrals as Jeries							
Ex. Evaluate) e dx as a series.			0 0 0				
$\left(e^{-x^{2}}dx = \left(\sum_{i=1}^{\infty} \frac{(-i)^{2}x^{2i}}{x^{2i}}dx = \sum_{i=1}^{\infty} \frac{(-i)^{2}x^{2i}}{x^{2i}} + (-i)^{2i}x^{2i}\right)$			• • •				
		د. الاست.					
B.2 How many terms would we need to a	use to approximate	je ^{-æa} dæ to an	accuracy f	0 <u> </u> 101(21)			• • •
E.2 How many terms would we need to $\left[e^{-x^2}dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{16n+1}\right]^1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{16n+1}$	use to approximate	je ^{∞*} dx to an	accuracy t	0 <u> </u> 10!(21)	•••		• • •
Ex.2 How many terms would we need to $\int_{n=0}^{\infty} e^{-x^2} dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \Big _0^1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)}$	use to approximate	je ^{∞*} dx to an	accuracy t	0 <u> </u> 10!(21)?	· ·	· · ·	· · ·
E.2 How many terms would we need to $\int_{0}^{\infty} e^{-x^2} dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)}$ This converges by AST. Let's use AST	use to approximate estimation.	'je ^{-æ} dx to an	accuracy t	ר <u>ו</u> ווס <u>יסו</u> ס	· ·	· · ·	· · · ·
E.2 How many terms would we need to $\int_{0}^{1} e^{-x^2} dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms.	use to approximate estimation.	'je ^{-æa} d∝ to an	accuracy f	0 <u> </u> 10!(21) 7	· · ·	· · · ·	· · · ·
6.2 How many terms would we need to $\int_{1}^{\infty} e^{-x^2} dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1+1} + \frac{1}{1+1} - \frac{1}{1+1} + \frac{1}{1+1} - \frac{1}{1+1} + \frac{1}{1+1}$	use to approximate estimation.	je ^{-za} dx to an	accuracy f	0 <u> </u> 101(21)		· · · ·	
6.2 How many terms would we need to $\int_{1}^{\infty} e^{-x^2} dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(7)} + \frac{1}{4!(9)} - \frac{1}{5!(11)} + \frac{1}{6!}$	use to approximate estimation. 1 <u>(13) - 1</u> (15) + <u>1</u> (17) -	$\int e^{-x^2} dx + b = an$ $\frac{1}{q!(19)} + \frac{1}{10!(21)}e^{-a^2}$	accuracy f	ז (<u>ומיסו</u> ס <u>ו</u>		· · · ·	
E.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(3)} + \frac{1}{2!(5)} - \frac{1}{3!(7)} + \frac{1}{4!(9)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. 1 <u>(13) - 1 (15)</u> + <u>1</u> (17)	∫e ⁻²² dz to an <u>1</u> 9:(19) + <u>10¹(21)</u>	accuracy f	0 <u>10</u>	· · ·		· · · ·
6.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(3)} + \frac{1}{2!(5)} - \frac{1}{3!(7)} + \frac{1}{4!(4)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. <u>1</u> (13) - <u>1</u> (15) + <u>1</u> (17)	∫e ^{-∞2} dx to an <u>1</u> 9!(19) + <u>1</u> 101(21)	accuracy f	ר <mark>ו (נ) ו</mark> סי סי סי סי סי סי סי סי	· · · · · · · · · · · · · · · · · · ·		· · · · ·
6.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms: $ -\frac{1}{1!(3)} + \frac{1}{2!(5)} - \frac{1}{3!(7)} + \frac{1}{4!(9)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. <u>1</u> (13) - <u>1</u> (13) + <u>1</u> 71(15) + <u>81</u> (17) -	j ¹ e ⁻²² dsc to an <u>1</u> <u>1</u> (19) + <u>1</u> [01(21)	accuracy f	(<u>ה)ו</u> ס (<u>ה)וס</u> (<u>ה</u>			
6.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms: $1 - \frac{1}{1!(3)} + \frac{1}{2!(5)} - \frac{1}{3!(7)} + \frac{1}{4!(4)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. 1 (13) - 1 (15) + 1 81(17) -	j ¹ e ⁻²² dz to an <u>1</u> <u>9!(19)</u> + <u>1</u> 101(21)	accuracy f	ר <u>וז)סו</u> ס ר <u>וג)סו</u> ס			
6.2 How many terms would we need to $\int_{0}^{\infty} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms: $1 - \frac{1}{1!(3)} + \frac{1}{2!(5)} - \frac{1}{3!(7)} + \frac{1}{4!(4)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. 1 (13) - 1 (15) + 1 81(17) -	je ⁻²² dz to an <u>1</u> 9!(19) + <u>10</u> '(21)	accuracy +	Γ <u>(π)</u> σ			
6.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(3)} + \frac{1}{2!(5)} - \frac{1}{3!(7)} + \frac{1}{4!(4)} - \frac{1}{5!(1)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. 1 <u>1 - 1 - 1</u> (13) - 7!(15) + <u>1</u> 81(17) -	je ⁻²² dz to an <u>1</u> <u>1</u> (19) + <u>101(21)</u>	accuracy +				
E.2 How many terms would we need to $\int_{0}^{\infty} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(7)} + \frac{1}{4!(4)} - \frac{1}{5!(1)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. 1 <u>1</u> (13) - 1(15) + 1 (13) - 7!(15) + 8!(17) -	je ⁻²² dz to an <u>1</u> 91(19) + <u>101(21)</u>					
E.2 How many terms would we need to $\int_{0}^{\infty} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(r)} + \frac{1}{4!(q)} - \frac{1}{5!(1)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. 1 (13) - 1 (15) + 1 (13) - 7!(15) + 3!(17) -	je ^{-x2} dx to an <u>1</u> q!(19) + <u>101(21)</u>					
E.2 How many terms would we need to $\int_{0}^{\infty} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(n)} + \frac{1}{4!(q)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. $\frac{1}{(13)} - \frac{1}{7!(15)} + \frac{1}{8!(17)} - \frac{1}{8!(17)}$	$\int e^{-x^2} dx$ to an $\frac{1}{q!(1q)} + \frac{1}{10!(21)}$					
E.2 How many terms would we need to $\int_{0}^{\infty} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(r)} + \frac{1}{4!(q)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. $\frac{1}{(13)} - \frac{1}{7!(15)} + \frac{1}{8!(17)} - \frac{1}{12}$	$\int e^{-x^2} dx$ to an $\frac{1}{q!(19)} + \frac{1}{10!(21)}$					
E.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(r)} + \frac{1}{4!(q)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. $\frac{1}{(13)} - \frac{1}{7!(15)} + \frac{1}{8!(17)} - \frac{1}{100}$	$\int e^{-x^2} dx$ to an $\frac{1}{q!(19)} + \frac{1}{10!(21)}$					
E.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(r)} + \frac{1}{4!(q)} - \frac{1}{5!(11)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. $\frac{1}{(13)} - \frac{1}{7!(15)} + \frac{1}{8!(17)} - \frac{1}{100}$	$\int e^{-x^2} dx$ to an $\frac{1}{q!(19)} + \frac{1}{10!(21)}$					
E.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(r)} + \frac{1}{4!(q)} - \frac{1}{5!(1)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. $\frac{1}{(13)} - \frac{1}{7!(15)} + \frac{1}{8!(17)} - \frac{1}{100}$ orms.	$\int e^{-x^2} dx$ to an $\frac{1}{q!(19)} + \frac{1}{10!(21)}$					
E.2 How many terms would we need to $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{n!(2n+1)} \Big _{0}^{1} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2n+1)}$ This converges by AST. Let's use AST Write out some terms. $1 - \frac{1}{1!(s)} + \frac{1}{2!(s)} - \frac{1}{3!(r)} + \frac{1}{4!(q)} - \frac{1}{5!(1)} + \frac{1}{6!}$ So, the estimate needs at least 10 te	use to approximate estimation. $\frac{1}{(13)} - \frac{1}{7!(15)} + \frac{1}{8!(17)} - \frac{1}{100}$ some.	$\int e^{-x^2} dx$ to an $\frac{1}{q!(19)} + \frac{1}{10!(21)}$					

•		D			عہ	D.,		د			÷																										
	•	n,	ecc	٩	0	PO	ver		erie	25	•																										
		Ś		Þau	fr	م	Juli		Que	seti	ions)																			•					•	
		<u>ب</u>	Gi	-yy	0 S	in Ania)))	т Т	find	R	adiu		, d	Inte		Af											•		•		•			•			
			0	Ro	tio ·	hest	for	- R	and	1 0	Den	inte	2010	l		0.			yer r	. ب د					•			•					•				
				Ch	eck	enc	looir	, Is (Hiw	r. ⊂ ∖ α	Hher.	┢	sts												•			•					•				
		•	Gi	ven	a	Ser	nes.	te	> fin	d	its :	scur	n:	-											•			•					•				
			0	Re	late	ił.	to (a k	now	n s	senie	25	(e	د. ج	in.c.		5 X.	1	(I·	, +)	۳)				•			•					•				
			0	Mo	u r	eec	Iь	in	teor	ale	/ dif	fer	ent	iate			-,-,										•		•		•			•			
		•	Ġi	<i>i</i> en	a f	unc	tion	. 	∵∵j. Dote	et i	ts T	Tau	lor/	/Ma	clau	'n	Śe	nie<		Ne. (can	•					•		•		•			•			
			0	Us	e H	ne -	Taylo	, r 3	Seri	ies	for	mu	la i	<u>ξ</u> <u>f</u>	<u>~~</u> (<u>)</u>	(x-	a)"	Fir	dF	ζαι	nd :	L.							•		•			•			
			0	Ma	nipu	late	/Int	eqn	ate/	Di	ffere	siti	ate	al	: knov	n :	Seni	œ.	Βí	s k	now	, b	ut a	chec	k e	do	sints	ъ	find	ΙI			•				
			0	lĖ d	aske	d f	or o	Ť	jor	Ś	erie	s c	zbou	it a	=α	, [`] fi	vi f	-G.) -	• 'f(:	τ-a	+a),	, m	Nanip	nilat	e a	nd	USE	a	know		enies	5.					
									•								0						. •		•			•			•	•	•				
																												•			•		•				
																									•			•			•		•		•		
																									•			•			•		•		•		
																												•			•		•				
																												•			•						
																															•	•					
																												-									