\(\F^+\)/\(\F^+_0\) is the positive/non-negative subset of \(\F\). \(\N = \Z^+ = \\{1,2,\dotsc\\}\). \(f(I)\) is the range of \(f\) on \(I\). \(C^n([a,b])\) is the set of functions with continuous \(n\)-th derivatives on \([a,b]\).
Definitions
Name (Reference) | Statement | |
---|---|---|
Partition (§1.2, p. 13) |
\[[a,b]\subset\R\] | Increasing sequence \(P=\\{t_n\\}\) where \(a=t_0\) and \(b=t_n\) |
Partition Norm (§1.2, p. 13) |
Partition \(P\) |
\[\norm{P} = \max\\{ \Delta t_1, \dotsc, \Delta t_n \\}\] |
Regular \(n\)-Partition (§1.2, p. 14) |
\([a,b]\subset\R\), \(n\in\N\) |
\(P^{(n)} = \\{t_n\\}\) where \(\Delta t_i = \frac{b-a}{n}\) |
Riemann Sum (§1.2, p. 13) |
|
\[S = \sum\limits_{i=1}^n f(c_i) \Delta t_i\] |
Right-Hand Riemann Sum (§1.2, p. 15) |
Riemann Sum requirements |
\[S = \sum\limits_{i=1}^n f(t_i) \Delta t_i\] |
Left-Hand Riemann Sum (§1.2, p. 15) |
Riemann Sum requirements |
\[S = \sum\limits_{i=1}^n f(t_{i-1}) \Delta t_i\] |
Definite Integral/Integrability (§1.2, p. 16) |
|
\[I = \displaystyle\int_a^b f(t) \dd{t}\] |
Identical Limits of Integration (§1.3.1, p. 20) |
\(f(a)\) exists |
\[\int_a^a f(t) \dd{t} = 0\] |
Switching the Limits of Integration (§1.3.1, p. 20) |
\(f\) integrable on \([a,b]\) |
\[\int_b^a f(t) \dd{t} = -\int_a^b f(t) \dd{t}\] |
Average Value of \(f\) (§1.4, p. 28) |
\[f \in C^0([a,b])\] | \[f_{avg}([a,b]) = \frac{1}{b-a}\int_a^b f(t) \dd{t}\] |
Indefinite Integral (§1.6.1, p. 42) |
\(f\) integrable |
\[\int f(x) \dd{x} = \\{ F : F' = f \\} = \\{ F(x) + C : C \in \R \\}\] |
Type I Improper Integral (§2.4, p. 82) |
\(f\) integrable |
|
Type II Improper Integral (§2.4, p. 97) |
\(f\) integrable except at asymptote \(c\in(a,b)\) |
|
Area Between Curves (§3.1) |
\[f,g\in C^0([a,b])\] | \[A = \int_a^b \abs{f(x)-g(x)} \dd{x}\] |
Volume of Revolution (Disk I, §3.2) |
\(f \in C^0([a,b])\), \(f \geq 0\) |
\[V = \int_a^b \pi f(x)^2 \dd{x}\] |
Volume of Revolution (Disk II, §3.2) |
\(f,g\in C^0([a,b])\), \(0 \leq f \leq g\) |
\[V = \int_a^b \pi(g(x)^2 - f(x)^2) \dd{x}\] |
Volume of Revolution (Shell, §3.3) |
\(a \geq 0\), \(f,g\in C^0([a,b])\), \(f \leq g\) |
\[V = \int_a^b 2 \pi x (g(x) - f(x)) \dd{x}\] |
Arc Length (§3.4) |
\[f \in C^1([a,b])\] | \[S = \int_a^b \sqrt{1+f'(x)^2} \dd{x}\] |
Separable Differential Equation (§4.2) |
\[y' = f(x) g(y)\] | |
First-Order Linear Differentiable Equations (FOLDE, §4.3) |
\[y' = f(x) y + g(x)\] | |
Series (§5.1, p. 165) |
Sequence \(\{a_n\}\) |
\[\isum a_n\] |
Convergence of a Series (§5.1, p. 165) |
Partial sums \(S_k = \sum_{n=1}^k a_n\) |
\(S_k \to L\), then \(\isum a_n = L\) |
Geometric Series (§5.2, p. 167) |
Ratio \(r\) |
\[\sum_{n=0}^\infty r^n = 1 + r + r^2 + \dotsb\] |
Positive Series (§5.5, p. 178) |
Series \(\isum a_n\) |
\(a_n \geq 0\) for all \(n\) |
Alternating Series (§5.7, p. 202) |
\(\isum (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dotsb\) or \(\isum (-1)^{n} a_n = - a_1 + a_2 - a_3 + \dotsb\) with \(a_n\) positive |
|
Interval and Radius of Convergence (§6.1, p. 234) |
\[\isum[n=0] a_n(x-a)^n\] |
|
Theorems
Name (Reference) | Statement | ||
---|---|---|---|
Integrability Theorem for Continuous Functions (thm. 1.1, p. 17) |
|
\( \implies \) | \[\displaystyle\int_a^b f(t) \dd{t} = \lim_{n\to\infty}S_n\] |
Properties of Integrals (thm. 1.2, p. 18) |
|
\( \implies \) |
|
Integrals over Subintervals (thm. 1.2, p. 21) |
\(f\) integrable on \(I\) and \(a,b,c\in I\) |
\( \implies \) | \[\int_a^b f(t) \dd{t} = \int_a^c f(t) \dd{t} + \int_c^b f(t) \dd{t}\] |
Average Value Theorem (thm. 1.4, p. 29) |
\[f \in C^0([a,b])\] | \( \implies \) | \[\exists c, f(c) = f_{avg}([a,b])\] |
Fundamental Theorem of Calculus, Part 1 (thm. 1.5 [FTC1], p. 36) |
\(f \in C^0(I)\), \(a\in I\), \(G(x) = \int_a^x f(t) \dd{t}\) |
\( \implies \) | \[G'(x) = f(x)\] |
Extended Version of the Fundamental Theorem of Calculus (thm. 1.6, p. 40) |
\(f \in C^0\), \(g'\), \(h'\), \(H(x) = \int_{g(x)}^{h(x)} f(x) \dd{t}\) |
\( \implies \) | \[H'(x) = f(h(x))h'(x) - f(g(x))g'(x)\] |
Fundamental Theorem of Calculus, Part 2 (thm. 1.8 [FTC2], p. 45) |
\(f \in C^0\), \(F'(x) = f(x)\) |
\( \implies \) | \[\int_a^b f(t) \dd{t} = F(b) - F(a)\] |
Change of Variables (thm 1.9, p. 53) |
\(g \in C^1([a,b])\), \(f \in C^0(g([a,b]))\) |
\( \implies \) | \[\int_{x=a}^{x=b} f(g(x)) g'(x) \dd{x} = \int_{u=g(a)}^{u=g(b)} f(u) \dd{u}\] |
Integration by Parts (thm. 2.1, p. 71) |
\[f,g \in C^1([a,b])\] | \( \implies \) | \[\int_a^b f(x) g'(x) \dd{x} = f(x)g(x)\Big\vert_a^b - \int_a^b f'(x)g(x) \dd{x}\] |
Monotone Convergence Theorem for Functions (thm. 2.5 [MCTF], p. 89) |
|
\( \implies \) |
|
\(p\)-Test for Type I Improper Integrals (thm. 2.3, p. 85) |
\[p > 1\] | \( \iff \) | \[\int_1^\infty \frac{1}{x^p} \dd{x} = \frac{1}{p-1}\] |
Comparison Test for Type I Improper Integrals (thm. 2.6, p. 90) |
\(0 \leq f(x) \leq g(x)\) for all \(x \geq a\) |
\( \implies \) |
|
Absolute Convergence Theorem for Improper Integrals (thm. 2.7, p. 93) |
\(\int_a^\infty \abs{f(x)} \dd{x}\) converges |
\( \implies \) | \(\int_a^\infty f(x) \dd{x}\) converges |
\(p\)-Test for Type II Improper Integrals (thm. 2.3, p. 85) |
\[p < 1\] | \( \iff \) | \[\int_0^1 \frac{1}{x^p} \dd{x} = \frac{1}{1-p}\] |
Solving First-Order Linear Differential Equations (thm 4.1, p. 135) |
\(f,g\in C^0\), \(y' = f(x)y + g(y)\) |
\( \implies \) | \(y = \frac{1}{I(x)}\int g(x)I(x) \dd{x}\) where \(I(x) = e^{-\int f(x) \dd{x}}\) |
Geometric Series Test (thm. 5.1, p. 169) |
Geometric series \(\sum_{n=0}^\infty r^n\) converges |
\( \impliedby \) | \[\abs{r} < 1\] |
Divergence Test (thm 5.2, p. 169) |
Series \(\isum a_n\) converges |
\( \implies \) | \[\ilim{n} a_n = 0\] |
Arithmetic for Series I (thm. 5.3, p. 173) |
\(\isum a_n\) and \(\isum b_n\) converge |
\( \) |
|
Arithmetic for Series II (thm. 5.4, p. 174) |
|
||
Monotonic Convergence Theorem (thm. 5.5, p. 177) |
Sequence \(\{a_n\}\) non-decreasing and converges |
\( \iff \) | \(\{a_n\}\) is bounded above |
Comparison Test for Series (thm. 5.6, p. 180) |
\[0 \leq a_n \leq b_n\] | \( \implies \) |
|
Limit Comparison Test (thm 5.7, p. 185) |
\(a_n > 0\), \(b_n > 0\), \(\ilim{n} \frac{a_n}{b_n} = L\) |
\( \implies \) |
|
Integral Test for Convergence (thm. 5.8, p. 194) |
\(S_n = \sum{k=1}^n a_k\), and \(f\) exists so
|
\( \implies \) |
|
\(p\)-Series Test (thm. 5.9, p. 196) |
\(\isum \frac{1}{n^p}\) converges |
\( \iff \) | \[p > 1\] |
Alternate Series Test (thm 5.10, p. 208) |
|
\( \implies \) | \(\isum (-1)^{n-1}a_n\) converges with \(\abs{S - S_k} \leq a_{k+1}\) |
Absolute Convergence Theorem (thm 5.11, p. 214) |
\(\isum \abs{a_n}\) converges |
\( \implies \) | \(\isum a_n\) converges |
Rearrangement Theorem (thm. 5.12, p. 218) |
|
\( \implies \) |
|
Ratio Test (thm. 5.13, p. 221) |
\(\isum a_n\) with \(\ilim{n}\abs{\frac{a_{n+1}}{a_n}}=L\) |
\( \implies \) |
|
Polynomials vs. Factorials (thm. 5.14, p. 224) |
\[x \in \R\] | \( \implies \) | \[\ilim{n} \frac{x^n}{n!} = 0\] |
Root Test (thm. 5.15, p. 228) |
\(\isum a_n\) with \(\ilim{n} \sqrt[n]{\abs{a_n}} = L\) |
\( \implies \) |
|
Fundamental Convergence Theorem for Power Series (thm. 6.1, p. 234) |
\(\isum[n=0] a_n(x-a)^n\) with radius of convergence \(R\) |
\( \implies \) |
|
Test for Radius of Convergence (thm. 6.2, p. 237) |
\(\isum[n=0] a_n(x-a)^n\) with \(\ilim{n} \abs{\frac{a_{n+1}}{a_n}} = L\) |
\( \implies \) |
|
Equivalence of Radius of Convergence (thm. 6.3, p. 239) |
\(\isum[n=0] a_n(x-a)^n\) with \(R\), \(p,q\in\R[x]\) |
\( \implies \) | \(\isum[n=0] \frac{p(x)a_n(x-a)^n}{q(x)}\) has same \(R\) |
Abel’s Theorem (thm. 6.4, p. 241) |
\(f(x) = \isum[n=0] a_n(x-a)^n\) with \(I\) |
\( \implies \) | \[f \in C^0(I)\] |
Addition of Power Series (thm. 6.5, p. 242) |
\(f(x) = \isum[n=0] a_n(x-a)^n\), \(g(x) = \isum[n=0] b_n(x-a)^n\) |
\( \implies \) | \((f+g)(x) = \isum[n=0] (a_n + b_n)(x-a)^n\) has \(R = \min\{R_f,R_g\}\) and \(I=I_f\cap I_g\) |
Multiplication of Power Series (thm. 6.6, p. 242) |
\[f(x) = \isum[n=0] a_n(x-a)^n\] | \( \implies \) | \((x-a)^m f(x) = \isum[n=0] a_n(x-a)^{m+n}\) with same \(R\) and \(I\) |
Power Series of Composite Functions (thm. 6.7, p. 243) |
\[f(x) = \isum[n=0] a_n(x-a)^n\] | \( \implies \) | \(f(c\cdot x^m) = \isum[n=0] (a_n\cdot c^n)x^{mn}\) with \(I = \{ x\in\R : c\cdot x^m \in I_f \}\) and \(R = \sqrt[m]{\frac{R_f}{\abs{c}}}\) |
Term-by-Term Differentiation of Power Series (thm. 6.8, p. 246) |
\(f(x) = \isum[n=0] a_n(x-a)^n\) with \(R > 0\) |
\( \implies \) | \(f'(x) = \isum[n=1] na_n(x-a)^{n-1}\) on \(x \in (a-R,a+R)\) |
Uniqueness of Power Series (thm. 6.9, p. 252) |
\(f(x) = \isum[n=0] a_n(x-a)^n\) with \(R > 0\) |
\( \implies \) | \[a_n = \frac{f^{(n)}(a)}{n!}\] |
Term-by-Term Integration of Power Series (thm. 6.10, p. 254) |
\(f(x) = \isum[n=0] a_n(x-a)^n\) with \(R > 0\) and \([c,b] \subset (a-R,a+R)\) |
\( \implies \) | \[\int_c^b f(x) \dd{x} = \isum[n=0] \frac{a_n}{n+1}((b-a)^{n+1} - (c-a)^{n+1})\] |
Taylor’s Theorem (thm. 6.11, p. 270) |
\(f^{(n+1)}\) exists on \(a \in I\) |
\( \implies \) | \(f(x) - T_{n,a}(x) = R_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}\) for a \(c \in I\) |
Taylor’s Approximation Theorem I (thm. 6.12, p. 274) |
\[f^{(k+1)} \in C^0[-1,1]\] | \( \implies \) | Exists \(M\) where \(\abs{f(x) - T_{k,0}} \leq M\abs{x}^{k+1}\) on \(x \in [-1,1]\) |
Convergence Theorem for Taylor Series (thm. 6.13, p. 283) |
\(f \in C^\infty(I)\) where \(f^{(k)} \leq M \in \R\) on \(I\) |
\( \implies \) | \(f(x) = \isum[n=0] \frac{f^{(n)}(a)}{n!}(x-a)^n\) along \(I\) |
Generalized Binomial Theorem (thm. 6.15, p. 288) |
\(a \in \R\) and \(x \in (-1,1)\) |
\( \) | \[(1+x)^\alpha = 1 + \isum[n=1]\frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!}x^n\] |
Series
Name (Reference) | Statement | |
---|---|---|
Geometric Series |
\[\isum[n=0] x^n = \frac{1}{1-x}\] | \[R = 1\] |
Exponential Series |
\[\isum[n=0] \frac{x^n}{n!} = e^x\] | \[R = \infty\] |
Trigonometric Series |
\(\isum[n=0] (-1)^n\frac{x^{2n}}{(2n)!} = \cos(x)\) |
\[R = \infty\] |
Alternating Series |
\[\isum \frac{(-1)^{1-n}}{n}x^{n} = \ln(1+x)\] | \[R = 1\] |
Binomial Series |
\[\isum \binom{r}{n}x^n = 1 + \isum \frac{r(r-1)\cdots(r-n+1)}{n!}x^n = (1+x)^r\] | \[R = 1\] |
Arctangent (based on Geometric) |
\[\isum[n=0] \frac{(-1)^n}{(2n+1)}x^{2n+1} = \arctan(x)\] | \[R = 1\] |
MATH 137 Reference
Because I know I’m gonna need this.
Definitions
Name (Reference) | Statement | |
---|---|---|
Local Extrema (§3.13, p. 197) |
\(f(c)\) exists |
\(I=(a,b)\) exists so \(f(c) = \min f(I)\) (or max) |
Antiderivative (§4.2.1, p. 213) |
\(f(I)\) exists |
Function \(F\) where \(F'(x) = f(x)\) for all \(x\in I\). |
Increasing/Decreasing (§4.2.2, p. 219) |
\(f(I)\) exists |
For all \(x_1,x_2\in I\) with \(x_1 < x_2\):
|
Concavity |
\(f(I)\) exists |
For all pairs of points \(a\) and \(b\) in \(I\), the secant line from \((a, f(a))\) to \((b, f(b))\) is above (up) or below (down) the graph of \(f\). |
Inflection Point |
\(f(c)\) exists |
|
Theorems
Name (Reference) | Statement | ||
---|---|---|---|
Fundamental Trigonometric Limit (thm. 2.8, p. 84) |
\[\lim_{x\to\infty} \frac{\sin x}{x} = 0\] | ||
Fundamental Log Limit (thm. 2.10, p. 95) |
\[\lim_{x\to\infty} \frac{\ln x}{x} = 0\] | ||
Intermediate Value Theorem (thm. 2.16 [IVT], p. 116) |
\(f \in C^0([a,b])\), \(\alpha \in f((a,b))\) |
\( \implies \) | \(\exists c\in(a,b)\), \(f(c) = \alpha\) |
Local Extrema Theorem (thm. 3.11, p. 201) |
|
\( \implies \) | \[f'(c) = 0\] |
Mean Value Theorem (thm. 4.1 [MVT], p. 210) |
\(f \in C^0([a,b])\), \(f'([a,b])\) |
\( \implies \) | \(c\in(a,b)\) where \(f'(c) = \frac{f(b)-f(a)}{b-a}\) |
Increasing/Decreasing Function Theorem (thm. 4.6, p. 220) |
\(f'(I)\) exists |
\( \implies \) |
|
Bounded Derivative Theorem (thm. 4.7, p. 222) |
\(f\in C^0([a,b])\), \(f'((a,b)) \subseteq [m,M]\) |
\( \implies \) | \(f(a) + m(x-a) \leq f(x) \leq f(a) + M(x-a)\) for \(x \in [a,b]\) |