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Chapter 1

Iteration and Orbits

1.1 Orbits

Lecture 1
Jan 8

Definition 1.1.1 (iteration)
Let 𝑓 ∶ 𝐴 → ℝ such that 𝐴 ⊆ ℝ and 𝑓(𝐴) ⊆ 𝐴. For 𝑎 ∈ 𝐴 we may iterateiterateiterateiterateiterateiterateiterateiterateiterateiterateiterateiterateiterateiterateiterateiterateiterate the function at 𝑎:

𝑥1 = 𝑎, 𝑥2 = 𝑓(𝑎), 𝑥3 = 𝑓(𝑓(𝑎))⏟
𝑓2(𝑎)

, … , 𝑥𝑖 = 𝑓 𝑖−1(𝑎), … .

The sequence (𝑥𝑛)∞
𝑛=1 is the orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓orbit of 𝑎 under 𝑓 (abbreviated (𝑥𝑛) without limits).

Example 1.1.2. Let 𝑓(𝑥) = 𝑥4 + 2𝑥2 − 2, 𝑎 = −1. What is the orbit of 𝑎 under 𝑓?

Solution. 𝑎 = −1, 𝑓(𝑎) = 1, 𝑓(𝑓(𝑎)) = 𝑓(1) = 1, so we have −1, 1, 1, 1, … . We call this eventually
constant.

Example 1.1.3. Let 𝑓(𝑥) = −𝑥2 − 𝑥 + 1, 𝑎 = 0. What is the orbit of 𝑎 under 𝑓?

Solution. Calculate: 0, 1, −1, 1, −1, 1, … . We call this eventually periodic (with period 2).

Example 1.1.4. Let 𝑓(𝑥) = 𝑥3 − 3𝑥 + 1, 𝑎 = 1. What is the orbit of 𝑎 under 𝑓?

Solution. Calculate the first few terms: 1, −1, 3, 19, … (too big). This is a divergence to infinity.

Example 1.1.5. Let 𝑓(𝑥) = 𝑥2 + 2𝑥, 𝑎 = −0.5. What is the orbit of 𝑎 under 𝑓?

Solution. Calculate: −0.5, −0.75, −0.9375, −0.9961 … and we make an educated guess that this
converges to −1 since 𝑓(−1) = −1, a fixed point.
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Example 1.1.6. Let 𝑓(𝑥) = 𝑥3 − 3𝑥, 𝑎 = 0.75. What is the orbit of 𝑎 under 𝑓?

Solution. Calculate: 0.75, −1.828, −0.625, 1.631, −0.552, … . There is no clear pattern, so we call
this chaotic. In fact, the orbit is dense in a neighbourhood of 0.

We can start to formalize the examples.

Definition 1.1.7 (fixed point)
Let 𝑓 ∶ 𝐴 → ℝ such that 𝑓(𝐴) ⊆ 𝐴. A point 𝑎 ∈ 𝐴 is fixed if 𝑓(𝑎) = 𝑎.

Then, the orbit of 𝑎 under 𝑓 is (𝑎, 𝑎, 𝑎, … ) which is constantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstant.

Example 1.1.8. Find all fixed points of 𝑓(𝑥) = 𝑥2 + 𝑥 − 4.

Solution. We find points where 𝑓(𝑥) = 𝑥, i.e., 𝑥2 + 𝑥 − 4 = 𝑥.

𝑥2 + 𝑥 − 4 = 𝑥 ⟺ 𝑥2 = 4 ⟺ 𝑥 = ±2

Example 1.1.9. How many fixed points does 𝑓(𝑥) = 2 sin𝑥 have?

Solution. Consider where the curve 𝑦 = 2 sin𝑥 meets 𝑦 = 𝑥:

𝑦 = 2 sin𝑥

𝑦 = 𝑥

𝑥

𝑦

We can see there are three fixed points.

Example 1.1.10. Prove that 𝑓(𝑥) = 𝑥4 − 3𝑥 + 1 has a fixed point.

Proof. We must show there is a solution to 𝑥4 −3𝑥+1 ⟺ 𝑥4 −4𝑥+1 = 0. Let 𝑔(𝑥) = 𝑥4 −4𝑥+1.
Since 𝑔(𝑥) is continuous, 𝑔(0) = 1 > 0, and 𝑔(1) = −2 < 0, by the Intermediate Value Theorem,
there must exist a root of 𝑔 on the interval (0, 1). That is, a fixed point of 𝑓.
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Definition 1.1.11 (periodicity)
Let 𝑓 ∶ 𝐴 → ℝ, 𝑓(𝐴) ⊆ 𝐴.

1. A point 𝑎 ∈ 𝐴 is periodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodic for 𝑓 if its orbit is periodic. An orbit is periodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodicperiodic if for some
𝑛 ∈ ℕ, 𝑓𝑛(𝑎) = 𝑎. The smallest 𝑛 is the periodperiodperiodperiodperiodperiodperiodperiodperiodperiodperiodperiodperiodperiodperiodperiodperiod of (the orbit of) 𝑎.

2. An orbit (of a point) is eventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodiceventually periodic if there exists 𝑛 < 𝑚 such that 𝑓𝑛(𝑎) = 𝑓𝑚(𝑎).
The smallest difference 𝑚 − 𝑛 is the period of the orbit.

Lecture 2
Jan 10Definition 1.1.12 (doubling function)

𝐷 ∶ [0, 1) → [0, 1) ∶ 𝑥 ↦ 2𝑥 − ⌊2𝑥⌋ returns the fractional part of 2𝑥.

Example 1.1.13. 𝐷(0.4) = 0.8, 𝐷(0.6) = 0.2, 𝐷(0.8) = 0.6, 𝐷(0.5) = 0.

This is a nice function that gives lots of periodic orbits for funsies.

Example 1.1.14. Find the orbit of 𝑎 = 1
5 under 𝐷.

Solution. Double until we pass 1: 1
5 , 2

5 , 4
5 , 8

5 → 3
5 , 6

5 → 1
5 . The period is ∣{1

5 , 2
5 , 4

5 , 3
5}∣ = 4.

Example 1.1.15. Find the orbit of 𝑎 = 1
20 under 𝐷.

Solution. Double: 1
20 , 1

10 , 1
5 and we can stop because ex. 1.1.14 showed 1

5 is periodic.

So this is eventually periodic with period 4.

Problem 1.1.16
Given 𝑓 and 𝑎, does 𝑓𝑛(𝑎) tend towards some limit 𝐿?

To solve this problem, we need to rigorously define “tend” and “limit”.

1.2 Real analysis review

Notation. If (𝑥𝑛)∞
𝑛=1 is a sequence of real numbers, we write (𝑥𝑛) ⊆ ℝ.

5
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Definition 1.2.1 (convergence of a sequence)
Let (𝑥𝑛) ⊆ ℝ, 𝑥 ∈ ℝ.

We say (𝑥𝑛) convergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconvergesconverges to 𝑥 if for all 𝜀 > 0, there exists 𝑁 ∈ ℕ such that |𝑥𝑛 − 𝑥| < 𝜀 for all
𝑛 ≥ 𝑁.

Then, we write 𝑥𝑛 → 𝑥 or lim𝑥𝑛 = 𝑥.

Example 1.2.2. Show that 1
𝑛 → 0.

Proof. Let 𝜀 > 0. Consider 𝑁 = 2
𝜀 > 1

𝜀 . For 𝑛 ≥ 𝑁, we have

∣
1
𝑛 − 0∣ =

1
𝑛 < 𝜀

Therefore, 1
𝑛 → 0.

Example 1.2.3. Prove that 2𝑛
𝑛+3 → 2.

Proof. Let 𝜀 > 0. Since we know 1
𝑛 → 0, let 𝑁 ∈ ℕ such that 1

𝑁 < 𝜀
6 .

For 𝑛 ≥ 𝑁,

∣
2𝑛

𝑛 + 3 − 2∣ = ∣
2𝑛

𝑛 + 3 −
2𝑛 + 6
𝑛 + 3 ∣ = ∣

−6
𝑛 + 3∣ =

6
𝑛 + 3 <

6
𝑛 ≤

6
𝑁 < 6 ⋅

𝜀
6 = 𝜀

Therefore, 2𝑛
𝑛+3 → 2.

Definition 1.2.4 (bounded sequence)
A sequence (𝑥𝑛) is boundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedboundedbounded (by 𝑀) if there exists 𝑀 > 0 such that ∀𝑛 ∈ ℕ, |𝑥𝑛| ≤ 𝑀.

Proposition 1.2.5 (convergence implies boundedness)
If (𝑥𝑛) is convergent, then (𝑥𝑛) is bounded.

Proof. Suppose 𝑥𝑛 → 𝑥. Then, there exists 𝑁 ∈ ℕ such that if 𝑛 ≥ 𝑁, then |𝑥𝑛 − 𝑥| < 1.

For 𝑛 ≥ 𝑁, |𝑥𝑛| − |𝑥| ≤ |𝑥𝑛 − 𝑥| < 1. That is, |𝑥𝑛| < 1 + |𝑥|.

Let 𝑀 = max{|𝑥1|, … , |𝑥𝑛−1|, 1 + |𝑥|}. Then, for both all 𝑛 < 𝑁 and 𝑛 ≥ 𝑁, we have |𝑥𝑛| ≤ 𝑀.

Remark 1.2.6. The converse is not true. Notice that 𝑥𝑛 = (−1)𝑛 is bounded by 1 but
obviously not convergent.
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Proposition 1.2.7 (limit laws)
Let 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦. Then:

(1) 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦

(2) 𝑥𝑛𝑦𝑛 → 𝑥𝑦

Proof. (1) Let 𝜀 > 0. Then, since 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦, there exist 𝑁1, 𝑁2 ∈ ℕ such that
𝑛 ≥ 𝑁1 ⟹ |𝑥𝑛 − 𝑥| < 𝜀

2 and 𝑛 ≥ 𝑁2 ⟹ |𝑦𝑛 − 𝑦| < 𝜀
2 .

For 𝑁 = max{𝑁1, 𝑁2} and 𝑛 ≥ 𝑁,

|(𝑥𝑛 + 𝑦𝑛) − (𝑥 + 𝑦)| = |(𝑥𝑛 − 𝑥) + (𝑦𝑛 − 𝑦)|
≤ |𝑥𝑛 − 𝑥| + |𝑦𝑛 − 𝑦|

<
𝜀
2 +

𝜀
2

= 𝜀

That is, 𝑥𝑛 + 𝑦𝑛 → 𝑥 + 𝑦.

(2) Let 𝜀 > 0. Notice that:

|𝑥𝑛𝑦𝑛 − 𝑥𝑦| = |𝑥𝑛𝑦𝑛 − 𝑥𝑛𝑦 + 𝑥𝑛𝑦 − 𝑥𝑦| ≤ |𝑥𝑛| ⋅ |𝑦𝑛 − 𝑦| + |𝑦| ⋅ |𝑥𝑛 − 𝑥| (∗)

Since 𝑥𝑛 is bounded, there exists 𝑀 > 0 such that |𝑥𝑛| ≤ 𝑀 for all 𝑛.

Let 𝑁1, 𝑁2 ∈ ℕ such that

𝑛 ≥ 𝑁1 ⟹ |𝑥𝑛 − 𝑥| ≤
𝜀

2(|𝑦| + 1)
and

𝑛 ≥ 𝑁2 ⟹ |𝑦𝑛 − 𝑦| <
𝜀

2𝑀.

Then, for 𝑛 ≥ 𝑁 ∶= max{𝑁1, 𝑁2}, |𝑥𝑛𝑦𝑛 − 𝑥𝑦| < 𝜀
2 + 𝜀

2 = 𝜀 by (∗).

Lecture 3
Jan 12Definition 1.2.8 (Cauchy sequence)

We say (𝑥𝑛) ∈ ℝ is CauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchy if for all 𝜀 > 0, there exists 𝑁 ∈ ℕ such that for all 𝑛 and 𝑚,

𝑛, 𝑚 ≥ 𝑁 ⟹ |𝑥𝑛 − 𝑥𝑚| < 𝜀

Proposition 1.2.9
Every convergent sequence is Cauchy.

Proof. Intuitively: if the terms get arbitrarily close to some limit, they must get arbitrarily close
to each other.

Formally: Let 𝑥𝑛 → 𝑥 be a convergent sequence and 𝜀 > 0. Since 𝑥𝑛 converges, there exists 𝑁 ∈ ℕ
such that 𝑛 ≥ 𝑁 ⟹ |𝑥𝑛 − 𝑥| < 𝜀

2 .
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Then, when 𝑛, 𝑚 ≥ 𝑁, we have:

|𝑥𝑛 − 𝑥𝑚| = |𝑥𝑛 − 𝑥𝑚 + 𝑥 − 𝑥|
= |(𝑥𝑛 − 𝑥) + (𝑥 − 𝑥𝑚)|
≤ |𝑥𝑛 − 𝑥| + |𝑥𝑚 − 𝑥|

<
𝜀
2 +

𝜀
2

= 𝜀

as desired.

We take the following theorem from real analysis without proof.

Theorem 1.2.10 (completeness of ℝ)
A sequence is Cauchy if and only if it is convergent.

The big idea here: To prove (𝑥𝑛) is Cauchy, you do not have to guess the limit first. That is, if you
must prove convergence but do not care about the limit’s value, prove that it is Cauchy instead.

Definition 1.2.11 (continuity of a function)
Let 𝑓 ∶ 𝐴 → ℝ, 𝐴 ⊆ ℝ, 𝑎 ∈ 𝐴. We say 𝑓 is continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎continuous at 𝑎 if for all 𝜀 > 0, there exists 𝛿 > 0
such that |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀 whenever 𝑥 ∈ 𝐴 and |𝑥 − 𝑎| < 𝛿.

If 𝑓 is continuous at all 𝑎 ∈ 𝐴, we say it is continuous.

We also take this theorem from MATH 137 without proof.

Theorem 1.2.12
A function 𝑓 ∶ 𝐴 → ℝ is continuous at 𝑎 ∈ 𝐴 if and only if for all sequences (𝑥𝑛) ⊆ 𝐴 with
𝑥𝑛 → 𝑎, we have 𝑓(𝑥𝑛) → 𝑎.

1.3 Orbits, revisited

Proposition 1.3.1
If 𝑓 ∶ [𝑎, 𝑏] → [𝑎, 𝑏] is continuous, then 𝑓(𝑥) has a fixed point.

Proof. We know by the domain and codomain that 𝑓(𝑎) ≥ 𝑎 and 𝑓(𝑏) ≤ 𝑏. This means 𝑓(𝑎)−𝑎 ≥ 0
and 𝑓(𝑏) − 𝑏 ≤ 0. By the IVT on the continuous function 𝑔(𝑥) = 𝑓(𝑥) − 𝑥, we know there exists an
𝑥 ∈ [𝑎, 𝑏] such that 𝑔(𝑥) = 𝑓(𝑥) − 𝑥 = 0 ⟺ 𝑓(𝑥) = 𝑥, i.e., 𝑥 is a fixed point.

8
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Definition 1.3.2 (contraction)
Let 𝑓 ∶ 𝐴 → ℝ, 𝐴 ⊆ ℝ. We say 𝑓 is a contractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontractioncontraction if there exists 𝐶 ∈ [0, 1) such that for all
𝑥, 𝑎 ∈ 𝐴,

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶|𝑥 − 𝑦|

This is just a Lipschitz function with Lipschitz constant less than 1.

Proposition 1.3.3
Contractions are continuous.

Proof. Let 𝜀 > 0. Suppose 𝑓 is a contraction such that |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶|𝑥 − 𝑦|.

Consider 𝑦 ∈ 𝐴. Let 𝛿 = 𝜀
𝐶+1 and assume that 𝑥 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿. But we have:

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶|𝑥 − 𝑦| ≤ 𝐶𝛿 < 𝜀

as desired.

Definition 1.3.4 (closure of an interval)
We say 𝐴 ∈ ℝ is closedclosedclosedclosedclosedclosedclosedclosedclosedclosedclosedclosedclosedclosedclosedclosedclosed if whenever (𝑥𝑛) ⊆ 𝐴 with 𝑥𝑛 → 𝑥, then 𝑥 ∈ 𝐴.

Example 1.3.5. [𝑎, 𝑏] is closed but (0, 1] is not because 1
𝑛 → 0 ∉ (0, 1].

Theorem 1.3.6 (Banach contraction mapping theorem)
Suppose 𝐴 ⊆ ℝ is closed and 𝑓 ∶ 𝐴 → 𝐴 is a contraction. Then, there exists a unique fixed
point 𝑎 ∈ 𝐴 for 𝑓.

Moreover, for all 𝑥 ∈ 𝐴, 𝑓𝑛(𝑥) → 𝑎.

Example 1.3.7. Analyze the orbit of 𝑓 ∶ [0, 1] → [0, 1], 𝑓(𝑥) = 1
3−𝑥 .

Solution. We can observe that 1
3 ≤ 1

3−𝑥 ≤ 1
2 .

Also, 𝑓 ′(𝑥) = 1
(3−𝑥)2 . Notice that 1

9 ≤ |𝑓 ′(𝑥)| ≤ 1
4 . So by the mean value theorem, for all 𝑥, 𝑦 ∈ [0, 1],

there exists 𝑐 ∈ (0, 1) such that:

𝑓(𝑥) − 𝑓(𝑦) = 𝑓 ′(𝑐)(𝑥 − 𝑦)
|𝑓(𝑥) − 𝑓(𝑦)| = |𝑓 ′(𝑐)| ⋅ |𝑥 − 𝑦|

≤
1
4|𝑥 − 𝑦|

9
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Then, identifying 𝐶 = 1
4 , 𝑓 is a contraction. Now,

1
3 − 𝑥 = 𝑥 ⟺ 1 = 3𝑥 − 𝑥2 ⟺ 𝑥2 − 3𝑥 + 1 = 0 ⟺ 𝑥 =

3 ±
√

9 − 4
2 ⟺ 𝑥 =

3 −
√

5
2

where we pick the negative root because we need 𝑥 ∈ [0, 1].

Therefore, by the Banach contraction mapping theorem, for all 𝑥 ∈ [0, 1], 𝑓𝑛(𝑥) → 3−
√

5
2 .

Lecture 4
Jan 15Definition 1.3.8

A sequence (𝑎𝑛) ⊆ ℝ is strongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchystrongly-Cauchy if there exists (𝜀𝑛) ⊆ [0, ∞) such that ∑∞
𝑛=1 𝜀𝑛 < ∞

and for all 𝑛, |𝑎𝑛 − 𝑎𝑛+1| < 𝜀𝑛.

Informally, “far enough along the sequence, the neighbours must get close”. This is distinct from
Cauchy, which is “far enough along the sequence, the terms must get close”.

Remark 1.3.9 (assignment hint!). Let ∑∞
𝑛=1 𝑎𝑛 = 𝐿. This means that ∑𝑛

𝑘=1 𝑎𝑘
𝑛→∞−−−→ 𝐿.

That is, for all 𝜀 > 0, there exists 𝑁 ∈ ℕ such that 𝑛 ≥ 𝑁 implies ∣∑𝑛
𝑘=1 𝑎𝑘 − 𝐿∣ < 𝜀.

But ∣∑𝑛
𝑘=1 𝑎𝑘 − 𝐿∣ = ∣∑∞

𝑘=1 𝑎𝑘 − ∑𝑛
𝑘=1 𝑎𝑘∣ = ∣∑∞

𝑘=𝑛+1 𝑎𝑘∣ < 𝜀.

We can now prove the Banach contraction mapping theorem.

Proof. Let 𝐴 ⊆ ℝ be closed and suppose there exists 𝑓 ∶ 𝐴 → 𝐴 and 𝐶 ∈ [0, 1) such that
|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐶|𝑥 − 𝑦| for all 𝑥 and 𝑦 in 𝐴.

Fix 𝑥0 ∈ 𝐴 and construct the orbit 𝑥1 = 𝑓(𝑥0), 𝑥2 = 𝑓(𝑥1), … , 𝑥𝑛 = 𝑓(𝑥𝑛−1) = 𝑓𝑛(𝑥0).

For 𝑛 ∈ ℕ, since 𝑓 is a contraction,

|𝑥𝑛+1 − 𝑥𝑛| = |𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)|
≤ 𝐶|𝑥𝑛 − 𝑥𝑛−1|
= 𝐶|𝑓(𝑥𝑛−1) − 𝑓(𝑥𝑛−2)|
≤ 𝐶2|𝑥𝑛−1 − 𝑥𝑛−2|
⋮
≤ 𝐶𝑛|𝑥1 − 𝑥0|

Since ∑∞
𝑛=1 𝐶𝑛|𝑥1 − 𝑥0| = |𝑥1 − 𝑥0| ∑∞

𝑛=1 𝐶𝑛 is a convergent geometric series, we have that the
sequence (𝑥𝑛) is strongly-Cauchy.

Hence, by Assignment 1, 𝑥𝑛 → 𝑎 for some limit point 𝑎 ∈ 𝐴 since 𝐴 is closed.

Since 𝑓 is continuous (prop. 1.3.3), we have that 𝑓(𝑥𝑛) → 𝑓(𝑎). By definition, 𝑓(𝑥𝑛) = 𝑥𝑛+1, so
𝑥𝑛 → 𝑓(𝑎). But we already know 𝑥𝑛 → 𝑎, so 𝑎 = 𝑓(𝑎). That is, 𝑎 is a fixed point of 𝑓.

It remains to show uniqueness.

10
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Suppose 𝑎, 𝑏 ∈ 𝐴 such that 𝑓(𝑎) = 𝑎 and 𝑓(𝑏) = 𝑏.

|𝑓(𝑎) − 𝑓(𝑏)| ≤ 𝐶|𝑎 − 𝑏|
|𝑎 − 𝑏| ≤ 𝐶|𝑎 − 𝑏|

Since 𝐶 < 1, we must have |𝑎 − 𝑏| = 0, that is, 𝑎 = 𝑏.

11



Chapter 2

Graphical Analysis

2.1 Cobweb plots

Recall ex. 1.1.9. To visualize the orbit of 𝑎 under 𝑓, we can:

1. Superimpose 𝑦 = 𝑓(𝑥) over the line 𝑦 = 𝑥.
2. Connect a vertical line (𝑎, 𝑎) − (𝑎, 𝑓(𝑎))
3. Connect a horizontal line (𝑎, 𝑓(𝑎)) − (𝑓(𝑎), 𝑓(𝑎))
4. Connect a vertical line (𝑓(𝑎), 𝑓(𝑎)) − (𝑓(𝑎), 𝑓(𝑓(𝑎)))
5. Connect a horizontal line (𝑓(𝑎), 𝑓(𝑓(𝑎))) − (𝑓(𝑓(𝑎)), 𝑓(𝑓(𝑎)))

etc.

This is sometimes called a cobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plotcobweb plot. We will be using https://marksmath.org/visualization/cob-
webs/ to make cobweb plots.

Within these lecture notes, I use a LATEX macro to draw plots defined here.

Example 2.1.1. Conduct a complete orbit analysis of 𝑓(𝑥) = 𝑥2 − 𝑥 + 1

Solution. Playing around, we find that there is one fixed point 𝑥 = 1.

When 𝑥 ∈ [0, 1], 𝑓𝑛(𝑥) → 1. Otherwise, 𝑓𝑛(𝑥) → ∞.

12
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↓ Lectures 5 and 6 adapted from Rosie ↓ Lecture 5
Jan 17

Example 2.1.2. Conduct a complete orbit analysis of 𝑓(𝑥) = −3
2𝑥2 + 5

2𝑥 + 1.

Solution. At 𝑥 = 0, we can see there is a cycle going from 0 → 1 → 2 → 0:

−0.5 0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

At points near 0, like 𝑥 = −0.3 or 𝑥 = 0.3, the graph becomes chaotic:

13
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−0.5 0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

−0.5 0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

It appears that the cobweb densely covers the graph.

As an aside, note that we cannot actually hit every point in the interval because the orbit is
countable (i.e., has the same size as the naturals) but the interval is uncountable. We will later
show that the points are dense (as the rationals are).

14



Chapter 3

Fixed Points

3.1 Attracting/repelling fixed point theorems

Remark 3.1.1. If 𝑓(𝑥) is continuous and 𝑓𝑛(𝑎) → 𝐿, then 𝑓𝑛+1(𝑎) → 𝑓(𝐿). Therefore,
𝑓(𝐿) = 𝐿 is a fixed point.

Example 3.1.2. The function 𝑓(𝑥) = 𝑥3 has three fixed points: 0, ±1. For 𝑥 ∈ (−1, 1), we
see that 𝑓𝑛(𝑥) → 0:

0 0.5 1

0

0.5

1

−1 −0.5 0

−1

−0.5

0

It looks like point 0 is attractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattracting the orbit. For 𝑥 ∈ (−∞, −1) ∪ (1, ∞), we see 𝑓𝑛(𝑥) → ∞:

15
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1 1.5 2

1

2

3

4

−2 −1.5 −1−4

−3

−2

−1

so the points ±1 are repellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepelling the orbit.

Example 3.1.3. The function 𝑓(𝑥) = 𝑥3 − 3𝑥 also has three fixed points: 0, ±2. To the right
(left) of ±2, orbits go to infinity:

−4 −3 −2
−5

−4

−3

−2

−1

2 3 4
1

2

3

4

5

The point 0 is repelling (in a different sense) since we get chaos:

−2 0 2
−2

0

2

−2 0 2
−2

0

2

At 𝑥0 = ±1, the orbit is eventually constant, jumping to the fixed point ∓2:

16
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−2 0 2
−2

0

2

−2 0 2
−2

0

2

Definition 3.1.4
Let 𝑎 be a fixed point of 𝑓(𝑥).

1. If |𝑓 ′(𝑎)| > 1, we call 𝑎 a repellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepelling fixed point
2. If |𝑓 ′(𝑎)| < 1, we call 𝑎 a attractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattracting fixed point
3. If |𝑓 ′(𝑎)| = 1, we call 𝑎 a neutralneutralneutralneutralneutralneutralneutralneutralneutralneutralneutralneutralneutralneutralneutralneutralneutral fixed point

Neutral fixed points can be a lot of different things.

Theorem 3.1.5 (attracting fixed point theorem)
Suppose 𝑎 is an attracting fixed point of 𝑓(𝑥). Then, there exists an open interval 𝐼 containing
𝑎 such that

1. for all 𝑥 ∈ 𝐼, 𝑛 ∈ ℕ, 𝑓𝑛(𝑥) ∈ 𝐼
2. for all 𝑥 ∈ 𝐼, 𝑓𝑛(𝑥) → 𝑎

Recall the 𝜀-𝛿 definition of a limit.

Definition 3.1.6 (limit of a function at a point)
Let 𝑓 ∶ 𝐴 → ℝ, 𝐴 ⊆ ℝ.

We say a point 𝑎 ∈ 𝐴 is non-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolatednon-isolated if for each 𝜀 > 0 there exists 𝑏 ∈ 𝐴, 𝑏 ≠ 𝑎 with
𝑏 ∈ (𝑎 − 𝜀, 𝑎 + 𝜀).

Suppose 𝑎 is non-isolated. We say lim𝑥→𝑎 𝑓(𝑥) = 𝐿 if for all 𝜀 > 0, there exists a 𝛿 > 0 such
that |𝑓(𝑥) − 𝐿| < 𝜀 whenever 𝑎 ∈ 𝐴 and 0 < |𝑥 − 𝑎| < 𝛿.

It is important to define non-isolation. If 𝑎 is isolated, we can choose a 𝛿 where |𝑥 − 𝑎| < 𝛿 is false.
Then, every point is vacuously a limit point.

We now give the proof of the attracting fixed point theorem:

Proof. Assume |𝑓 ′(𝑎)| < 1. Then, there exists 𝑐 ∈ ℝ such that |𝑓 ′(𝑎)| < 𝑐 < 1. By definition of the

17
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derivative, this means we can write

lim𝑥→𝑎

|𝑓(𝑥) − 𝑓(𝑎)|
𝑥 − 𝑎 < 𝑐

and by the definition of the limit, we know there exists 𝛿 > 0 such that

|𝑓(𝑥) − 𝑓(𝑎)|
|𝑥 − 𝑎|

≤ 𝑐, ∀𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿)

Hence, for 𝑥 ∈ 𝐼 ∶= (𝑎 − 𝛿, 𝑎 + 𝛿), we have |𝑓(𝑥) − 𝑓(𝑎)| ≤ 𝑐|𝑥 − 𝑎| and 𝑓 is a contraction.
Lecture 6
Jan 19In particular, for 𝑥 ∈ 𝐼, we have

|𝑓(𝑥) − 𝑎| = |𝑓(𝑥) − 𝑓(𝑎)| (𝑎 is a fixed point)
≤ 𝑐|𝑥 − 𝑎| ≤ |𝑥 − 𝑎| (𝑐 ∈ (0, 1))
< 𝛿

That is, 𝑓(𝑥) ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) = 𝐼. Continuing for the rest of the orbit, for all 𝑛 ∈ ℕ,

|𝑓𝑛(𝑥) − 𝑎| ≤ 𝑐𝑛|𝑥 − 𝑎| ≤ |𝑥 − 𝑎| < 𝛿

so we also have 𝑓𝑛(𝑥) ∈ 𝐼.

Finally, notice that 0 ≤ |𝑓𝑛(𝑥) − 𝑎| ≤ 𝑐𝑛|𝑥 − 𝑎| and 𝑐𝑛|𝑥 − 𝑎| → 0 since 𝑐 ∈ (0, 1). By the squeeze
theorem, |𝑓𝑛(𝑥) − 𝑎| → 0.

Theorem 3.1.7 (repelling fixed point theorem)
Suppose 𝑎 is a repelling fixed point for 𝑓(𝑥). Then, there exists an open interval 𝐼 containing
𝑎 such that for all 𝑥 ∈ 𝐼, 𝑥 ≠ 𝑎, there exists 𝑛 ∈ ℕ such that 𝑓𝑛(𝑥) ∉ 𝐼.

Proof. Say |𝑓 ′(𝑎)| > 𝑐 > 1. Then, as above, there exists a 𝛿 such that

lim𝑥→𝑎

|𝑓(𝑥) − 𝑓(𝑎)|
𝑥 − 𝑎 > 𝑐 ⟹ |𝑓(𝑥) − 𝑓(𝑎)| ≥ 𝑐|𝑥 − 𝑎|

for all 𝑥 ∈ 𝐼 ∶= (𝑎 − 𝛿, 𝑎 + 𝛿).

Since 𝑎 is a fixed point, |𝑓(𝑥) − 𝑓(𝑎)| = |𝑓(𝑥) − 𝑎|. Suppose for a contradiction that for all 𝑛,
𝑓𝑛(𝑥) ∈ 𝐼. But since 𝑐 > 1, |𝑓(𝑛) − 𝑎| ≥ 𝑐𝑛|𝑥 − 𝑎| → ∞. That is, 𝛿 must be arbitrarily large, which
it is not.

3.2 Neutral fixed points

Neutral fixed points can exhibit a lot of different behaviours.

Example 3.2.1. For 𝑓(𝑥) = −𝑥, 0 is a fixed point with |𝑓 ′(0)| = 1. The orbit bounces:

18
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−1 0 1

−1

0

1

−1 0 1

−1

0

1

Example 3.2.2. For 𝑓(𝑥) = 𝑥 − 𝑥2, |𝑓 ′(1)| = 1 is a neutral fixed point. It is attracting from
the right and repelling from the left:

0 0.2 0.4

0

0.2

0.4

−0.4 −0.2 0
−0.6

−0.4

−0.2

0

Example 3.2.3. For 𝑓(𝑥) = 𝑥−𝑥3, |𝑓 ′(0)| = 1 is a neutral fixed point. It is weakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attractingweakly attracting,
attracting but too slowly.

−1 −0.5 0
−1

−0.5

0

0 0.5 1

0

0.5

1
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Example 3.2.4. For 𝑓(𝑥) = 𝑥 + 𝑥3, |𝑓 ′(0)| = 1 is a neutral fixed point. It is weakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repellingweakly repelling,
repelling but too slowly:

−1 −0.5 0
−1

−0.5

0

0 0.5 1

0

0.5

1

Example 3.2.5. Consider 𝑓(𝑥) = 𝑥2 − 1. The orbit at 𝑎 = 0 is periodic (0, −1, 0, −1, … ) with
period 2. Near 0, the orbit tends to the (0, −1)-cycle:

−1 −0.5 0

−1

−0.5

0

1 −1 0 1

−1

0

1

We will call 0 an attracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic pointattracting periodic point because 0 is an attracting point of 𝑓2(𝑥).

↑ Lectures 5 and 6 adapted from Rosie ↑
Lecture 7
Jan 22Definition 3.2.6

Let 𝑎 be a periodic point for 𝑓(𝑥) with period 𝑛.

We say 𝑎 is an attractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattractingattracting/repellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepellingrepelling/neutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic pointneutral periodic point if 𝑎 is an attracting/repelling/neutral
fixed point of 𝑓𝑛

Finding a closed form expression for something like 𝑓10(𝑥) is a nightmare, so we need a better way.

20
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Proposition 3.2.7
Let 𝑓(𝑥) be a differentiable function. Then, (𝑓𝑛)′(𝑥) = 𝑓 ′(𝑥) ⋅ 𝑓 ′(𝑓(𝑥)) ⋯ 𝑓 ′(𝑓𝑛−1(𝑥)).

Proof. Proceed by induction on 𝑛.

If 𝑛 = 1, we have 𝑓 ′(𝑥) = 𝑓 ′(𝑥) and we are done.

Suppose (𝑓𝑛)′(𝑥) = ∏𝑛−1
𝑘=0 𝑓 ′(𝑓𝑘(𝑥)) for some 𝑛 ≥ 1. Consider 𝑓𝑛+1:

d
d𝑥𝑓𝑛+1(𝑥) =

d
d𝑥𝑓(𝑓𝑛(𝑥)) = 𝑓 ′(𝑓𝑛(𝑥)) ⋅ (𝑓𝑛)′(𝑥)

by the chain rule. Then,

(𝑓𝑛+1)′(𝑥) = 𝑓 ′(𝑓𝑛(𝑥)) ⋅ (𝑓𝑛)′(𝑥)

= 𝑓 ′(𝑓𝑛(𝑥)) ⋅
𝑛−1
∏
𝑘=0

𝑓 ′(𝑓𝑘(𝑥))

=
𝑛

∏
𝑘=0

𝑓 ′(𝑓𝑘(𝑥))

completing the proof.

Example 3.2.8. Analyze the periodic point 𝑓(𝑥) = −3
2𝑥2 + 5

2𝑥 + 1, 𝑎 = 0

Solution. The orbit is (0, 1, 2, 0, 1, 2, … ) with period 3.

We have 𝑓 ′(𝑥) = −3𝑥 + 5
2 . Then, (𝑓3)′(0) = 𝑓 ′(0)𝑓 ′(1)𝑓 ′(2) = (−7

2)(−1
2)(5

2) = 35
8 > 1.

Therefore, the point is repelling.

21



Chapter 4

Bifurcations

In general, bifurcation theory is the study of how a family of curves can change when a defining
parameter is changed.

Consider the quadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic familyquadratic family:
𝑄𝐶(𝑥) = 𝑥2 + 𝐶

defined by the parameter 𝐶 ∈ ℝ.

Problem 4.0.1
How does the behaviour (fixed points, orbits, etc.) of 𝑄𝐶 change based on 𝐶?

First, we can find the fixed points (if they exist) by solving

𝑄𝐶(𝑥) = 𝑥 ⟺ 𝑥2 − 𝑥 + 𝐶 = 0 ⟺ 𝑥 =
1 ±

√
1 − 4𝐶
2

and note that 𝑄𝐶(𝑥) has 2 fixed points when 𝐶 < 1
4 , 1 fixed point when 𝐶 = 1

4 , and no fixed points
when 𝐶 > 1

4 .

Suppose 𝐶 > 1
4 . Then, we must have 𝑄𝑛

𝐶(𝑥) → ∞ for all 𝑥.

Instead, if 𝐶 = 1
4 , 𝑄𝐶(𝑥) has the unique fixed point 𝑝 = 1

2 . Since 𝑄′
𝐶(𝑥) = 2𝑥 and 𝑄′

𝐶(𝑝) = 1, this
is a neutral fixed point. In fact, it attracts to one side and repels from the other.

Finally, if 𝐶 < 1
4 , 𝑄𝐶(𝑥) has two fixed points 𝑝+ = 1+

√
1−4𝐶
2 and 𝑝− = 1−

√
1−4𝐶
2 . Then, 𝑄′

𝐶(𝑝+) =

22



PMATH 370 Winter 2024: Lecture Notes James Ah Yong

1 +
√

1 − 4𝐶 > 1 is repelling. Next,

− 1 < 𝑄′
𝐶(𝑝−) < 1

⟺ − 1 < 1 −
√

1 − 4𝐶 < 1

⟺ − 2 < −
√

1 − 4𝐶 < 0

⟺ 0 <
√

1 − 4𝐶 < 2

⟺ −
3
4 < 𝐶 <

1
4

and in fact if 𝐶 < −3
4 , 𝑄′

𝐶(𝑝−) < −1 and if 𝐶 = −3
4 , 𝑄′

𝐶(𝑝−) = −1.

Theorem 4.0.2
For the family

𝑄𝐶(𝑥) = 𝑥2 + 𝐶,

depending on 𝐶:

1. All orbits tend to ∞ if 𝐶 > 1
4 .

2. When 𝐶 = 1
4 , 𝑄𝐶(𝑥) has a unique fixed point 1

2 and it is neutral.

3. If 𝐶 < 1
4 , 𝑄𝐶(𝑥) has two fixed points 𝑝+ and 𝑝−. The point 𝑝+ is repelling. Moreover,

(a) if −3
4 < 𝐶 < 1

4 , 𝑝− is attracting;
(b) if 𝐶 = −3

4 , 𝑝− is neutral; and
(c) if 𝐶 < −3

4 , 𝑝− is repelling.

Lecture 8
Jan 24Definition 4.0.3 (bifurcation)

We say a family of functions 𝐹𝜆(𝑥) undergoes a bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0bifurcation at 𝜆0 if there is a change in fixed
point structure at 𝜆0.

Example 4.0.4. The quadratic family 𝑄𝐶(𝑥) = 𝑥2 + 𝐶 undergoes a bifurcation at 𝜆0 = 1
4 .

Definition 4.0.5 (tangent bifurcation)
A family 𝐹𝜆(𝑥) undergoes a tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0tangent bifurcation at 𝜆0 if there is an open interval 𝐼 and an
𝜀 > 0 such that:

1. for 𝜆0 − 𝜀 < 𝜆 < 𝜆0, 𝐹𝜆(𝑥) has no fixed points on 𝐼;
2. for 𝜆 = 𝜆0, 𝐹𝜆(𝑥) has one fixed point and it is neutral; and
3. for 𝜆0 < 𝜆 < 𝜆0 + 𝜀, 𝐹𝜆(𝑥) has two fixed points in 𝐼, one of which is attracting and the

other repelling.

(or with all inequalities flipped)
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Visually, you have situations like

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

for 𝜆 < 𝜆0, 𝜆 = 𝜆0, and 𝜆 > 𝜆0.

Example 4.0.6. Consider the exponential family 𝐸𝜆(𝑥) = 𝑒𝑥 + 𝜆 at 𝜆0 = −1.

This is a tangent bifurcation.

Example 4.0.7. 𝐹𝜆(𝑥) = 𝜆𝑥(1 − 𝑥), 𝜆0 = 1

Here, we have two fixed points on one side of 𝜆0 and one fixed point on the other. So this is a
bifurcation but not a tangent bifurcation.
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Chapter 5

Cantor set

Recall the quadratic family 𝑄𝐶(𝑥) = 𝑥2 + 𝐶 for 𝐶 < −2. Then, 𝑝+ = 1+
√

1−4𝐶
2 > 2 and −𝑝+ < −2.

Consider the interval/region 𝐼 = [−𝑝+, 𝑝+] and 𝐼 × 𝐼.

Draw the picture of 𝑦 = 𝑥, 𝑦 = 𝑄𝐶(𝑥), and the box 𝐼 × 𝐼:

Let 𝐽1 ⊆ 𝐼 be the interval such that 𝑄𝐶(𝑥) ∉ 𝐼 for all 𝑥 ∈ 𝐽1.

For 𝑥 ∈ 𝐽1, 𝑄𝑛
𝐶(𝑥) → ∞. Moreover, if there exists 𝑛 such that 𝑄𝑛

𝐶(𝑥) ∈ 𝐽1, then 𝑄𝑛
𝐶(𝑥) → ∞.

Consider the set of points Λ = {𝑥 ∈ 𝐼 ∶ ∀𝑛, 𝑄𝑛
𝐶(𝑥) ∈ 𝐼} with “interesting” orbits staying inside 𝐼.

Now, let 𝐽2 = {𝑥 ∈ 𝐼 ∶ 𝑄𝐶(𝑥) ∈ 𝐽1} = {𝑥 ∈ 𝐼 ∶ 𝑄2
𝐶(𝑥) ∉ 𝐼} and define higher 𝐽𝑛 likewise.

Then, Λ = 𝐼 −(𝐽1 ∪ 𝐽2 ∪ ⋯ ) is a Cantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor setCantor set, that is, a fractal. (roll credits!)

Drawing Λ on the 𝑥-axis, we get something that looks like

𝐽1𝐽2 𝐽2𝐽3 𝐽3 𝐽3 𝐽3

↓ Lecture 9 adapted from Imaad ↓ Lecture 9
Jan 26
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Definition 5.0.1 (Cantor middle thirds set)
Let 𝐶0 = [0, 1]. Remove the open middle third interval each time.

That is, 𝐶1 = [0, 1
3 ] ∪ [2

3 , 1], 𝐶2 = [0, 1
9 ] ∪ [2

9 , 1
3 ] ∪ [2

3 , 7
9 ] ∪ [8

9 , 1], and so on.

The set 𝐾 = ⋂∞
𝑛=1 𝐶𝑛 is the Cantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) setCantor (middle thirds) set.

Proposition 5.0.2
Suppose a bunch of sets 𝐴𝑛 ⊆ ℝ are closed. Then, ⋂ 𝐴𝑛 is also closed.

Proof. Let (𝑎𝑘) ⊆ ∩𝐴𝑛 where (𝑎𝑘) → 𝑎.

Note that for all 𝑛, (𝑎𝑘) ⊆ 𝐴𝑛 ⟹ 𝑎 ∈ 𝐴𝑛 ⟹ 𝑎 ∈ ⋂ 𝐴𝑛

Proposition 5.0.3
Let 𝐴, 𝐵 ⊆ ℝ be closed. Then, 𝐴 ∪ 𝐵 is closed.

Proof. Let (𝑎𝑛) ⊆ 𝐴 ∪ 𝐵 where 𝑎𝑛 → 𝑎.

Wlog, {𝑛 ∶ 𝑎𝑛 ∈ 𝐴} is infinite. This allows us to construct (𝑏𝑛) ⊆ 𝐴 such that 𝑏𝑛 → 𝑎.

Since 𝐴 is closed, 𝑎 ∈ 𝐴 ⊆ 𝐴 ∪ 𝐵.

Theorem 5.0.4 (Cantor sets are closed)
Any Cantor set, in particular 𝐾, is closed.

Theorem 5.0.5
𝐾 contains no non-empty open intervals.

Proof. Consider 𝐼 ⊆ 𝐾. Then ∀𝑛, 𝐼 ⊆ 𝐶𝑛.

Then ℓ(𝐼) ≤ 1
3𝑛 ⟹ ℓ(𝐼) = 0 ⟹ 𝐼 = ⌀, contradiction.

Now, let’s consider the base-3 expansion of 𝑥 ∈ [0, 1]. 𝑥 = 0.𝑠1𝑠2𝑠3, ⋯ , 𝑠𝑖 ∈ {0, 1, 2}

Consider [0, 1/3]⏟
𝑠1=0

and [2/3, 1]⏟
𝑠1=2

and [0, 1/9]⏟
𝑠1=0,𝑠2=0

[2/9, 1/3] [2/3, 7/9] [8/9, 1].

Remark 5.0.6. 𝑥 ∈ 𝐾 if and only if 𝑥 can be written in base 3 using only 0s and 2s

Example 5.0.7. 1
3 ∈ 𝐾. 1

3 = 0.13 = 0.02222 …3
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Theorem 5.0.8
𝐾 is uncountable and |𝐾| = |ℝ|.

↑ Lecture 9 adapted from Imaad ↑
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Chapter 6

Symbolic dynamics

Lecture 10
Jan 29Recall the construction of the Cantor set from the quadratic family:

Fix 𝐶 < −2 and consider 𝑄𝐶(𝑥) = 𝑥2 + 𝐶. Define an interval 𝐼 = [−𝑝+, 𝑝+] for a fixed
point 𝑝+ = 1+

√
1−4𝐶
2 . Then, let

𝐽1 = {𝑥 ∈ 𝐼 ∶ 𝑄𝐶(𝑥) ∉ 𝐼}
𝐽2 = {𝑥 ∈ 𝐼 ∶ 𝑄𝐶(𝑥) ∈ 𝐽1}
𝐽3 = {𝑥 ∈ 𝐼 ∶ 𝑄𝐶(𝑥) ∈ 𝐽2}

⋮

and define Λ = 𝐼 −(⋃ 𝐽𝑖) = {𝑥 ∈ 𝐼 ∶ ∀𝑛, 𝑄𝑛
𝐶(𝑥) ∈ 𝐼}.

We proceed to do some analysis of Λ by translating into some sort of sequence space, doing analysis,
and then going back to the Cantor set.

Notation. Define closed intervals 𝐼0 ∪ 𝐼1 ∶= 𝐼 −𝐽1 on the left/right of 𝐽1:

𝐽1𝐼0 𝐼1

Definition 6.0.1
For 𝑥 ∈ Λ, the itineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitineraryitinerary of 𝑥 is the sequence 𝑆(𝑥) = (𝑥0𝑥1𝑥2𝑥3 ⋯) with 𝑥𝑖 ∈ {0, 1} where
𝑥𝑖 = 0 ⟺ 𝑄𝑖

𝐶(𝑥) ∈ 𝐼0 and 𝑥𝑖 = 1 ⟺ 𝑄𝑖
𝐶(𝑥) ∈ 𝐼1.

Our goal is to understand 𝑆(𝑥) better so that we can glean information about Λ.

Notation. Let Σ = {(𝑥0𝑥1𝑥2 ⋯) ∶ 𝑥𝑖 ∈ {0, 1}} be the sequence space. Write elements of Σ as
binary strings. Then, 𝑆 ∶ Λ → Σ is a function.

It would be helpful to define some PMATH 351/topology shit.
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6.1 Intro to topology

Definition 6.1.1 (metric space)
Let 𝑋 be a set. A function 𝑑 ∶ 𝑋 × 𝑋 → [0, ∞) is a metricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetricmetric if

1. 𝑑(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 (positive definiteness),
2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry), and
3. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (triangle inequality).

The pair (𝑋, 𝑑) is a metric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric spacemetric space.

Once we have a metric space with a notion 𝑑 of distance, we can adapt all our definitions from real
analysis to an abstract space.

Example 6.1.2. The following are all metrics:

• 𝑋 = ℝ, 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|

• 𝑋 = ℝ𝑛, 𝑑(x, y) = √(𝑥1 − 𝑦1)2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2

• For any set 𝑋, the discrete metric 𝑑(𝑥, 𝑦) = [𝑥 ≠ 𝑦] (but is not particularly useful).

• For a subset 𝐴 ⊆ 𝑅, 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| is a metric.

Extremely helpfully, we can define a metric on the sequence space.

Definition 6.1.3 (Cantor space)
Let 𝑋 = Σ. Define 𝑑(𝑥, 𝑦) = ∑∞

𝑖=0 2−𝑖|𝑥𝑖 − 𝑦𝑖|.

This is well-defined (converges) since |𝑥𝑖 − 𝑦𝑖| ≤ 1 and ∑ 2−𝑖 converges.

Example 6.1.4. Let 𝑥 = (1111 ⋯) and 𝑦 = (1010 ⋯). Calculate 𝑑(𝑥, 𝑦).

Solution. By definition,

𝑑(𝑥, 𝑦) =
∞

∑
𝑖=0

𝑥𝑖 − 𝑦𝑖
2𝑖

=
∞

∑
𝑖=0

1
22𝑖+1 (even indices cancel)

=
1
2

∞
∑
𝑖=0

1
4𝑖

=
1
2(

1
1 − 1

4

) =
1
2(

4
3) =

4
6 =

2
3

We don’t want to do this manual calculation every time.
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Proposition 6.1.5
Let 𝑥, 𝑦 ∈ Σ.

1. If 𝑥𝑖 = 𝑦𝑖 for 𝑖 ≤ 𝑛, then 𝑑(𝑥, 𝑦) ≤ 1
2𝑛 .

2. If 𝑑(𝑥, 𝑦) < 1
2𝑛 , then 𝑥𝑖 = 𝑦𝑖 for 𝑖 ≤ 𝑛.

Proof. Suppose 𝑥𝑖 = 𝑦𝑖 for 𝑖 ≤ 𝑛. Then, 𝑑(𝑥, 𝑦) ≤ ∑∞
𝑘=𝑛+1

1
2𝑘 since the first 𝑛 terms will be 0 and

|𝑥𝑖 − 𝑦𝑖| ≤ 1. That is, 𝑑(𝑥, 𝑦) ≤ 1/2𝑛+1

1− 1
2

= 1
2𝑛 .

Conversely, suppose 𝑑(𝑥, 𝑦) < 1
2𝑛 and for a contradiction that there exists 𝑘 ≤ 𝑛 where 𝑥𝑘 ≠ 𝑦𝑘.

Then, there will be a 1
2𝑘 term in the sum, so 𝑑(𝑥, 𝑦) ≥ 1

2𝑘 ≥ 1
2𝑛 . Contradiction.

Example 6.1.6. Let 𝑥 = (0000 ⋯) and 𝑦 = (1000 ⋯). Then, the distance is 1
20 = 1. However,

𝑥0 ≠ 𝑦0.

Definition 6.1.7 (shift map)
The map 𝜎 ∶ Σ → Σ ∶ (𝑥0𝑥1𝑥2 ⋯) ↦ (𝑥1𝑥2𝑥3 ⋯) that shifts a bitstring one bit to the left.

Remark 6.1.8. 𝜎𝑘(𝑥0𝑥1𝑥2 ⋯) = 𝑥𝑘𝑥𝑘+1𝑥𝑘+2 ⋯

Lecture 11
Jan 31Definition 6.1.9 (continuity in metric spaces)

Suppose (𝑋, 𝑑) and (𝑌 , 𝑑′) are (possibly distinct) metric spaces.

A function 𝑓 ∶ 𝑋 → 𝑌 is continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋continuous at 𝑦 ∈ 𝑋 if for all 𝜀 > 0, there exists a 𝛿 > 0 such that for
all 𝑥 ∈ 𝑋,

𝑑(𝑥, 𝑦) < 𝛿 ⟹ 𝑑′(𝑓(𝑥), 𝑓(𝑦)) < 𝜀

We say 𝑓 is continuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuouscontinuous if it is continuous at every 𝑦 ∈ 𝑋

Proposition 6.1.10
The shift map 𝜎 ∶ Σ → Σ is continuous.

Proof. Fix 𝑦 = (𝑦0𝑦1𝑦2 ⋯) ∈ Σ and let 𝜀 > 0. Take 𝑛 ∈ ℕ such that 1
2𝑛 < 𝜀.

Consider 𝛿 = 1
2𝑛+1 . Let 𝑥 = (𝑥0𝑥1𝑥2 ⋯) ∈ Σ such that 𝑑(𝑥, 𝑦) < 𝛿.

Therefore, by prop. 6.1.5, 𝑥𝑖 = 𝑦𝑖 for 𝑖 = 0, 1, … , 𝑛 + 1. Then, 𝜎(𝑥) = (𝑥1𝑥2𝑥3 ⋯) and 𝜎(𝑦) =
(𝑦1𝑦2𝑦3 ⋯) agree for the first 𝑛 terms.

Again by prop. 6.1.5, 𝑑(𝜎(𝑥), 𝜎(𝑦)) ≤ 1
2𝑛 < 𝜀.
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Definition 6.1.11 (convergence in metric spaces)
Let (𝑋, 𝑑) be a metric space, (𝑥𝑛) ⊆ 𝑋, and 𝑥 ∈ 𝑋.

We say (𝑥𝑛) converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥converges to 𝑥 (𝑥𝑛 → 𝑥) if for all 𝜀 > 0, there exists 𝑁 ∈ ℕ such that

𝑛 ≥ 𝑁 ⟹ 𝑑(𝑥𝑛, 𝑥) < 𝜀.

Proposition 6.1.12 (sequential characterization of continuity in metric spaces)
Let (𝑋, 𝑑) and (𝑌 , 𝑑′) be metric spaces and 𝑓 ∶ 𝑋 → 𝑌. Then, 𝑓 is continuous if and only if
𝑓(𝑥𝑛) → 𝑓(𝑥) whenever 𝑥𝑛 → 𝑥.

Definition 6.1.13 (homeomorphism)
Let (𝑋, 𝑑) and (𝑌 , 𝑑′) be metric spaces. A function 𝑓 ∶ 𝑋 → 𝑌 is a homeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphismhomeomorphism if

1. 𝑓 is injective,
2. 𝑓 is surjective,
3. 𝑓 is continuous, and
4. 𝑓−1 is continuous.

Suppose 𝑓 ∶ 𝑋 → 𝑌 is a homeomorphism. Then, if (𝑥𝑛) ⊆ 𝑋 with 𝑥𝑛 → 𝑥, then 𝑓(𝑥𝑛) → 𝑓(𝑥).

Likewise, suppose (𝑦𝑛) ⊆ 𝑌 with 𝑦𝑛 → 𝑦. Say 𝑦𝑛 = 𝑓(𝑥𝑛) and 𝑦 = 𝑓(𝑥). Then, 𝑓(𝑥𝑛) → 𝑓(𝑥), so
𝑓−1(𝑓(𝑥𝑛)) → 𝑓−1(𝑓(𝑥)) and 𝑥𝑛 → 𝑥.

That is, 𝑓 is a relabelling of 𝑋 to 𝑌. We think of 𝑋 and 𝑌 as the “same metric space”.

6.2 Revisiting the itinerary

Remark 6.2.1. Suppose we have 𝑥 ∈ Λ with 𝑆(𝑥) = (𝑥0𝑥1 ⋯). Then, by definition, 𝑥 ∈ 𝐼𝑥0
,

𝑄𝑐(𝑥) ∈ 𝐼𝑥1
, 𝑄2

𝑐(𝑥) ∈ 𝐼𝑥2
, etc. Therefore, 𝑆(𝑄𝑐(𝑥)) = (𝑥1𝑥2 ⋯) = 𝜎(𝑆(𝑥)).

Iterating, 𝑆(𝑄𝑛
𝑐 (𝑥)) = 𝜎𝑛(𝑥).

Theorem 6.2.2
𝑆 ∶ Λ → Σ is a homeomorphism.

We will prove this with some more tools. Recall from MATH 137:

Theorem 6.2.3 (monotone convergence theorem)
If (𝑎𝑛) ⊆ ℝ is increasing/decreasing and bounded, then (𝑎𝑛) converges.
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Instead of using this directly, we use a lemma:

Lemma 6.2.4 (nested intervals lemma)
If 𝐼1 ⊇ 𝐼2 ⊇ 𝐼3 ⊇ ⋯ are closed intervals, then ⋂∞

𝑖=1 𝐼𝑛 ≠ ⌀.

Proof. Let 𝐼𝑘 = [𝑎𝑘, 𝑏𝑘].

That is, [𝑎1, 𝑏1] ⊇ [𝑎2, 𝑏2] ⊇ [𝑎3, 𝑏3] ⋯.

Then, (𝑎𝑛) is increasing and (𝑎𝑛) ⊆ [𝑎1, 𝑏1]. Likewise, (𝑏𝑛) is decreasing and (𝑏𝑛) ⊆ [𝑎1, 𝑏1]. By the
monotone convergence theorem, 𝑎𝑛 → 𝑎 and 𝑏𝑛 → 𝑏 for some limit points 𝑎 and 𝑏.

Therefore (handwavey), ⌀ ≠ [𝑎, 𝑏] ⊆ ⋂∞
𝑛=1 𝐼𝑛.

Lecture 12
Feb 2We will now prove thm. 6.2.2. It is true for 𝑐 < −2, but we will show it for 𝑐 < −5+2

√
5

4 .

Proof. (injective) Suppose 𝑥, 𝑦 ∈ Λ with 𝑆(𝑥) = 𝑆(𝑦) but 𝑥 ≠ 𝑦. Then, for all 𝑛, 𝑄𝑛
𝑐 (𝑥) and 𝑄𝑛

𝑐 (𝑦)
live in the same 𝐼0 or 𝐼1. Recall from Assignment 2 that for all 𝑥 ∈ 𝐼 −𝐽1 = 𝐼0 ∪ 𝐼1, we have
|𝑄′

𝑐(𝑥)| ≥ 𝜇 > 1. By the mean value theorem,

|𝑄𝑐(𝑥) − 𝑄𝑐(𝑦)| ≥ 𝜇|𝑥 − 𝑦|.

Since 𝑄𝑐 is injective on 𝐼0 and 𝐼1, we have that 𝑄𝑐(𝑥) ≠ 𝑄𝑐(𝑦). Thus,

∣𝑄2
𝑐(𝑥) − 𝑄2

𝑐(𝑦)∣ ≥ 𝜇2|𝑥 − 𝑦|
⋮

|𝑄𝑛
𝑐 (𝑥) − 𝑄𝑛

𝑐 (𝑦)| ≥ 𝜇𝑛|𝑥 − 𝑦|

Since 𝜇 > 1, we have 𝜇𝑛|𝑥 − 𝑦| → ∞. However, |𝑄𝑛
𝑐 (𝑥) − 𝑄𝑛

𝑐 (𝑦)| ≤ max{ℓ(𝐼0), ℓ(𝐼1)}, so it cannot
blow up to infinity. Contradiction, so we have injectivity.

(surjective) Let 𝑦 = (𝑦0𝑦1 ⋯) ∈ Σ. For 𝑛 ∈ ℕ, define

𝐼𝑦0𝑦1⋯𝑦𝑛
∶= {𝑥 ∈ 𝐼 ∶ 𝑥 ∈ 𝐼𝑦0

, 𝑄𝑐(𝑥) ∈ 𝐼𝑦1
, … , 𝑄𝑛

𝑐 (𝑥) ∈ 𝐼𝑦𝑛
}.

It is enough to show there exists
𝑥 ∈

∞
⋂
𝑛=1

𝐼𝑦0𝑦1⋯𝑦𝑛

which would imply 𝑆(𝑥) = 𝑦. Clearly, by definition, 𝐼𝑦0
⊇ 𝐼𝑦0𝑦1

⊇ 𝐼𝑦0𝑦1𝑦2
⊇ ⋯

We claim that each 𝐼𝑦0𝑦1⋯𝑦𝑛
is a closed interval. Proceed by induction.

First, 𝐼𝑦0
∈ {𝐼0, 𝐼1} so it is closed. Assume 𝐼𝑦0𝑦1⋯𝑦𝑛

is closed for some 𝑛 ≥ 0. Note:

𝑥 ∈ 𝐼𝑦0𝑦1⋯𝑦𝑛+1

⟺ 𝑥 ∈ 𝐼𝑦0
, 𝑄𝑐(𝑥) ∈ 𝐼𝑦1

, 𝑄𝑐(𝑄𝑐(𝑥)) ∈ 𝐼𝑦2
, 𝑄𝑐(𝑄2

𝑐(𝑥)) ∈ 𝐼𝑦3
, … , 𝑄𝑐(𝑄𝑛

𝑐 (𝑥)) ∈ 𝐼𝑦𝑛+1

⟺ 𝑥 ∈ 𝐼𝑦0
∩ 𝑄−1

𝑐 (𝐼𝑦1𝑦2⋯𝑦𝑛+1
) (⋆)

By the inductive hypothesis, 𝐼𝑦1𝑦2⋯𝑦𝑛+1
is a closed interval (the subscript has length 𝑛).

We have
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𝐼0 𝐼1

𝐼 𝑦
1
𝑦 2

⋯
𝑦 𝑛

+
1

That is, 𝑄−1
𝑐 (𝐼𝑦1𝑦2⋯𝑦𝑛+1

) is a union of two disjoint closed intervals, one in 𝐼0 and one in 𝐼1.

In particular, returning to (⋆), 𝐼𝑦0𝑦1⋯𝑦𝑛+1
= 𝐼𝑦0

∩ 𝑄−1
𝑐 (𝐼𝑦1𝑦2⋯𝑦𝑛+1

) is one of these closed intervals.

By the nested intervals lemma, there must exist 𝑥 ∈ ⋂∞
𝑛=1 𝐼𝑦0𝑦1⋯𝑦𝑛

. Hence, 𝑆(𝑥) = 𝑦 and we have
surjectivity.

(continuous) Fix 𝑦 ∈ Λ and say 𝑆(𝑦) = (𝑦0𝑦1𝑦2 ⋯). Let 𝜀 > 0 and choose 𝑛 such that 1
2𝑛 < 𝜀.

Consider the 2𝑛+1 disjoint, closed intervals 𝐼𝑡0𝑡1⋯𝑡𝑛
.

Pick 𝛿 > 0 such that (𝑦 − 𝛿, 𝑦 + 𝛿) only overlaps with 𝐼𝑦0𝑦1⋯𝑦𝑛
. We know 𝛿 exists since we have a

finite set of disjoint closed intervals.

For 𝑥 ∈ Λ with |𝑥 − 𝑦| < 𝛿, 𝑥 ∈ 𝐼𝑦0𝑦1⋯𝑦𝑛
and so 𝑑(𝑆(𝑥), 𝑆(𝑦)) ≤ 1

2𝑛 < 𝜀.

(continuous inverse) Similar.

33



Chapter 7

Chaos

Lecture 13
Feb 57.1 Prerequisites to chaos

Definition 7.1.1 (density)
Let (𝑋, 𝑑) be a metric space. We say 𝐴 ⊆ 𝑋 is dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋dense in 𝑋 if for all 𝑥 ∈ 𝑋 and 𝜀 > 0, there
exists 𝑎 ∈ 𝐴 such that 𝑑(𝑎, 𝑥) < 𝜀.

Informally, there is always something “that close” to any point.

Example 7.1.2. ℚ is dense in ℝ. Given a real number, there is always a decimal approxima-
tion with arbitrary accuracy.

ℤ is not dense in ℝ. Given 𝑥 = 1
2 ∈ ℝ, there are no integers within 𝜀 = 1

4 .

Example 7.1.3. Let 𝐴 = {𝑥 ∈ Σ ∶ ∃𝑁, ∀𝑖 > 𝑁, 𝑥𝑖 = 0}, i.e., the sequences which are
eventually constant 0s. This is dense in Σ.

Proof. Let 𝑥 = (𝑥0𝑥1𝑥2 ⋯) ∈ Σ and let 𝜀 > 0. As usual, take 𝑛 ∈ ℕ such that 1
2𝑛 < 𝜀.

Consider 𝑦 = (𝑥0𝑥1𝑥2 ⋯ 𝑥𝑛0000 ⋯) ∈ 𝐴. Then, by prop. 6.1.5, 𝑑(𝑥, 𝑦) ≤ 1
2𝑛 < 𝜀.

Exercise 7.1.4. Let 𝐴 = {𝑥 ∈ Σ ∶ 𝑥 is periodic}. Show that this is dense in Σ.

Remark 7.1.5. 𝐴 in exercise 7.1.4 is exactly the set of periodic points for the shift map
𝜎 ∶ Σ → Σ.

Proposition 7.1.6
There exists 𝑧 ∈ Σ such that {𝜎𝑘(𝑧) ∶ 𝐾 ∈ ℕ ∪ {0}} is dense in Σ.
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Proof. Take 𝑧 = (0 1 00 01 10 11 000 001 ⋯) to contain all possible blocks of increasing sizes.

Let 𝑥 ∈ Σ and 𝜀 > 0. Again, let 1
2𝑛 < 𝜀.

For some 𝑘, 𝜎𝑘(𝑧) and 𝑥 agree on the first 𝑛 terms. This must exist because 𝑧 has every possible
sequence of 𝑛 terms. That is, by prop. 6.1.5, 𝑑(𝜎𝑘(𝑧), 𝑥) ≤ 1

2𝑛 < 𝜀.

Warning: def. 7.1.7 is not the normal definition from applied math textbooks, but it is what we
will use in the course.

Definition 7.1.7 (dynamical system)
A metric space (𝑋, 𝑑) together with a continuous function 𝑓 ∶ 𝑋 → 𝑋.

This is an abstract space in which we can do orbit analysis and all our fun stuff.

Example 7.1.8. 𝜎 ∶ Σ → Σ is a dynamical system (see thm. 6.2.2).

Definition 7.1.9 (transitivity)
We say a dynamical system 𝑓 ∶ 𝑋 → 𝑋 is transitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitivetransitive if for all 𝑥, 𝑦 ∈ 𝑋 and 𝜀 > 0, there exists
𝑧 ∈ 𝑋 and 𝑛, 𝑚 ∈ ℕ ∪ {0} such that 𝑑(𝑥, 𝑓𝑛(𝑧)) < 𝜀 and 𝑑(𝑦, 𝑓𝑚(𝑧)) < 𝜀.

Informally, given any two points, there is a special point whose orbit gets arbitrarily close to both
points.

Proposition 7.1.10
𝜎 ∶ Σ → Σ is transitive.

Proof. Take 𝑧 from prop. 7.1.6 such that the orbit is dense in Σ.

Then, for all 𝜀 > 0 and 𝑥, 𝑦 ∈ Σ, there must exist by the definition of density 𝑛 and 𝑚 such that
𝑑(𝑥, 𝜎𝑛(𝑧)) < 𝜀 and 𝑑(𝑦, 𝜎𝑚(𝑧)) < 𝜀.

Definition 7.1.11 (sensitive dependence on initial conditions)
Let 𝑓 ∶ 𝑋 → 𝑋 be a dynamical system.

We say 𝑓 is sensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditionssensitively dependent on initial conditions (or just sensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitivesensitive) if

∃𝛽 > 0, ∀𝜀 > 0, ∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑋, ∃𝑘 ∈ ℕ

such that 𝑑(𝑥, 𝑦) < 𝜀 and 𝑑(𝑓𝑘(𝑥), 𝑓𝑘(𝑦)) ≥ 𝛽.

Informally, there exists a “wrongness” 𝛽 that can always be achieved in the orbit no matter how
close two starting points are.
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Proposition 7.1.12
𝜎 ∶ Σ → Σ is sensitive.

Proof. Take 𝛽 = 1.

Let 𝜀 > 0 and let 𝑥 ∈ Σ. Say 1
2𝑛 < 𝜀 and pick 𝑦 ∈ Σ such that 0 < 𝑑(𝑥, 𝑦) < 1

2𝑛 . That is, 𝑥 and 𝑦
must agree on the first 𝑛 terms by prop. 6.1.5, but they are not equal.

Therefore, there exists 𝑘 ≥ 𝑛 such that 𝑥𝑘 ≠ 𝑦𝑘.

In the distance 𝑑(𝜎𝑘(𝑥), 𝜎𝑘(𝑦)) ≥ |𝑥𝑘−𝑦𝑘|
20 ≥ 1 = 𝛽.

7.2 Defining chaos

↓ Lectures 14 and 15 adapted from Imaad ↓ Lecture 14
Feb 7

Definition 7.2.1 (chaos)
A dynamical system 𝑓 ∶ 𝑋 → 𝑋 is chaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaoticchaotic if

1. the periodic points for 𝑓 are dense in 𝑋,
2. 𝑓 is transitive, and
3. 𝑓 is sensitive.

Theorem 7.2.2
𝜎 ∶ Σ → Σ is chaotic.

Proof. By props. 7.1.6, 7.1.10 and 7.1.12.

Proposition 7.2.3
Let (𝑋, 𝑑), (𝑌 , 𝑑′) be metric spaces.

Suppose 𝑓 ∶ 𝑋 → 𝑌 is continuous and surjective. If 𝐴 ⊆ 𝑋 is dense in 𝑋, then 𝑓(𝐴) is dense
in 𝑌.

Proof. Let 𝑦 ∈ 𝑌 and say 𝑦 = 𝑓(𝑥).

Let 𝜖 > 0. Since 𝑓 is continuous at 𝑥, there exists 𝛿 > 0 such that

𝑑(𝑧, 𝑥) < 𝛿 ⟹ 𝑑′(𝑓(𝑧), 𝑓(𝑥)) < 𝜖

for any 𝑧. In particular, since 𝐴 is dense in 𝑋, we may find 𝑎 ∈ 𝐴 such that

𝑑(𝑎, 𝑥) < 𝛿 ⟹ 𝑑′(𝑓(𝑎), 𝑓(𝑥)) = 𝑑′(𝑓(𝑎), 𝑦) < 𝜖

as desired.
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Theorem 7.2.4
Let 𝑐 < −(5+2

√
5)

4 . Then, 𝑄𝑐 ∶ Λ → Λ is chaotic.

Proof. (periodic point density) Note that 𝑄𝑛
𝑐 (𝑥) = 𝑥 ⟺ 𝑆(𝑄𝑛

𝑐 (𝑥)) = 𝑆(𝑥) ⟺ 𝜎𝑛(𝑆(𝑥)) = 𝑆(𝑥).

By prop. 7.2.3 applied to 𝑆−1 ∶ Σ → Λ, the periodic points for 𝑄𝑐 are dense in Λ.

(transitivity) Take 𝑧 ∈ Σ from prop. 7.1.6 such that {𝜎𝐾(𝑧) ∶ 𝐾 ∈ ℕ ∪ {0}} is dense in Σ. Again
by prop. 7.2.3, {𝑆−1(𝜎𝐾(𝑧)) ∶ 𝐾 ∈ ℕ ∪ {0}} is dense in Λ.

Note: Say 𝑆(𝑥) = 𝑧, we know (𝑆(𝑄𝐾
𝑐 (𝑥))) = 𝜎𝐾(𝑆(𝑥)) ⟺ 𝑄𝐾

𝑐 (𝑥) = 𝑆−1(𝜎𝐾(𝑆(𝑥)))

This, {𝑄𝐾
𝑐 (𝑥) ∶ 𝐾 ∈ ℕ ∪ {0}} is dense in Λ. As in prop. 7.1.10, we have that 𝑄𝑐 is transitive.

(sensitivity) Recall that Λ ⊆ 𝐼 −𝐽1 = 𝐼0 ∪ 𝐼1. Let 𝛽 > 0 be less than the gap between 𝐼0 and 𝐼1.

For 𝑥, 𝑦 ∈ Λ with 𝑥 ≠ 𝑦, supppose 𝑆(𝑥) ≠ 𝑆(𝑦). Then, there must exist a 𝑘 where 𝑘th term of 𝑆(𝑥)
does not equal the 𝑘th term of 𝑆(𝑦).

Hence, |𝑄𝑘
𝑐(𝑥) − 𝑄𝑘

𝑐(𝑦)| > 𝛽 and 𝑄𝑐 is sensitive.
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Chapter 8

Sarkovskii’s Theorem

Lecture 15
Feb 9

Theorem 8.0.1 (period 3)
Let 𝑓 ∶ ℝ → ℝ be continuous. If 𝑓 has a point with period 3, then 𝑓 has a point with period
𝑛 for all 𝑛 ∈ ℕ.

Proposition 8.0.2
Let 𝐼 ⊆ 𝐽 be closed intervals and suppose 𝑓 ∶ ℝ → ℝ is continuous. If 𝑓(𝐼) ⊇ 𝐽, then 𝑓(𝑥)
has a fixed point in 𝐼.

Proposition 8.0.3
Let 𝐼, 𝐽 be closed intervals, 𝑓 ∶ ℝ → ℝ be continuous, and 𝑓(𝐼) ⊇ 𝐽. Then, there exists a
closed interval 𝐼′ ⊆ 𝐼 such that 𝑓(𝐼′) = 𝐽.

We can now prove thm. 8.0.1.

Proof. Let 𝑎 ∈ ℝ be a period 3 point for 𝑓(𝑥). Say 𝑓(𝑎) = 𝑏, 𝑓(𝑏) = 𝑐, 𝑓(𝑐) = 𝑎. Wlog, suppose
𝑎 < 𝑏 and 𝑎 < 𝑐.

Suppose 𝑎 < 𝑏 < 𝑐. The case where 𝑎 < 𝑐 < 𝑏 is left as an exercise.

Let 𝐼 = [𝑎, 𝑏] and 𝐽 = [𝑏, 𝑐]. Then, 𝑓(𝑎) = 𝑏 and 𝑓(𝑏) = 𝑐 imply by IVT that [𝑏, 𝑐] = 𝐽 ⊆ 𝑓(𝐼).
Likewise, 𝑓(𝑏) = 𝑐 and 𝑓(𝑐) = 𝑎 imply by IVT that [𝑎, 𝑐] = 𝐼 ∪ 𝐽 ⊆ 𝑓(𝐽).

Since 𝐽 ⊆ 𝑓(𝐽), there exists a closed interval 𝐴1 ⊆ 𝐽 such that 𝑓(𝐴1) = 𝐽 by prop. 8.0.3. Again,
𝐴1 ⊆ 𝐽 = 𝑓(𝐴1), so there exists a closed interval 𝐴2 ⊆ 𝐴1 such that 𝑓(𝐴2) = 𝐴1.

Now, fix 𝑛 > 3. Repeating the above process, we can find 𝐴𝑛−2 ⊆ 𝐴𝑛−3 ⊆ ⋯ ⊆ 𝐴2 ⊆ 𝐴1 ⊆ 𝐽 such
that 𝑓(𝐴𝑖) = 𝐴𝑖−1. Now, 𝑓(𝐼) ⊇ 𝐽 ⊇ 𝐴𝑛−2 means there exists a closed interval 𝐴𝑛−1 ⊆ 𝐼 such that
𝑓(𝐴𝑛−1) = 𝐴𝑛−2.

Moreover, 𝑓(𝐽) ⊇ 𝐼 ⊇ 𝐴𝑛−1 which means there exists a closed interval 𝐴𝑛 ⊆ 𝐽 such that 𝑓(𝐴𝑛) =
𝐴𝑛−1.

We have 𝑓𝑛(𝐴𝑛) = 𝐽 and 𝐴𝑛 ⊆ 𝐽. By prop. 8.0.2, there exists 𝑥0 ∈ 𝐴𝑛 such that 𝑓𝑛(𝑥0) = 𝑥0.
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Note: for 𝑥0 ∈ 𝐴𝑛, 𝑓(𝑥0) ∈ 𝐴𝑛−1 ⊆ 𝐼, 𝑓 𝑖(𝑥0) ∈ 𝐽 for 𝑖 = 2, 3, … , 𝑛.

For contradiction, suppose 𝑓 𝑖(𝑥0) = 𝑥0 for 𝑖 < 𝑛.

Then,
∈𝐼

⏞𝑓(𝑥0) =
∈𝐽

⏞𝑓 𝑖+1(𝑥0) = 𝑏 so 𝑓(𝑥0) = 𝑏, 𝑓2(𝑥0) = 𝑐, and 𝑓3(𝑥0) = 𝑎, which is a contradiction
because 𝑓3(𝑥0) ∈ 𝐽 but 𝑎 ∉ 𝐽. Hence, 𝑥0 has period 𝑛.

That is, 𝑓 has a periodic point with period 𝑛 for all 𝑛 > 3.

Further, 𝑓(𝐽) ⊇ 𝐽 and so by prop. 8.0.2, 𝑓 has a fixed point (aka period 1) in 𝐽.

Finally, 𝑓(𝐼) ⊇ 𝐽 means 𝐽 = 𝑓(𝐼 ′) and 𝑓(𝐽) ⊇ 𝐼 ′ means 𝑓(𝐽 ′) = 𝐼 ′. This implies 𝑓2(𝑗′) = 𝑓(𝐼 ′) =
𝐽 sup 𝐽 ′. Therefore, we know there exists 𝑥 ∈ 𝐽 ′ such that 𝑓2(𝑥) = 𝑥.

If 𝑓(𝑥) = 𝑥, then 𝑥 ∈ 𝐽 ′ and 𝑓(𝑥) ∈ 𝐼 ′, meaning 𝑥 = 𝑏. But, 𝑓(𝑏) ≠ 𝑏 = 𝑐, contradiction.

Hence, 𝑥 has period 2.

Therefore, since we already supposed 𝑓 has a period 3 point, 𝑓 has a period 𝑛 point for all 𝑛.

Exercise 8.0.4. Complete the proof for the case where 𝑎 < 𝑐 < 𝑏.

↑ Lectures 14 and 15 adapted from Imaad ↑
Lecture 16
Feb 12Draw the continuous function

0 1 2 3 4 5 6

1

2

3

4

5

Then, the orbit of 1 is 1 ↦ 3 ↦ 4 ↦ 2 ↦ 5 ↦ 1 and 1 has period 5.

Claim 8.0.5. 𝑓 has no point with period 3.

Proof. Suppose that 𝑓 has a point 𝑥 with period 3. Then, 1 ≤ 𝑥 ≤ 5.

Suppose 𝑥 ∈ [1, 2]. Then, 𝑥 ∈ [1, 2] ∩ 𝑓3([1, 2]) since 𝑥 = 𝑓3(𝑥). But 𝑓3([1, 2]) = [2, 5], so 𝑥 = 2.
However, 2 has period 5 since it is on the same 5-cycle given above.

Suppose instead that 𝑥 ∈ [2, 3]. Then, 𝑥 ∈ [2, 3] ∩ 𝑓3([2, 3]) = [2, 3] ∩ [3, 5] = {3} which is also on
the 5-cycle.
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If 𝑥 ∈ [4, 5], then 𝑥 ∈ [4, 5] ∩ 𝑓3([4, 5]) = [4, 5] ∩ [1, 4] = {4} which is, again, on the 5-cycle.

Finally, suppose that 𝑥 ∈ [3, 4]. Then, 𝑓([3, 4]) = [2, 4] and it is strictly decreasing. Further,
𝑓([2, 4]) = [2, 5] and it is also strictly decreasing. Once more, 𝑓([2, 5]) = [1, 5] and it is again
strictly decreasing. Since 𝑓3 is strictly decreasing, it has a unique fixed point in [3, 4], but it is just
the fixed point of 𝑓.

Since we have covered the entire interval [1, 5], 𝑥 must not exist.

Example 8.0.6. The function 𝑓(𝑥) =
⎧{
⎨{⎩

1 𝑥 < −1
−𝑥 −1 ≤ 𝑥 ≤ 1
1 𝑥 > 1

has a period 1 point at 𝑥 = 0,

period 2 points [−1, 1] −{0}, and no other periodic points.

Definition 8.0.7 (Sarkovskii ordering)
Start by ordering the odd numbers 3 ≺ 5 ≺ 7 ≺ 9 ≺ ⋯

Then, all those are ⋯ ≺ 2 ⋅ 3 ≺ 2 ⋅ 5 ≺ 2 ⋅ 7 ≺ ⋯

All those are ⋯ ≺ 22 ⋅ 3 ≺ 22 ⋅ 5 ≺ 22 ⋅ 7 ≺ ⋯

Complete the ordering as ⋯ ≺ 2𝑛 ≺ 2𝑛−1 ≺ ⋯ ≺ 22 ≺ 2 ≺ 1.

This is a total order on the natural numbers.

Example 8.0.8.

• 26 = 2 ⋅ 13 ≺ 22 ⋅ 5 = 40 because the exponent of 2 is smaller.
• 3072 = 210 ⋅ 3 ≺ 25 = 32 because powers of 2 are big.
• 𝑛 ≼ 1 for all 𝑛.
• 215 ≺ 23 since the powers of 2 are ordered backwards.

Theorem 8.0.9 (Sarkovskii’s theorem)
Let 𝑓 ∶ ℝ → ℝ be continuous. Suppose 𝑛 ≺ 𝑚 in the Sarkovskii ordering. Then, if 𝑓 has a
point with period 𝑛, then it has a point with period 𝑚.
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Chapter 9

Fractals

9.1 Definitions and dimensions

Lecture 17
Feb 14

Definition 9.1.1
Define a few things from topology.

• For x ∈ ℝ𝑛, the normnormnormnormnormnormnormnormnormnormnormnormnormnormnormnormnorm ‖x‖ = √𝑥2
1 + 𝑥2 + ⋯ + 𝑥2

𝑛
• 𝑑(x, y) = ‖x − y‖ is our default metric on ℝ𝑛

• For x ∈ ℝ𝑛, 𝜀 > 0, the open ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ballopen ball of radius 𝜀 centered at 𝑥 is 𝐵𝜀(x) = {y ∈ ℝ𝑛 ∶
‖x − y < 𝜀‖}

• We say 𝑈 ∈ ℝ𝑛 is openopenopenopenopenopenopenopenopenopenopenopenopenopenopenopenopen if for all x ∈ 𝑈, there exists 𝜀 > 0 such that 𝐵𝜀(x) ⊆ 𝑈.
• The boundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundary 𝛿(𝐴) of a set 𝐴 ⊆ ℝ𝑛 is the closure of 𝐴 without the interior of 𝐴.

Definition 9.1.2 (topological dimension (zero case))
We say 𝑆 ⊆ ℝ𝑛 has topological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimension dim𝑡 𝑆 = 0 if for all x ∈ 𝑆, there exists arbitrarily
small open sets 𝑈 ∋ x such that 𝛿(𝑈) ∩ 𝑆 = ⌀.

Example 9.1.3. Let 𝑋 = . Then, since we can draw balls separating each point,
dim𝑡 𝑋 = 0.

Example 9.1.4. 𝑋 = { 1
𝑛 ∶ 𝑛 ∈ ℕ} ∪ {0} has topological dimension 0.

Definition 9.1.5 (topological dimension (non-zero case))
A set 𝑆 ⊆ ℝ𝑛 has topological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimensiontopological dimension 𝑘 ∈ ℕ if for all x ∈ 𝑆, there exists arbitrarily small
𝑈 ∋ x such that 𝛿(𝑈)∩𝑆 has topological dimension 𝑘−1, where 𝑘 is minimal with this property.
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Example 9.1.6. Consider a line 𝑋 = . Then, since any ball’s boundary creates
an intersection made of two distinct points (i.e., a set with topological dimension 0), we know
that dim𝑡 𝑋 = 1.

Example 9.1.7. Let 𝑋 be a circle . Again, any ball’s boundary still only has
two intersecting points, so dim𝑡 𝑋 = 1.

Example 9.1.8. Let 𝑋 be a filled 2D region.

Then, the intersection of a ball’s boundary will give either a circle or an arc, which have
topological dimension 1, so the region has topological dimension 2.

Example 9.1.9. Let 𝑋 be a non-filled sphere.

Then, the intersection of a 3D ball’s boundary will give a circle, which has topological dimension
1, so dim𝑡 𝑋 = 2.

Example 9.1.10. Let 𝑋 be a filled sphere.

Then, a 3D ball’s boundary’s intersection is either a hollow sphere or a spherical cap, which
each have topological dimension 2, so dim𝑡 𝑋 = 3.
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Definition 9.1.11 (fractal dimension)
We say 𝑆 ⊆ ℝ𝑛 is self-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similarself-similar if 𝑆 may be divided into 𝐾 congruent subsets, each of which
may be magnified by a fixed 𝑀 to yield 𝑆 itself.

The fractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimensionfractal dimension of 𝑆 is given by dim𝑓 𝑆 = ln 𝐾
ln 𝑀 .

Definition 9.1.12 (fractal)
A fractalfractalfractalfractalfractalfractalfractalfractalfractalfractalfractalfractalfractalfractalfractalfractalfractal is a self-similar 𝑆 ⊆ ℝ𝑛 such that dim𝑓 𝑆 > dim𝑡 𝑆.

9.2 Fractal gallery

Example 9.2.1. Let 𝑋 = be a line. Then, since we can divide it into 𝑛 smaller lines
each of size 1

𝑛 , it has fractal dimension dim𝑓 𝑋 = ln 𝑛
ln 𝑛 = 1. The topological dimension is

dim𝑡 𝑋 = 1.

So this is not a fractal, and is indeed just boringboringboringboringboringboringboringboringboringboringboringboringboringboringboringboringboring (not a fractal).

Example 9.2.2 (Sierpinski triangle). Let 𝑋 be the Sierpinski triangle, i.e., the limiting point
of the process:

Then, the topological dimension is dim𝑡 𝑋 = 1 because, in the limit, any ball will touch only
single points. In particular, we can imagine balls touching the three points of a triangle.

However, the fractal dimension is dim𝑓 𝑋 = ln 3
ln 2 ≈ 1.58 > 1 because each step is consisted of 3

previous steps scaled by 1
2 . so 𝑋 is a fractal!

Lecture 18
Feb 16Example 9.2.3 (Cantor set). Let 𝐾 be a middle-thirds Cantor set, i.e., the limiting point of

the process:

For any point in the Cantor set, we can find a small empty region around it since we keep
cutting away from the sides. That is, dim𝑡 𝐾 = 0. However, dim𝑓 𝐾 = ln 2

ln 3 > 0.
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Example 9.2.4 (Koch curve). Let 𝑋 be the Koch curve, where each line segment is replaced
by a bump:

As a continuous line, intersection with a ball boundary gives points, so dim𝑡 𝑋 = 1. We have
four copies scaled by 1

3 , so dim𝑡 𝑋 = ln 4
ln 3 > 1.

Example 9.2.5 (box fractal). Let 𝑋 be a box fractal, where we delete edge pieces of a 3x3
grid:

Then, since the squares are solid, we have topological dimension 1 but fractal dimension
dim𝑓 𝑋 = ln 5

ln 3 > 1.

Example 9.2.6 (Minkowski sausage). Let 𝑋 be the Minkowski sausage, where each line seg-
ment is replaced by a square wave:

Then, as a continuous line, dim𝑡 𝑋 = 1, but we have dim𝑓 𝑋 = ln 8
ln 4 = 3

2 > 1.

There is a hidden connection between iterated systems and fractals! For example, playing around
with the website http://www.shodor.org/interactivate/activities/TheChaosGame/ has a process
where each iteration moves a point halfway to one of the vertices.

Lecture 19
Feb 26...one reading week later...

Recall the chaos game:

1. Start with the vertices (𝑣1, 𝑣2, 𝑣3) of an equilateral triangle.
2. Pick 𝑝 ∈𝖱 ℝ2.
3. Pick 𝑣𝑖 ∈𝖱 {𝑣1, 𝑣2, 𝑣3}.
4. Replace 𝑝 with the midpoint of 𝑝 and 𝑣𝑖.
5. Iterate.

Where does the orbit of 𝑝 end up? Somehow, exactly in the Sierpinski triangle. Our goal is to
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formalize this.

9.3 Iterated function systems

Fix some p0 = [𝑥0
𝑦0

] and contraction factor 0 < 𝛽 < 1. Consider

𝐹 ∶ ℝ2 → ℝ2, 𝐹([𝑥
𝑦]) = 𝛽[𝑥 − 𝑥0

𝑦 − 𝑦0
] + [𝑥0

𝑦0
]

i.e., 𝐹(p) = 𝛽(p − p0) + p0. Then,

1. 𝐹(p0) = p0
2. ‖𝐹(p) − 𝐹(p0)‖ = ‖𝛽(p − p0)‖ = 𝛽‖p − p0‖
3. ‖𝐹 𝑛(p) − p0‖ = 𝛽𝑛‖p − p0‖ → 0 so 𝐹 𝑛(p) → p0

Definition 9.3.1
Let 0 < 𝛽 < 1 and p1, … , p𝑛 ∈ ℝ2. For each 𝑖 = 1, … , 𝑛, let

𝐹𝑖(p) = 𝛽(p − p𝑖) + p𝑖

Then, {𝐹1, … , 𝐹𝑛} is an iterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function systemiterated function system (IFS).

Fix q0 ∈ ℝ2. Randomly select an 𝐹𝑖. Let q1 = 𝐹𝑖(q0). Repeat. The set of points in which
the orbit q1, q2, q3, … lives is the attractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractor for the IFS.

Example 9.3.2. Formalize the chaos game. Let p1 = 𝑣1, p2 = 𝑣2, p3 = 𝑣3, and 𝛽 = 1
2 . Then,

𝐹𝑖(p) = 1
2(p − p𝑖) + p𝑖 = 1

2(p + p𝑖) is the midpoint.

The set {𝐹1, 𝐹2, 𝐹3} is an iterated function system whose attractor is the Sierpinski triangle.

Note that we can construct pathologically unlucky sequences of 𝐹𝑖’s that give us point sequences
that never reach the attractor. However, we ignore those :)

Example 9.3.3. Let p0 = (0, 0)⊺, p1 = (1, 0)⊺, p2 = (0, 1)⊺, p3 = (1, 1)⊺, p4 = (1
2 , 1

2)⊺, and
𝛽 = 1

3 .

What fractal does this produce?

Solution. Draw the points:
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p0

p1

p2

p3

p4

Divide the square into thirds (since we are using 𝛽 = 1
3). Then, colour in the images of the square

under each 𝐹𝑖:

𝐹0

𝐹1

𝐹2

𝐹3

𝐹4

p0

p1

p2

p3

p4

This is going to produce the box fractal.

Example 9.3.4. Repeat with p0 = (0, 0)⊺, p1 = (1, 0)⊺, p2 = (0, 1)⊺, and 𝛽 = 1
2 .

Solution. Again, draw the points:

p0 p1

p2

Shrink the right triangle by a factor of 𝛽 = 1
2 around each point:

𝐹0

𝐹2

𝐹1

p0 p1

p2
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This will generate a Sierpinski-like triangle.

Lecture 20
Feb 28Example 9.3.5. Let p0 = (0, 0)⊺, p1 = (1, 0)⊺, 𝛽 = 1

3 . Repeat.

Solution. Write the functions explicitly

𝐹0(x) =
1
3[𝑥

𝑦] = [
1
3𝑥
1
3𝑦

] and 𝐹1(x) =
1
3[𝑥 − 1

𝑦 ] + [1
0] = [

1
3𝑥 + 2

3
1
3𝑦

]

and pick a point q0 = (𝑥0, 𝑦0)⊺ ∈ ℝ2. We say that the orbit of 𝑞0 under {𝐹0, 𝐹1} is 𝑞0, 𝑞1, 𝑞2, …
with random selections 𝑠1, 𝑠2, 𝑠3, … ∈ {0, 1} where 𝑞𝑖 = 𝐹𝑠𝑖

(𝑞𝑖−1).

First, notice that no matter which one we choose, 𝑦𝑖 = 1
3𝑦𝑖−1. Therefore, 𝑦𝑛 = 1

3𝑛 𝑦0 → 0.

For the 𝑥-coordinate, we can write it out explicitly to find the pattern:

𝑥1 =
1
3𝑥0 +

2𝑠1
3

𝑥2 =
1
32 𝑥0 +

2𝑠1
32 +

2𝑠2
3

⋮

𝑥𝑛 =
1
3𝑛 𝑥0 +

2𝑠1
3𝑛 +

2𝑠2
3𝑛−1 + ⋯ +

2𝑠𝑛
3

As 𝑛 → ∞, the first term disappears. The remaining term looks like a funny ternary expansion.
Therefore, 𝑥𝑛 gets arbitrarily close to points of the form ∑∞

𝑖=1
𝑡𝑖
3𝑖 where 𝑡𝑖 ∈ {0, 2}.

However, the set of points whose ternary expansion uses only 0s and 2s is exactly the Cantor set
from def. 5.0.1 (see rem. 5.0.6).

Therefore, the attractor of the IFS {𝐹0, 𝐹1} is {(𝑥, 0)⊺ ∶ 𝑥 ∈ Cantor set}.

9.4 Generated iterated function systems

We want to generalize our definition of IFSs and fractals so that we can play with things that look
exactly like fractals (for example, where the scaling factor differs for each piece).

Definition 9.4.1 (affine transformation)
A function 𝐹 ∶ ℝ𝑛 → ℝ𝑛 given by 𝐹(x) = 𝐴x + b where 𝐴 ∈ 𝑀𝑛(ℝ) and b ∈ ℝ𝑛. If b = 0,
we recover the linear transformations.

We call 𝐹 a linear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contractionlinear contraction if there exists 0 < 𝜆 < 1 such that ‖𝐹(x) − 𝔽(y)‖ < 𝜆‖x − y‖.

In general, “affine” just means linear but shifted.
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Example 9.4.2. Let 𝐴 = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] and 0 < 𝛽 < 1.

Then, 𝐹 ∶ ℝ2 → ℝ2, 𝐹(x) = (𝛽𝐴x + b) is a linear contraction.

This linear contraction (1) scales by 𝛽, (2) rotates counter-clockwise by 𝜃, and (3) translates by b.

Definition 9.4.3 (compactness)
A subset 𝐴 ⊆ ℝ𝑛 is compactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompactcompact if 𝐴 is closed and bounded.

Write 𝒦𝑛 for the set of all non-empty compact subsets of ℝ𝑛.

Definition 9.4.4 (generalized iterated function system)
Let 𝐹1, … , 𝐹𝑘 ∶ ℝ𝑛 ⇉ ℝ𝑛 be linear contractions. We call 𝐹 ∶ 𝒦𝑛 → 𝒦𝑛 given by

𝐹(𝐴) = 𝐹1(𝐴) ∪ 𝐹2(𝐴) ∪ 𝐹3(𝐴) ∪ ⋯ ∪ 𝐹𝑘(𝐴)

a (generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system(generalized) iterated function system.

This is well-defined since finite unions and the 𝐹𝑖’s continuity preserve closure and compactness.

We will now:

1. Equip 𝒦𝑛 with a metric.
2. Show 𝐹 has a unique fixed point 𝐴∗ and for all 𝐴 ∈ 𝒦𝑛, 𝐹 𝑛(𝐴) → 𝐴∗. The point 𝐴∗ is the

attractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractor of 𝐹 (and is a fractal!).

Example 9.4.5. Let 𝐹1(x) = 1
√

2
[

1
√

2
− 1

√
2

1
√

2
1

√
2

]x and 𝐹2(x) = 1
√

2
[

− 1
√

2
− 1

√
2

1
√

2
− 1

√
2

]x + [1
0].

Find the attractor.

Solution. Notice that 𝐹1 will (1) scale by 1
√

2
and (2) rotate by 𝜋

4 . Then, 𝐹2 will (1) scale by 1
√

2
,

(2) rotate by 3𝜋
4 , and (3) shift one unit left.

Consider the line 𝐿 from (0, 0) to (1, 0).

Then, we can draw:
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This fractal, the dragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractaldragon fractal tiles the space.

Lecture 21
Mar 4Remark 9.4.6. For all 𝐴 ∈ 𝒦𝑛, 𝐹𝑖(𝐴) ∈ 𝒦𝑛. This is because the continuous image of a

compact set is compact (beyond the scope of this course).

We can now equip 𝒦𝑛 with a metric. We will consider 𝐹 ∶ 𝒦𝑛 → 𝒦𝑛 ∶ 𝐴 ↦ 𝐹1(𝐴) ∪ ⋯ ∪ 𝐹𝑘(𝐴).
This is well-defined since we already showed that the finite union of closed sets are closed, and it
is trivial to show that the finite union of bounded sets is bounded.

We will then show that 𝐹 has a unique fixed point 𝐴∗ ∈ 𝒦𝑛 and that for all 𝐴 ∈ 𝒦𝑛, 𝐹 𝑛(𝐴) → 𝐴∗.

Example 9.4.7. Let 𝐹1(x) = 1
2x, 𝐹2(x) = 1

2x + [
1
2
0], and 𝐹3(x) = 1

2x + [
1
4√
3

4
].

Find the attractor.

Solution. Let 𝐴 be the filled triangle with vertices (0, 0)⊺, (1, 0)⊺, (1
2 ,

√
3

2 )⊺:

⟶ ⟶ ⋯ ⟶ 𝐴∗

This is the Sierpinski triangle.

Alternatively, we could have started with a square:

⟶ ⟶ ⟶ ⋯ ⟶ 𝐴∗

or with a goose:

TODO

but these all converge to the same attractor.

Example 9.4.8. Repeat with 𝐹1(x) = 1
3x, 𝐹2(x) = 1

3[
1
2 −

√
3

2√
3

2
1
2

]x+[
1
3
0], 𝐹3(x) = 1

3[
1
2

√
3

2

−
√

3
2

1
2

]x+

[
1
2√
3

6
], and 𝐹4(x) = 1

3x + [
2
3
0].

Solution. Let 𝐿 be the line segment from (0, 0)⊺ to (1, 0)⊺. Then:

⟶ ⟶ ⟶ ⋯ ⟶ 𝐴∗
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The attractor converges to the Koch curve.

Example 9.4.9. Let 𝐴 = [0, 1] × [0, 1] (i.e., the filled square).

Repeat with 𝐹1(x) = x, 𝐹2(x) = 1
2x + [0

1], 𝐹3(x) = 1
2x + [1

0].

Remark 9.4.10. Since 𝐹1 is not a linear contraction, lim𝑛→∞ 𝐹 𝑛(𝐴) will depend on 𝐴.

Solution. Draw the [0, 1] × [0, 1] square and iterate:

⟶ ⟶ ⟶ ⋯ ⟶ 𝐴∗

This is not a fractal by our strict definition (it is not even self-similar), but in our eyes and our
hearts it’s a fractal.

Definition 9.4.11 (Hausdorff metric)
Let v ∈ ℝ𝑛, 𝐴, 𝐵 ∈ 𝒦𝑛. First, define

𝑑(v, 𝐵) ∶= min{‖v − b‖ ∶ b ∈ 𝐵}

(this should be an inf{⋯} but since 𝐵 is compact, the extreme value theorem gives us min{⋯}
instead)

Then, define
𝑑(𝐴, 𝐵) ∶= max{𝑑(a, 𝐵) ∶ a ∈ 𝐴}

i.e., the length of the longest direct path between points in 𝐴 and 𝐵.

Finally, define
𝐷(𝐴, 𝐵) ∶= max{𝑑(𝐴, 𝐵), 𝑑(𝐵, 𝐴)}

to fix the fact that 𝑑 is not symmetric.

Lecture 22
Mar 6Fact 9.4.12. 𝐷 is a metric on 𝒦𝑛

We take this fact without proof.

Example 9.4.13. 𝐴 = {(1, 1)}, let 𝐵 = {(𝑥, 0) ∶ 0 ≤ 𝑥 ≤ 1}

[figure]
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Then, 𝑑(𝐴, 𝐵) = 1, 𝑑(𝐵, 𝐴) =
√

2, and 𝐷(𝐴, 𝐵) = max{1,
√

2} =
√

2.

Lemma 9.4.14
Let 𝑓 ∶ ℝ𝑛 → ℝ𝑛 be a linear contraction such that ‖𝑓(x) − 𝑓(y)‖ ≤ 𝜆‖x − y‖ for some
𝜆 ∈ (0, 1).

Then, for 𝐴, 𝐵 ∈ 𝒦𝑛, 𝐷(𝑓(𝐴), 𝑓(𝐵)) ≤ 𝜆𝐷(𝐴, 𝐵).

Proof. First, we have

𝑑(𝑓(𝑎), 𝑓(𝐵)) = min
𝑏∈𝐵

‖𝑓(𝑎) − 𝑓(𝑏)‖ ≤ min
𝑏∈𝐵

𝜆‖𝑎 − 𝑏‖ = 𝜆min
𝑏∈𝐵

‖𝑎 − 𝑏‖ = 𝜆𝑑(𝑎, 𝐵)

and so
𝑑(𝑓(𝐴), 𝑓(𝐵)) = max

𝑎∈𝐴
𝑑(𝑓(𝑎), 𝑓(𝐵)) ≤ 𝜆max

𝑎∈𝐴
𝑑(𝑎, 𝐵) = 𝜆𝑑(𝐴, 𝐵) ≤ 𝜆𝐷(𝐴, 𝐵)

Therefore, 𝑑(𝑓(𝐴), 𝑓(𝐵)) ≤ 𝜆𝐷(𝐴, 𝐵). Similarly, 𝑑(𝑓(𝐵), 𝑓(𝐴)) ≤ 𝜆𝐷(𝐴, 𝐵).

Hence, 𝐷(𝑓(𝐴), 𝑓(𝐵)) ≤ 𝜆𝐷(𝐴, 𝐵).

Lemma 9.4.15
For 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ 𝒦𝑛,

𝐷(𝐴1 ∪ 𝐴2, 𝐵1 ∪ 𝐵2) ≤ max{𝐷(𝐴1, 𝐵1), 𝐷(𝐴2, 𝐵2)}

Proof. First,

𝑑(𝐴1 ∪ 𝐴2, 𝐵1 ∪ 𝐵2) = max
𝑎∈𝐴1∪𝐴2

𝑑(𝑎, 𝐵1 ∪ 𝐵2)

= max{max
𝑎∈𝐴1

𝑑(𝑎, 𝐵1 ∪ 𝐵2),max
𝑎∈𝐴2

𝑑(𝑎, 𝐵1 ∪ 𝐵2)}

≤ max{max
𝑎∈𝐴1

𝑑(𝑎, 𝐵1),max
𝑎∈𝐴2

𝑑(𝑎, 𝐵2)} (⋆)

by the min in the definition.

= max{𝑑(𝐴1, 𝐵1), 𝑑(𝐴2, 𝐵2)} ≤ max{𝐷(𝐴1, 𝐵1), 𝐷(𝐴2, 𝐵2)}

Hence, 𝑑(𝐴1 ∪ 𝐴2, 𝐵1 ∪ 𝐵2) ≤ max{𝐷(𝐴1, 𝐵1), 𝐷(𝐴2, 𝐵2)}

Similarly, 𝑑(𝐵1 ∪ 𝐵2, 𝐴1 ∪ 𝐴2) ≤ max{𝐷(𝐴1, 𝐵1), 𝐷(𝐴2, 𝐵2)}

Therefore 𝐷(𝐴1 ∪ 𝐴2, 𝐵1 ∪ 𝐵2) ≤ max{𝐷(𝐴1, 𝐵1), 𝐷(𝐴2, 𝐵2)}

Lemma 9.4.16
Let 𝐹1, ⋯ , 𝐹𝑘 be linear contractions with contraction factor 𝜆 ∈ (0, 1).

Consider 𝐹 ∶ 𝒦𝑛 → 𝒦𝑛, 𝐹 (𝐴) = 𝐹1(𝐴)∪𝐹2(𝐴)∪⋯∪𝐹𝑘(𝐴). Then, 𝐷(𝐹(𝐴), 𝐹(𝐵)) ≤ 𝜆𝐷(𝐴, 𝐵).
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Proof. We have, 𝐷(𝐹(𝐴), 𝐹(𝐵)) ≤ max𝑖=1,…,𝑘 𝐷(𝐹𝑖(𝐴), 𝐹𝑖(𝐵)) by lem. 9.4.15. By lem. 9.4.14,
≤ max𝑖=1,…,𝑘 𝜆𝐷(𝐴, 𝐵) = 𝜆𝐷(𝐴, 𝐵).

Definition 9.4.17
Let (𝑋, 𝑑) be metric space.

1. (𝑥𝑛) ⊆ 𝑋 is CauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchyCauchy if ∀𝜖 > 0, ∃𝑛 ∈ ℕ, such that 𝑛, 𝑚 ≥ 𝑁 ⟹ 𝑑(𝑥𝑛, 𝑥𝑚) < 𝜖.
2. 𝑋 is completecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecompletecomplete if every Cauchy sequence (𝑥𝑛) ⊆ 𝑋 converges to some 𝑥 ∈ 𝑋.

Fact 9.4.18. (𝐾𝑛, 𝐷) is complete.

We do not prove this.
Lecture 23
Mar 8Theorem 9.4.19

Let 𝐹1, … , 𝐹𝑘 be linear contractions with contraction factor 𝜆 ∈ (0, 1).

Let 𝐹 ∶ 𝒦𝑛 → 𝒦𝑛 be the corresponding IFS. Then,

1. 𝐹 has a unique fixed point 𝐴∗, which we call the attractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractorattractor.
2. For all 𝐴 ∈ 𝒦𝑛, 𝐹 𝑚(𝐴) → 𝐴∗.

Proof. Fix 𝐴 ∈ 𝒦𝑛. Consider its orbit 𝐹 𝑚(𝐴). Look at the distance

𝐷(𝐹 𝑚+1(𝐴), 𝐹 𝑚(𝐴)) = 𝐷(𝐹 𝑚(𝐹(𝐴)), 𝐹 𝑚(𝐴)) ≤ 𝜆𝑚𝐷(𝐹(𝐴), 𝐴)

by lem. 9.4.16. Let 𝜖𝑚 = 𝜆𝑚𝐷(𝐹(𝐴), 𝐴). Then, ∑ 𝜖𝑚 converges, since |𝜆| < 1. Therefore, the
sequence (𝐹 𝑚(𝐴)) ⊆ 𝒦𝑛 is strongly Cauchy. In particular, 𝐹 𝑚(𝐴) is Cauchy, so there exists some
𝐹 𝑚(𝐴) → 𝐴∗ ∈ 𝒦𝑛 because 𝒦𝑛 is complete.

Since 𝐹 is continuous, 𝐹 𝑚+1(𝐴) → 𝐹(𝐴∗). Hence, 𝐹(𝐴∗) = 𝐴∗.

Now, consider uniqueness. Suppose 𝐴∗ and 𝐵∗ are fixed points for 𝐹. Then,

𝐷(𝐴∗, 𝐵∗) = 𝐷(𝐹(𝐴∗), 𝐹 (𝐵∗)) ≤ 𝜆𝐷(𝐴∗, 𝐵∗)

but 𝜆 ∈ (0, 1). This forces 𝐷(𝐴∗, 𝐵∗) = 0, so 𝐴∗ = 𝐵∗.
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Chapter 10

Complex Functions

Definition 10.1.1 (complex derivative)
Let 𝑓 ∶ ℂ → ℂ. Then,

1. For 𝑧0 ∈ ℂ, we say that
lim𝑧→𝑧0

𝑓(𝑧) = 𝐿 ∈ ℂ

if for all 𝜀 > 0, there exists a 𝛿 > 0 such that

0 < |𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓(𝑧) − 𝐿| < 𝜀

2. The derivative of 𝑓(𝑧) at 𝑧0 is

𝑓 ′(𝑧) = lim𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)
𝑧 − 𝑧0

provided the limit exists.

In general, we will write 𝑓(𝑥) for a real-valued function and 𝑓(𝑧) for a complex-valued function.
Then, analogous to real-valued functions, we can consider complex fixed points.

Definition 10.1.2 (complex fixed points)
Let 𝑎 ∈ ℂ be a fixed point of 𝑓(𝑧). Then,

1. 𝑎 is attracting if |𝑓 ′(𝑎)| > 1,
2. 𝑎 is repelling if |𝑓 ′(𝑎)| < 1, and
3. 𝑎 is neutral if |𝑓 ′(𝑎)| = 1.

Remark 10.1.3 (attracting/repelling complex fixed point theorems). We can obtain complex
analogues of the proofs of the real-valued attracting/repelling fixed point theorems by replacing
intervals around fixed points with open discs.
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Example 10.1.4. Analyze the fixed points of 𝑓(𝑧) = 𝑧2 + 𝑧 + 1.

Solution. The fixed points are 𝑧2 + 𝑧 + 1 = 𝑧 ⟺ 𝑧2 + 1 = 0 ⟺ 𝑧 = ±𝑖.

Then, 𝑓 ′(𝑧) = 2𝑧 + 1, so |𝑓 ′(𝑖)| = |2𝑖 + 1| =
√

5 > 1 and |𝑓 ′(−𝑖)| = |−2𝑖 + 1| =
√

5 > 1, so both
are repelling.

Recall polar form. For some complex number 𝑧 = 𝑎 + 𝑖𝑏, we can plot it as (𝑎, 𝑏):

Re

Im

𝑧 = 𝑎 + 𝑏𝑖

𝑟

𝜃

Then, we can recall from MATH 135 that we can write 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) = 𝑟𝑒𝑖𝜃 and we have
really nice multiplication.

Fact 10.1.5 (PMℂ, MATH 135). 𝑒𝑖𝜃𝑒𝑖𝜙 = 𝑒𝑖(𝜃+𝜙) and (𝑟𝑒𝑖𝜃)𝑛 = 𝑟𝑛𝑒𝑖𝑛𝜃, which is just so much
prettier than Cartesian multiplication.

In particular, for complex numbers of the form 𝑒2𝜋𝑖/𝑛, we have (𝑒2𝜋𝑖/𝑛)𝑛 = 𝑒2𝜋𝑖 = 1, which is a nice
way to generate periodic points.

Lecture 24
Mar 11Example 10.1.6. Let 𝑧 = 𝑒2𝜋𝑖/3 and 𝑓(𝑤) = 𝑤2.

Solution. Write 𝑧 = cos 2𝜋
3 + 𝑖 sin 2𝜋

3 = −1
2 + 𝑖

√
3

2 .

Then, 𝑓(𝑧) = 𝑒4𝜋𝑖/3 = −1
2 − 𝑖

√
3

2 and 𝑓2(𝑧) = 𝑒8𝜋𝑖/3 = 𝑒2𝜋𝑖/3 = 𝑧.

That is, 𝑧 is periodic with period 2.

We can then find ∣(𝑓2)′(𝑧)∣ = |𝑓 ′(𝑧)𝑓 ′(𝑓(𝑧))| = ∣−1 + 𝑖
√

3∣ ⋅ ∣−1 − 𝑖
√

3∣ = 4 > 1, so 𝑧 is attracting.
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Chapter 11

Julia Sets

11.1 Definition

Notation (quadratic family). For 𝑐 ∈ ℂ, write 𝑄𝑐(𝑧) = 𝑧2 + 𝑐 just like the real one.

Definition 11.1.1
The filled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia setfilled Julia set for 𝑐 is 𝐾𝑐 = {𝑧 ∈ ℂ ∶ (𝑄𝑛

𝑐 (𝑧)) is bounded}.

Equivalently, {𝑧 ∈ ℂ ∶ ∃𝑀 > 0, ∀𝑛 ∈ ℕ, |𝑄𝑛
𝑐 (𝑧) ≤ 𝑀|}.

Remark 11.1.2. This is the complex analogue of Λ for 𝑄𝑐(𝑥) = 𝑥2 + 𝑐 where 𝑐 ∈ ℝ and
𝑐 < −2.

Definition 11.1.3
Let (𝑋, 𝑑) be a metric space and 𝐴 ⊆ 𝑋.

1. The closureclosureclosureclosureclosureclosureclosureclosureclosureclosureclosureclosureclosureclosureclosureclosureclosure of 𝐴 is 𝐴 = {𝑥 ∈ 𝑋 ∶ ∃(𝑎𝑛) ⊆ 𝐴, 𝑎𝑛 → 𝑥}.
2. The interiorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinterior of 𝐴 is Int(𝐴) = {𝑥 ∈ 𝑋 ∶ ∃𝜀 > 0, 𝐵𝜀(𝑥) ⊆ 𝐴}.
3. The boundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundaryboundary of 𝐴 is 𝜕(𝐴) = 𝐴 −Int(𝐴).

Example 11.1.4. Let 𝐴 be the blob
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Find the closure, interior, and boundary.

Solution. Since we can make a sequence of points that reaches the dashed open parts, the closure
𝐴 will simply be

Then, since we can draw a ball on the shaded inside but not on the edge, the interior Int(𝐴) is

Finally, the boundary 𝜕(𝐴) is

Remark 11.1.5. 𝐴 is closed if and only if 𝐴 = 𝐴.

Lemma 11.1.6 (Assignment 4)
𝐾𝑐 is closed.

Definition 11.1.7
The Julia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia setJulia set for 𝑐 is 𝐽𝑐 = 𝜕(𝐾𝑐).
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Remark 11.1.8. Since 𝐾𝑐 is closed, 𝐽𝑐 = 𝜕(𝐾𝑐) = 𝐾𝑐 −Int(𝐾𝑐) = 𝐾𝑐 −Int(𝐾𝑐).

11.2 Construction

Example 11.2.1. Let 𝑐 = 0, so 𝑄0(𝑧) = 𝑧2. What do 𝐾0 and 𝐽0 look like?

Solution. Let 𝑧 = 𝑟𝑒𝑖𝜃. Then, |𝑄0(𝑧)| = ∣𝑟2𝑒2𝑖𝜃∣ = 𝑟2. Likewise, ∣𝑄2
0(𝑧)∣ = ∣𝑟4𝑒2𝑖𝜃∣ = 𝑟8. Clearly,

∣𝑄2
0(𝑧)∣ = 𝑟2𝑛. Therefore, 𝐾0 = {𝑧 ∈ ℂ ∶ |𝑧| ≤ 1} since that is when |𝑧|2

𝑛
is bounded.

This is the unit disc in the complex plane. Therefore, 𝐽0 = {𝑧 ∈ ℂ ∶ |𝑧| = 1}, the unit circle.

Example 11.2.2. Repeat with 𝑐 = −2.

Solution. First, let 𝑅 = {𝑧 ∈ ℂ ∶ |𝑧| > 1} and define a function 𝐻 ∶ 𝑅 → ℂ ∶ 𝑧 ↦ 𝑧 + 1
𝑧 .

Then, we claim that 𝐻 is injective. Suppose 𝐻(𝑧) = 𝐻(𝑤). Then,

𝑧 +
1
𝑧 = 𝑤 +

1
𝑤

𝑧𝑤 = 𝑧2 + 1 −
𝑧
𝑤

= 𝑤2 + 1 −
𝑤
𝑧

𝑤2 − 𝑧2 =
𝑤
𝑧 −

𝑧
𝑤 =

𝑤2 − 𝑧2

𝑧𝑤

This means that either 𝑧𝑤 = 1 or 𝑤2 − 𝑧2 = 0. However, |𝑧𝑤| = |𝑧| ⋅ |𝑤| > 1, so 𝑤 = ±𝑧. Since
𝐻(𝑤) = 𝐻(𝑧), we must pick 𝑤 = +𝑧, and we are done.

Now, claim that 𝐻 ∶ 𝑅 → ℂ −[−2, 2] is surjective. Suppose that 𝐻(𝑧) = 𝑤. Then,

𝑧 +
1
𝑧 = 𝑤

𝑧2 − 𝑤𝑧 + 1 = 0

𝑧 =
1
2(𝑤 ±

√
𝑤2 − 4)

and write 𝑧+ or 𝑧− for the two possible 𝑧’s. Since these are roots of a polynomial with constant 1,
we must have 𝑧+𝑧− = 1.

That is, either (1) |𝑧+| > 1 and |𝑧−| < 1, (2) |𝑧+| < 1 and |𝑧−| > 1, or (3) |𝑧+| = |𝑧−| = 1.

If either root is in 𝑅, then either 𝐻(𝑧+) = 𝑤 or 𝐻(𝑧−) = 𝑤.

Otherwise, |𝑧+| = |𝑧−| = 1. Then, 𝐻(𝑧) = 𝐻(𝑒𝑖𝜃) = 𝑒𝑖𝜃 + 𝑒−𝑖𝜃 = 2 cos 𝜃 ∈ [−2, 2].

Therefore, 𝐻 is well-behaved (i.e., invertible) on 𝑅 → ℂ −[−2, 2].
Lecture 25
Mar 13Consider now 𝐻(𝑄0(𝑧)) = 𝐻(𝑧2) = 𝑧2 + 1

𝑧2 . Note that 𝑄−2(𝐻(𝑧)) = (𝑧 + 1
𝑧 )2 − 2 = 𝑧2 + 1

𝑧2 . Hence,
𝐻(𝑄𝑛

0 (𝑧)) = 𝑄𝑛
−2(𝐻(𝑧)).
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This looks quite similar to 𝑆(𝑄𝑛
𝑐 (𝑥)) = 𝜎𝑛(𝑆(𝑥)) in ℝ. We can say that 𝐻 plays a similar role as 𝑆.

In fact, (not course content), 𝑄0 and 𝑄−2 are conjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugateconjugate because 𝐻 is a homeomorphism between
them.

Let 𝑧𝑛 be a diverging sequence |𝑧𝑛| → ∞. Note that |𝐻(𝑧𝑛)| = ∣𝑧𝑛 + 1
𝑧𝑛

∣ ≥ |𝑧𝑛| − 1
|𝑧𝑛| → ∞

Therefore, the image of the sequence |𝐻(𝑧𝑛)| → ∞ also diverges.

Let 𝑧 ∈ ℂ −[−2, 2]. Since 𝐻 is surjective, we know there exists a 𝑤 ∈ 𝑅 such that 𝑧 = 𝐻(𝑤), and
see that

|𝑄𝑛
−2(𝑧)| = |𝑄𝑛

−2(𝐻(𝑤))| = |𝐻 (𝑄𝑛
0 (𝑤))⏟
→∞

| → ∞

by the previous claim. Hence, 𝑧 ∉ 𝐾−2 and we have that 𝐾−2 ⊆ [−2, 2].

Finally, let 𝑧 ∈ [−2, 2]. By graphical analysis,

−2 −1 0 1 2
−2

−1

0

1

2

there is no way to escape the box. That is, 𝑧 ∈ 𝐾−2, i.e., [−2, 2] ⊆ 𝐾−2.

Therefore, 𝐾−2 = [−2, 2], and we have that 𝐽−2 = [−2, 2].

Proposition 11.2.3 (Escape Criterion)
If |𝑧| ≥ |𝑐| > 2, then |𝑄𝑛

𝑐 (𝑧)| → ∞. In particular, 𝑧 ∉ 𝐾𝑐.

Proof. We can write

|𝑄𝑐(𝑧)| = ∣𝑧2 + 𝑐∣ ≥ |𝑧|2 − |𝑐| ≥ |𝑧|2 − |𝑧| = |𝑧|(|𝑧| − 1)

Suppose |𝑧| > 2+𝜆 for some 𝜆 > 0. Then, we have that |𝑧|−1 > 1+𝜆. Therefore, |𝑄𝑐(𝑧)| ≥ |𝑧|(1+𝜆).

Iterating, we see that |𝑄𝑛
𝑐 (𝑧)| ≥ |𝑧|(1 + 𝜆)𝑛 → ∞.

Corollary 11.2.4. Suppose |𝑐| > 2. Then, |𝑄𝑛
𝑐 (0)| → ∞ and 0 ∉ 𝐾𝑐.

Proof. Let 𝑧 = 𝑄𝑐(0) = 𝑐 and |𝑧| = |𝑐| > 2. By the Escape Criterion, |𝑄𝑛
𝑐 (0)| → ∞.
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Corollary 11.2.5. Let 𝑀 = max{|𝑐|, 2}. If |𝑧| > 𝑀, then |𝑄𝑛
𝑐 (𝑧)| → ∞. That is, we have

that 𝐾𝑐 ⊆ {𝑧 ∶ |𝑧| ≤ 𝑀}.

Proof. We have |𝑄𝑛
𝑐 (𝑧)| ≥ (1 + 𝜆)𝑛|𝑧| → ∞ by the proof of the Escape Criterion (not the Escape

Criterion itself because we don’t know if |𝑧| < 2).

Remark 11.2.6 (assignment hint!). The fact that 𝐾𝑐 is inside this bounded disc will help
with the proof of its closedness.

Corollary 11.2.7. If there exists a 𝑘 such that ∣𝑄𝑘
𝑐(𝑧)∣ > max{|𝑐|, 2}, then |𝑄𝑛

𝑐 (𝑧)| → ∞.
That is, 𝑧 ∉ 𝐾𝑐.

Based on these results, we can develop the

Algorithm 1 Filled Julia set algorithm
1: Choose a large 𝑁 ∈ ℕ.
2: for points 𝑧 do
3: if ∣𝑄𝑖

𝑐(𝑧)∣ > max{|𝑐|, 2} for any 𝑖 ≤ 𝑁 then
4: Colour 𝑧 white
5: else if ∣𝑄𝑖

𝑐(𝑧)∣ ≤ max{|𝑐|, 2} for all 𝑖 ≤ 𝑁 then
6: Colour 𝑧 black

whose black-shaded region approximates 𝐾𝑐.
Lecture 26
Mar 15Example 11.2.8. Is 𝑖 ∈ 𝐾2+𝑖?

Solution. Let 𝑄(𝑧) = 𝑧2 + 2 + 𝑖 and 𝑀 = max{
√

5, 2} =
√

5.

Then, 𝑖 ↦ 1 + 𝑖 ↦ 2 + 3𝑖 but |2 + 3𝑖| =
√

13 >
√

5.

Therefore, 𝑖 ∉ 𝐾2+𝑖.

Remark 11.2.9. For 𝑛 ∈ ℤ, 𝑛 ≠ 0, ∫2𝜋
0 𝑒𝑖𝑛𝑡 d𝑡 = 0

Proof. Evaluate the integral:

∫
2𝜋

0
𝑒𝑖𝑛𝑡 d𝑡 = ∫

2𝜋

0
cos(𝑛𝑡) + 𝑖 sin(𝑛𝑡)d𝑡

= ∫
2𝜋

0
cos(𝑛𝑡) + 𝑖 ∫

2𝜋

0
sin(𝑛𝑡)d𝑡

= [
1
𝑛 sin(𝑛𝑡)∣

2𝜋

0
+ 𝑖 [

1
𝑛 cos(𝑛𝑡)∣

2𝜋

0

= 0
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as desired.

Proposition 11.2.10 (Cauchy’s Estimate)
Let 𝑃(𝑧) = ∑𝑑

𝑛=0 𝑎𝑛𝑧𝑛 be a polynomial such that |𝑃 (𝑧)| ≤ 𝑀 for all |𝑧 − 𝑧0| ≤ 𝑟.

Then, |𝑃 ′(𝑧0)| ≤ 𝑀
𝑟 .

Proof. Suppose 𝑧0 = 0. Assume |𝑃 (𝑧)| ≤ 𝑀 for all |𝑧| ≤ 𝑟. Consider the integral

1
2𝜋 ∫

2𝜋

0

𝑃(𝑟𝑒𝑖𝑡)
𝑟𝑒𝑖𝑡 d𝑡 =

1
2𝜋 ∫

2𝜋

0

𝑑
∑
𝑛=0

𝑎𝑛𝑟𝑛−1𝑒𝑖(𝑛−1)𝑡 d𝑡

=
1

2𝜋 ∫
2𝜋

0
𝑎1𝑟0𝑒0 d𝑡 (by rem. 11.2.9)

= 𝑎1

= 𝑃 ′(0)

and so we have

|𝑃 ′(0)| ≤
1

2𝜋 ∫
2𝜋

0
∣
𝑃 (𝑟𝑒𝑖𝑡)

𝑟𝑒𝑖𝑡 ∣

≤
1

2𝜋 ∫
2𝜋

0

𝑀
𝑟 d𝑡

=
𝑀
𝑟

because ∣𝑟𝑒𝑖𝑡∣ = 𝑟 ≤ 𝑟, so ∣𝑃 (𝑟𝑒𝑖𝑡)∣ ≤ 𝑀.

Suppose now that 𝑧0 ≠ 0. Assume |𝑃 (𝑧)| ≤ 𝑀 for |𝑧 − 𝑧0| ≤ 𝑟 . We proceed by just translating to
make use of the first case.

Let 𝑤 = 𝑧 − 𝑧0 so that |𝑃 (𝑤 + 𝑧0)| ≤ 𝑀 for all |𝑤| ≤ 𝑟. Then, by the first case,

∣
d
d𝑤 ∣

𝑤=0
𝑃(𝑤 + 𝑧0)∣ ≤

𝑀
𝑟

∣
d
d𝑧 ∣

𝑧=𝑧0

𝑃(𝑧)∣ ≤
𝑀
𝑟

completing the proof.

Theorem 11.2.11
If 𝑧0 is a repelling periodic point for 𝑄𝑐(𝑧), then 𝑧0 ∈ 𝐽𝑐.

Proof. Assume 𝑧0 is a repelling periodic point with period 𝑛. Suppose for a contradiction that
𝑧0 ∉ 𝐽𝑐. Since 𝑧0 is periodic, 𝑧0 ∈ 𝐾𝑐. Therefore, 𝑧0 is in the interior of the Julia set.

That is, ∃𝑟 > 0 such that 𝑧 ∈ 𝐾𝑐 for all |𝑧 − 𝑧0| ≤ 𝑟 (i.e., there is an 𝑟-ball in 𝐾𝑐 at 𝑧). For all
𝑧 with |𝑧 − 𝑧0| ≤ 𝑟 and 𝐾 ∈ ℕ, we have ∣(𝑄𝑛

𝑐 )𝑘(𝑧)∣ ≤ 𝑀 where 𝑀 = max{|𝑐|, 2} by the Escape
Criterion.
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Then, by Cauchy’s Estimate, ∣(𝑄𝑛𝑘
𝑐 )′(𝑧0)∣ ≤ 𝑀

𝑟 for all 𝑘 ∈ ℕ. Suppose that ∣(𝑄𝑛𝑘
𝑐 )′(𝑧0)∣ = 𝜆 > 1.

Finally, ∣(𝑄𝑛𝑘
𝑐 )′(𝑧0)∣ = ∏𝑘−1

𝑗=0 ∣(𝑄𝑛
𝑐 )′(𝑄𝑗

𝑐(𝑧0))∣ = 𝜆𝑘 → ∞ ≰ 𝑀
𝑟 , by prop. 3.2.7, which is our conra-

diction. Therefore, 𝑧0 ∈ 𝐽𝑐.

Fact 11.2.12. Suppose 𝐾 ⊆ ℂ is closed. Then, if 𝑧 ∈ Int(𝐾), then 𝑄𝑐(𝑧) ∈ Int(𝑄𝑐(𝐾)).

Proposition 11.2.13
If 𝑄𝑐(𝑧) ∈ 𝐽𝑐, then 𝑧 ∈ 𝐽𝑐. That is, the Julia set is closed under preimages.

Proof. If 𝑄𝑐(𝑧) ∈ 𝐽𝑐, then 𝑄𝑐(𝑧) ∈ 𝐾𝑐 and 𝑧 ∈ 𝐾𝑐.

But if 𝑄𝑐(𝑧) ∉ Int(𝐾𝑐), then 𝑧 ∉ Int(𝐾𝑐).

Therefore, 𝑄𝑐(𝐾𝑐) = 𝐾𝑐.

Lecture 27
Mar 18Definition 11.2.14 (supersensitivity)

We say 𝑄𝑐 is supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0supersensitive at 𝑧0 if whenever 𝑧0 ∈ 𝑈 ⊆ ℂ is open, then ℂ = ∪∞
𝑛=0𝑄𝑛

𝑐 (𝑈).

Fact 11.2.15. 𝑄𝑐 is supersensitive at all 𝑧0 ∈ 𝐽𝑐.

For a geometric justification, see https://agony.retrocraft.ca/PMATH370/doodles#fact-11215.

Therefore, if we pick 𝑧 ∈ ℂ and 𝑧0 ∈ 𝐽𝑐, then for all 𝜀 > 0, 𝑈 = 𝐵𝜀(𝑧0), by supersensitivity,
𝑄𝑘

𝑐(𝑤) = 𝑧 for some 𝑤 ∈ 𝑈. By looking at the backwards orbit of 𝑧, we can find a very close 𝑤 ∈ ℂ
to 𝐽𝑐. This leads to a new algorithm:

Algorithm 2 Algorithm to draw the Julia set
1: Choose 𝑧 ∈ ℂ.
2: Compute 10,000 terms in the backwards orbit, randomly selecting a preimage at each step.
3: Plot all but the first 100 points.

This is implemented here: https://marksmath.org/visualization/julia2.html
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Chapter 12

The Mandlebrot Set

12.1 Construction

Definition 12.1.1
Let (𝑋, 𝑑) be a metric space. A pathpathpathpathpathpathpathpathpathpathpathpathpathpathpathpathpath from 𝑎 to 𝑏 is a continuous function 𝛾 ∶ [0, 1] → 𝑋 such
that 𝛾(0) = 𝑎 and 𝛾(1) = 𝑏.

A set 𝐴 ⊆ 𝑋 is path-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connectedpath-connected if for all 𝑎, 𝑏 ∈ 𝐴, there exists a path 𝛾 ∶ [0, 1] → 𝑋 from 𝑎 to 𝑏
such that 𝛾([0, 1]) ⊆ 𝐴.

The maximal path-connected subsets of 𝐴 are the path-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected componentspath-connected components of 𝐴.

If the path-connected components are all singletons, then 𝐴 is totally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnectedtotally disconnected.

Lecture 28
Mar 20Example 12.1.2. The unit circle 𝐴 = {𝑧 ∶ |𝑧| ≤ 1}:

is path-connected.

Example 12.1.3. The set 𝐴:

is neither path-connected nor totally disconnected.
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Example 12.1.4. The Cantor set 𝐾 ⊆ ℝ is totally disconnected.

Theorem 12.1.5 (all-or-nothing theorem)
For 𝑄𝑐(𝑧) = 𝑧2 + 𝑐, either

1. |𝑄𝑛
𝑐 (0)| is bounded (i.e., 0 ∈ 𝐾𝑐), in which case 𝐾𝑐 is path-connected; or

2. |𝑄𝑛
𝑐 (0)| → ∞ (i.e., 0 ∉ 𝐾𝑐), in which case 𝐾𝑐 is totally disconnected.

Definition 12.1.6 (Mandelbrot set)
The set ℳ = {𝑐 ∈ ℂ ∶ |𝑄𝑛

𝑐 (0)| is bounded} = {𝑐 ∈ ℂ ∶ 𝐾𝑐 is path connected}.

12.2 Shape

We want to prove that the Mandlebrot set has our expected shape of circle + heart.

Recall from cor. 11.2.4 of the Escape Criterion that if |𝑐| > 2, then |𝑄𝑛
𝑐 (0)| → ∞.

Example 12.2.1. We know 0 ∈ ℳ, so 𝐾0 (the disc, ex. 11.2.1) is path-connected. Likewise,
−2 ∈ ℳ, so 𝐾−2 (the interval, ex. 11.2.2) is path-connected.

Example 12.2.2. Let 𝑐 = 2. Then, 𝑄𝑐(𝑧) = 𝑧2 + 2 and 0 ↦ 2 ↦ 6 ↦ 38 ↦ ⋯ ↦ ∞. That is,
2 ∉ ℳ.

Example 12.2.3. Let 𝑐 = 𝑖. Then, 𝑄𝑐(𝑧) = 𝑧2 + 𝑖 and 0 ↦ 𝑖 ↦ −1 + 𝑖 ↦ −𝑖 ↦ 1 ↦ ⋯, which
means that 𝑖 ∈ ℳ.

Lecture 29
Mar 22Remark 12.2.4. Pick a rational 𝑧 ∈ 𝑄𝑐. Let 𝑀 = max{|𝑐|, 2}. By the Escape Criterion,

either

1. |𝑄𝑛
𝑐 (𝑧)| ≤ 𝑀 for all 𝑛, or

2. |𝑄𝑛
𝑐 (𝑧)| → ∞.

First, we want to determine when 𝑄𝑐(𝑧) has an attracting fixed point. Why do we care? Suppose
𝑧 ∈ ℂ is an attracting fixed point for 𝑄𝑐. Then, there exists 𝑟 > 0 such that 𝑥 ∈ 𝐵𝑟(𝑧), giving
𝑄𝑛

𝑐 (𝑥) → 𝑧 and 𝐵𝑟(𝑧) ⊆ 𝐾𝑐. Hence, 𝐾𝑐 is path connected and 𝑐 ∈ ℳ. That is, the existence of an
attracting fixed point for 𝑄𝑐 tells you that 𝑐 ∈ ℳ.
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Suppose 𝑧 ∈ ℂ exists. Then, 𝑧2 + 𝑐 = 𝑧 and |2𝑧| < 1. This implies 𝑐 = 𝑧 − 𝑧2 and |𝑧| < 1
2 . We can

parametrize the boundary. Write 𝑧 = 1
2𝑒𝑖𝜃 in polar form, so that

𝑐 =
1
2𝑒𝑖𝜃 −

1
4𝑒𝑖2𝜃, 𝜃 ∈ ℝ

which, when plotted for all values of 𝜃, gives the cartioid:

−1 −0.5 0.5 1

−1

−0.5

0.5

1

Re(𝑐)

Im(𝑐)

Second, when does 𝑄𝑐 have an attracting 2-cycle? That is, when does 𝑄𝑐 admit a periodic point of
period 2? If 𝑄𝑐 has an attracting periodic point 𝑧 with period 2, we can similarly show that 𝑐 ∈ ℳ
(do the open ball around the two cycle, and the existence of that ball makes 𝐾𝑐 path-connected).

Suppose (𝑧2 + 𝑐)2 + 𝑐 = 𝑧. Then, 𝑝(𝑧) ∶= 𝑧4 + 2𝑐𝑧2 − 𝑧 + 𝑐2 + 𝑐 = 0. The roots of 𝑝(𝑧) include all
the points with period ≤ 2: both the 2-cycle points and the fixed points.

Let 𝑝1 and 𝑝2 be the fixed points of 𝑄𝑐. Then, (𝑧 − 𝑝1)(𝑧 − 𝑝2) = 𝑧2 − 𝑧 + 𝑐 is a factor of 𝑝(𝑧).

That is, 𝑧 is a root of 𝑧4+2𝑐𝑧2−𝑧+𝑐2+𝑐
𝑧2−𝑧+𝑐 = 𝑧2 + 𝑧 + 𝑐 + 1.

Let 𝑧1 and 𝑧2 be the roots of 𝑧2 + 𝑧 + 𝑐 + 1, i.e., the period-2 points for 𝑄𝑐. For these to be
attracting, we must have

|(𝑄2
𝑐)′(𝑧𝑖)| < 1 ⟹ |𝑄′

𝑐(𝑧1) − 𝑄′
𝑐(𝑧2)| < 1

⟹ 4|𝑧1𝑧2| < 1

⟹ |𝑧1𝑧2| <
1
4

⟹ |𝑐 + 1| <
1
4

which is a ball of radius 1
4 centered at −1:
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−1.5 −1 −0.5 0.5 1

−1

−0.5

0.5

1

Re(𝑐)

Im(𝑐)

Proposition 12.2.5
We can write ℳ as the intersection

{𝑐 ∈ ℂ ∶ |𝑐| ≤ 2} ∩ {𝑐 ∶ |𝑐2 + 𝑐| ≤ 2} ∩ {𝑐 ∶ |(𝑐2 + 𝑐)2 + 𝑐| ≤ 2} ∩ ⋯

for repeated iterations of 𝑄𝑛
𝑐 .

Proposition 12.2.6
ℳ is closed.

−1.5 −1 −0.5 0.5 1

−1

−0.5

0.5

1

Re(𝑐)

Im(𝑐)
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Chapter 13

Polynomial Julia Sets

Lecture 30
Mar 25

Theorem 13.1.1 (Polynomial Escape Criterion)
Let 𝑝(𝑧) = 𝑎𝑛𝑧𝑛 + ⋯ + 𝑎1𝑧 + 𝑎0 be a complex polynomial with 𝑎𝑛 ≠ 0 and 𝑛 ≥ 2. Then, there
exists 𝑅 > 0 depending only on 𝑛 and 𝑎𝑖 such that ∣𝑝𝑘(𝑧)∣ → ∞ for all |𝑧| ≥ 𝑅.

Informally, there is a ball of radius 𝑧 outside of which iteration blows up.

Proof. Fix 𝜆 > 1 and let 𝐶 = ∑𝑛−1
𝑖=0 |𝑎𝑖|.

Consider 𝑅 = max{1, 2𝑐
|𝑎𝑛| , ( 2𝜆

|𝑎𝑛|)
1/𝑛−1

}.

Assume |𝑧| ≥ 𝑅. Then,

|𝑝(𝑧)| ≥ |𝑎𝑛𝑧𝑛| − ∣𝑎𝑛−1𝑧𝑛−1 + ⋯ + 𝑎1𝑧 + 𝑎0∣

≥ |𝑎𝑛𝑧𝑛| − (|𝑎𝑛−1| ⋅ |𝑧|𝑛−1 + ⋯ + |𝑎1| ⋅ |𝑧| + |𝑎0|)

≥ |𝑎𝑛𝑧𝑛| − 𝐶|𝑧|𝑛−1 (since |𝑧| ≥ 𝑅 ≥ 1)

= |𝑧|𝑛(|𝑎𝑛| −
𝐶
|𝑧|

)

≥ |𝑧|𝑛(|𝑎𝑛| −
|𝑎𝑛|
2 ) (since |𝑧| ≥ 2𝐶

|𝑎𝑛| ⟹ 𝐶
|𝑧| ≤ |𝑎𝑛|

2 )

= |𝑧| ⋅
1
2|𝑎𝑛| ⋅ |𝑧|𝑛−1

≥ |𝑧| ⋅
1
2|𝑎𝑛| ⋅

2𝜆
|𝑎𝑛|

(since |𝑧| ≥ ( 2𝜆
|𝑎𝑛|)

1/𝑛−1
⟹ |𝑧|𝑛−1 ≥ 2𝜆

|𝑎𝑛|)

≥ 𝜆|𝑧|

Therefore, ∣𝑝𝑘(𝑧)∣ ≥ 𝜆𝑘|𝑧| so it blows up to infinity.

Remark 13.1.2. Either (1) for all 𝑘, ∣𝑝𝑘(𝑧)∣ < 𝑅, or (2) ∣𝑝𝑘(𝑧)∣ → ∞.
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Definition 13.1.3
Let 𝑝(𝑧) be a complex polynomial with degree ≥ 2.

The filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧)filled Julia set of 𝑝(𝑧) is 𝐾𝑝 = {𝑧 ∈ ℂ ∶ 𝑝𝑘(𝑧) is bounded}.

The Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧)Julia set of 𝑝(𝑧) is 𝐽𝑝 = 𝜕(𝐾𝑝).

We can approximate the Julia set by iterating and seeing if a given point “escapes” in a fixed
amount of time.
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Chapter 14

Guest Lectures

14.1 Joaco Prandi: Creating a sundial

Lecture 31
Mar 27

Definition 14.1.1 (box-counting dimension)
Consider a blob 𝐾. Given a grid with spacing 𝛿, define 𝑁𝛿(𝐾) to be the number of squares
touched by 𝐾.

The box-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimensionbox-counting dimension is dim𝐵(𝐾) = lim𝛿→0
log(𝑁𝛿(𝐾))

− log(𝛿) .

This does not always exist, so we define the upper and lower box-counting dimensions as
dim𝐵(𝐾) = lim sup𝛿→0

log(𝑁𝛿(𝐾))
− log(𝛿) and dim𝐵(𝐾) = lim inf𝛿→0

log(𝑁𝛿(𝐾))
− log(𝛿) , which always exist.

The definition of 𝑁𝛿(𝐾) can be replaced by a lot of other vaguely similar ideas:

• the maximal number of 𝛿-balls that pack into 𝐾
• the minimal number of 𝛿-balls that cover 𝐾
• etc.

recovering an equivalent definition.

Definition 14.1.2 (Hausdorff dimensional measure)
Define ℋ𝑠

𝛿(𝐾) = inf{∑∞
𝑛=0 |𝑈𝑛|𝑠 ∶ ⋃∞

𝑛=0 𝑈𝑛 ⊃ 𝐾, |𝑈𝑛| ≤ 𝛿} where the 𝑈𝑛’s are a cover of 𝐾
and |𝑈𝑛| is the diameter of the set 𝑈𝑛.

Then, let ℋ𝑠(𝐾) = lim𝛿→0 ℋ𝑠
𝛿(𝐾).

When working in ℝ𝑑, we have that ℋ𝑛 for 𝑛 ≤ 𝑑 measures the 𝑛-dimensional Euclidean metric.
That is, ℋ1 measures length, ℋ2 measures area, etc.

Fact 14.1.3. Let 𝑠 < 𝑡. If ℋ𝑠(𝐾) is finite, then ℋ𝑡(𝐾) = 0.

If ℋ𝑡(𝐾) is non-zero and finite, then ℋ𝑠(𝐾) = ∞.
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This means that the values will go {… , ∞, ∞, some non-zero finite value, 0, 0, … }.

Definition 14.1.4 (Hausdorff dimension)
The Hausdorff dimension dim𝐻(𝐾) = sup{𝑠 ∶ ℋ𝑠(𝐾) = ∞} = inf{𝑠 ∶ ℋ𝑠(𝐾) = 0}.

Example 14.1.5. If 𝐶 is the Cantor set, then dim𝐵(𝐶) = dim𝐻(𝐶) = log3(2).

If 𝐹 = { 1
𝑛}∞

𝑛=0, then dim𝐵(𝐹) = 1
2 (for some reason) and dim𝐻(𝐹) = 0.

Fact 14.1.6. In general, the box-counting dimension is invariant under closures, while the
Hausdorff dimension varies after closure.

Fact 14.1.7. If dim𝐻(𝐹) < 1, then the set 𝐹 is totally disconnected.

Fact 14.1.8. If 𝑓 is Lipschitz with ratio 𝑐, then ℋ𝑠(𝑓(𝐾)) ≤ 𝑐𝑠ℋ𝑠(𝐾).

This implies that dim𝐻(𝑓(𝐾)) ≤ dim𝐻(𝐾).

Let 𝐿𝜃 be the line through the origin with angle 𝜃 ∈ [0, 𝜋) and Proj𝜃(𝐹) be the orthogonal projection
to 𝐿𝜃.

Theorem 14.1.9
For almost all 𝜃 (that is, in all cases that actually matter),

1. If dim𝐻(𝐹) ≤ 1, then dim𝐻(Proj𝜃(𝐹)) = dim𝐻(𝐹).
2. If dim𝐻(𝐹) > 1, then dim𝐻(Proj𝜃(𝐹)) = 1 and ℋ1(Proj𝜃(𝐹)) > 0.

Informally, everything is either less than one-dimensional or casts a one-dimensional shadow.

Given a set which casts a shadow on 𝐿𝜃1
and 𝐿𝜃2

, we can split it up and rotate the sections so that
it the projection on 𝐿𝜃1

becomes a set of singletons but the projection on 𝐿𝜃2
remains connected

(this is the iterated Venetian blinds process).

Theorem 14.1.10
Let 𝐺𝜃 ⊂ 𝐿𝜃 for 𝜃 ∈ [0, 𝜋) be a collection of sets such that ⋃𝜃 𝐺𝜃 is a measurable 2-dimensional
set. Then, there exists a set 𝐹 ⊆ ℝ2 such that 𝐺𝜃 ⊂ Proj𝜃(𝐹) and ℋ1(Proj𝜃(𝐹) −𝐺𝜃) = 0 for
almost all 𝜃.
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14.2 Paul Fieguth: Bifurcations in continuous- and discrete-time
systems

Lecture 32
Apr 1In general, university courses focus on “nice” linear, Gaussian, small models. However, reality is

usually non-linear, non-Gaussian, and large. We will look at non-linear systems, in particular,
bifurcations in non-linear dynamics.

Recall that in continuous time, we define some system as ̇𝑧(𝑡) = 𝑓(𝑧(𝑡), 𝜃); in discrete time, we have
𝑧𝑛+1 = ̄𝑓(𝑧𝑛, 𝜃).

Discrete time can be expressed as the forward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretizationforward Euler discretization of continuous time, i.e., if ̇𝑧 =
𝑓(𝑧), we have 𝑧(𝑡 + 𝛿) = 𝑧(𝑡) + 𝛿 ⋅ 𝑓(𝑧(𝑡)).

Suppose we draw a system diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagramsystem diagram relating 𝑧 to ̇𝑧. When 𝑓(𝑧) crosses the 𝑧-axis, we have a fixed
point because ̇𝑧 = 0.

𝑧

̇𝑧

𝑧

̇𝑧

When sloping up the derivative is positive to the right and negative to the left. That means it is
pushing away from the fixed point, creating instability. In the downwards-sloping figure, the fixed
point is attracting (stable).

Linear systems have a handful of key attributes:

• Superposition: If 𝑥1 ↦ 𝑦1 and 𝑥2 ↦ 𝑦2, then 𝛼𝑥1 + 𝛽𝑥2 ↦ 𝛼𝑦1 + 𝛽𝑦2

• Sine wave: If 𝐴 sin(𝜔𝑡 + 𝜙) goes in, then 𝐵 sin(𝜔𝑡 + 𝜑) comes out. Only the phase and
amplitude can be changed, not the frequency.

• Constant input cannot lead to oscillating output.

Definition 14.2.1 (bifurcation)
Discontinuous change in an attribute or behaviour in response to a continuous change in pa-
rameter.

Suppose ̇𝑧 = −(𝑧 − 5)2 + 𝑐:
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𝑧

̇𝑧

Then, the number of fixed points jumps from none to two as 𝑐 crosses some value. To summarize
this, we can draw a bifurcation plot:

stable

unstable

𝑐

𝑧

We also have bifurcations in discrete time, when we punch through the 45-degree line (as covered in
the course proper). Considering the quadratic family as a discrete system, we can draw a bifucation
plot

another bifurcation!

𝑐

𝑧
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since the stable points eventually become unstable.

There are two major kinds of bifurcations that show up. First, the double-fold:

Atmospheric CO2 concentrations

Po
la
r
ic
e
la
tit

ud
e

This is the way that thermostats, switches, etc. work to force the system into one of the two stable
states. That is, global climate models are just fridges.

Second, the Hopf bifurcation: a transition between cycling and not cycling.

𝑐

𝑧1

𝑧2

Cycling usually comes up from a bounded unstable system. Instability forces the system away from
the fixed point, but the bounds prevent it from leaving, leading to a cyclical motion.

Ohter bifurcations include stick-slips (like chalkboard dashed lines), Covid cases, slap bracelets,
jumping frogs, ecologies, epileptic seizures, etc.

14.3 Andy Zucker: Fixed point properties in topological dynamics

Lecture 33
Apr 3

Definition 14.3.1
Let 𝐺 be a group. A 𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow𝐺-flow is a compact Hausdorff space 𝑋 equipped with a continuous action
𝑎 ∶ 𝐺 × 𝑋 → 𝑋 satisfying (1) 𝑎(1𝐺, 𝑥) = 𝑥 and (2) 𝑎(𝑔, 𝑎(ℎ, 𝑥)) = 𝑎(𝑔ℎ, 𝑥).

72



PMATH 370 Winter 2024: Lecture Notes James Ah Yong

Notation. Typically, we understand actions as implied and write 𝑔.𝑥 or just 𝑔𝑥 for 𝑎(𝑔, 𝑥).

For example, the above axioms can be written as 1𝐺𝑥 = 𝑥 and 𝑔(ℎ𝑥) = (𝑔ℎ)𝑥.

Example 14.3.2. Let 𝐺 = ℤ and 𝑋 be the unit circle.

Let 𝑇 ∶ 𝑋 → 𝑋 be rotation by an irrational 𝛼, which acts as our generating homomorphism.
Since 𝛼 is irrational, the action is freefreefreefreefreefreefreefreefreefreefreefreefreefreefreefreefree, i.e., for all 𝑥 and non-zero 𝑛, 𝑇 𝑛(𝑥) ≠ 𝑥.

Example 14.3.3. Let 𝐺 = ℤ and 𝑋 = 2ℤ.

Let 𝑇 ∶ 2ℤ → 2ℤ be the Bernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shiftBernoulli shift 𝑇 (𝑥)(𝑛) = 𝑥(𝑛 − 1).

This action is not free, since 𝑥 ≡ 0 is a fixed point of 𝑇. However, there is a closed, non-empty,
𝑇-invariant subspace of 𝑋 which is free.

These two examples are related. Suppose we define an interval on the unit circle. Then, check if
each of the elements of the orbits of the rotation fall in that interval, and assign binary values to
the function based on that. This generates the closed, non-empty, 𝑇-invariant subspace.

For now, fix 𝑋 as the Cantor space Σ. Write Clop(𝑋) = {𝐴 ⊆ 𝑋 ∶ 𝐴 is both closed and open}.

Definition 14.3.4
A probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋probability measure on 𝑋 is a map 𝜇 ∶ Clop(𝑋) → [0, 1] with 𝜇(𝑋) = 1 and finite additivity.

Example 14.3.5. View 𝑋 as 2ℤ. For each 𝐴 ∈ Clop(𝑋) defined by {𝑥 ∶ 𝑥(𝑛) = 𝑖} for some
fixed 𝑛, set 𝜇(𝐴) = 1

2 . Generate the rest of the values axiomatically.

This is like flipping the 𝑛th coin and expecting 𝑖.

Example 14.3.6. Fix 𝑥 ∈ 𝑋. The Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥Dirac delta at 𝑥 is the measure 𝜇(𝐴) = {
0 𝑥 ∉ 𝐴
1 𝑥 ∈ 𝐴

This is measuring whether a set contains 𝑥.

Definition 14.3.7
The space of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measuresspace of probability measures 𝑃(𝑋) is equipped with a topology such that 𝜇𝑛 → 𝜇 if and
only if for all clopen 𝐴, 𝜇𝑛(𝐴) → 𝜇(𝐴).

This is the “weak* topology” on 𝑃(𝑋).
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If 𝐺 is a countable group and 𝐺 acts on 𝑋, then 𝐺 acts on 𝑃(𝑋) which we define as (𝑔.𝜇)(𝐴) =
𝜇(𝑔−1.𝐴).

Definition 14.3.8
A countable group is amenableamenableamenableamenableamenableamenableamenableamenableamenableamenableamenableamenableamenableamenableamenableamenableamenable if for any finite 𝑆 ⊆ 𝐺 and 𝜀 > 0, there exists an 𝐹𝑆,𝜀 such
that |𝑆𝐹 −𝐹|

|𝐹| < 𝜀.

Example 14.3.9. The integers ℤ are amenable.

Consider 𝑆 = {±1}. Given 𝜀 > 0, find 𝑛 ∈ ℕ such that 2
𝑛 < 𝜀. Let 𝐹𝑆,𝜀 be an interval of

length 𝑛.

Then, |𝑆𝐹 −𝐹| = 2 giving |𝑆𝐹 −𝐹|
|𝐹| < 𝜀.

Theorem 14.3.10 (Følner)
A countable group 𝐺 is amenable if and only if whenever 𝐺 acts on 𝑋 = Σ, the induced action
on 𝑃(𝑋) has a fixed point.

Proof. Suppose 𝐺 is amenable. Write 𝐺 as an increasing union ⋃ 𝑆𝑛 where 𝑆1 ⊆ §2 ⊆ ⋯ are finite.

Let 𝐹𝑛 ⊆ 𝐺 be (𝑆𝑛, 1
𝑛)-Følner. Given an action of 𝐺 on the Cantor space 𝑋,

1. Pick an arbitrary 𝑥 ∈ 𝑋.

2. For every 𝑛 ∈ ℕ, let 𝜇𝑛 = ∑
𝑔∈𝐹𝑛

1
|𝑆𝑛|𝛿𝑔𝑥 where 𝛿 is the Dirac delta. That is, we are taking the

average of the Dirac measures of finitely many points. Concretely, given a clopen set 𝐴, we
ask what proportion of the points lie inside of 𝐴.

Because ⟨𝐹𝑛 ∶ 𝑛 ∈ ℕ⟩ are more and more Følner, we have 𝜇𝑛(𝐴) − (𝑔.𝜇𝑛)(𝐴) → 0 for every 𝐴 ∈
Clop(𝑋) and 𝑔 ∈ 𝐺.

That is, because 𝑔 eventually lies in one of the 𝑆𝑛 and 1
𝑛 is very small, applying the action will

eventually... something... i’m lost...

Then we use the compactness of 𝑃(𝑋) to do something? which passes to the convergent subsequence
of 𝜇𝑛 with limit 𝜇? those are math words! they mean something!
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