PMATH 370 Winter 2024:

Lecture Notes

1 Iteration and Orbits

1.1 Orbits . . o . o e e
1.2 Real analysis review . . . . . . . . . L
1.3 Orbits, revisited . . . . . . . . . e e

2 Graphical Analysis

2.1 Cobweb plots . . . . . . e e e
3 Fixed Points

3.1 Attracting/repelling fixed point theorems . . . .. .. ... ... ... .. ...

3.2 Neutral fixed points . . . . . . . oL L

4 Bifurcations
5 Cantor set

6 Symbolic dynamics

6.1 Intro to topology . . . . . . . . . e

6.2 Revisiting the itinerary . . . . . . . . .. . L Lo
7 Chaos

7.1 Prerequisites to chaos . . . . . . . .

7.2 Defining chaos . . . . . . . .

8 Sarkovskii’s Theorem

9 Fractals
9.1 Definitions and dimensions . . . . . . . . . ... L e
9.2 Fractal gallery . . . . . . . L
9.3 TIterated function systems . . . . . . . . .
9.4 Generated iterated function systems . . . . .. .. Lo o oL

10 Complex Functions

11 Julia Sets
11.1 Definition . . . . . o v o e e e,

12
12

15
15
18

22

25

28
29
31

34
34
36

38

41
41
43
45
47

53

55



PMATH 370 Winter 2024: Lecture Notes

James Ah Yong

11.2 Construction

12 The Mandlebrot Set
12.1 Construction
12.2 Shape

13 Polynomial Julia Sets

14 Guest Lectures
14.1 Joaco Prandi: Creating a sundial

14.2 Paul Fieguth: Bifurcations in continuous- and discrete-time systems

14.3 Andy Zucker: Fixed point properties in topological dynamics

Back Matter
List of Named Results
Index of Defined Terms

62
62
63

66

68
68
......... 70
............. 72

Lecture notes taken, unless otherwise specified, by myself during the Winter 2024 offering of

PMATH 370, taught by Blake Madill.

Lectures

Lecture 1 Jan &8 . . ... ... 3
Lecture 2 Jan 10 . . ... ... L. 5
Lecture 3 Jan 12 . .. ... ... L. 7
Lecture 4 Janlb . ... ... L. 10
Lecture 5 Jan 17 . ... ... ... 13
Lecture 6 Jan19 . ... ... ... 18
Lecture 7 Jan22 ... ... 20
Lecture 8 Jan24 . ... ... 23
Lecture 9 Jan26 ... ... ... ... 25
Lecture 10 Jan29 .. ... ... .... 28
Lecture 11  Jan 31 . . . ... ... ... 30
Lecture 12 Feb 2 . ... ... ... ... 32
Lecture 13 Feb 5 . . . . ... ... ... 34
Lecture 14 Feb 7 . . . . . .. ... ... 36
Lecture 15 Feb 9 . . . . ... ... ... 38
Lecture 16 Feb 12 . . . ... ... ... 39

Lecture 17
Lecture 18
Lecture 19
Lecture 20
Lecture 21
Lecture 22
Lecture 23
Lecture 24
Lecture 25
Lecture 26
Lecture 27
Lecture 28
Lecture 29
Lecture 30
Lecture 31
Lecture 32
Lecture 33



Chapter 1

Iteration and Orbits

1.1 Orbits

Definition 1.1.1 (iteration) Lecture 1
Let f: A — R such that A C R and f(A) C A. For a € A we may iterate the function at a: Jan &

T =a,zy = f(a),z3 = f(f(a)),...,x; = f(a),... .
f2(a)

The sequence (z,,)%2 ; is the orbit of a under f (abbreviated (z,,) without limits).

Example 1.1.2. Let f(z) = 2* + 222 — 2, a = —1. What is the orbit of a under f?

Solution. a = —1, f(a) =1, f(f(a)) = f(1) = 1, so we have —1,1,1,1,.... We call this eventually
constant. U

Example 1.1.3. Let f(z) = —2? — 2 + 1, a = 0. What is the orbit of a under f?

Solution. Calculate: 0,1,—1,1,—1,1,.... We call this eventually periodic (with period 2). O

Example 1.1.4. Let f(z) = 2% — 3z + 1, a = 1. What is the orbit of @ under f?

Solution. Calculate the first few terms: 1,—1,3,19, ... (too big). This is a divergence to infinity. [J

Example 1.1.5. Let f(z) = 2% + 2z, a = —0.5. What is the orbit of a under f?

Solution. Calculate: —0.5,—0.75,—0.9375,—0.9961 ... and we make an educated guess that this
converges to —1 since f(—1) = —1, a fixed point. O
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Example 1.1.6. Let f(z) = 23 — 3z, a = 0.75. What is the orbit of a under f?

Solution. Calculate: 0.75,—1.828,—0.625,1.631,—0.552,.... There is no clear pattern, so we call
this chaotic. In fact, the orbit is dense in a neighbourhood of 0. O

We can start to formalize the examples.

Definition 1.1.7 (fixed point)
Let f: A — R such that f(A) C A. A point a € A is fixed if f(a) = a.

Then, the orbit of a under fis (a,a,a,...) which is constant.

Example 1.1.8. Find all fixed points of f(x) = 22 + x — 4.

Solution. We find points where f(x) =, i.e., 22 + 1 — 4 = .

2tr—4=12 <= 2°=4 <= =42 0
Example 1.1.9. How many fixed points does f(z) = 2sinx have?

Solution. Consider where the curve y = 2sinz meets y = x:

Y

y=ux

/1 $

Yy =2sinx

We can see there are three fixed points. O

Example 1.1.10. Prove that f(z) = #* — 3z + 1 has a fixed point.

Proof. We must show there is a solution to 2 —3x+1 < 2*—4x+1=0. Let g(x) = 2* — 4z + 1.
Since g(z) is continuous, g(0) =1 > 0, and g(1) = —2 < 0, by the Intermediate Value Theorem,
there must exist a root of g on the interval (0,1). That is, a fixed point of f. O
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Definition 1.1.11 (periodicity)
Let f: A— R, f(A) C A.

1. A point a € A is periodic for f if its orbit is periodic. An orbit is periodic if for some
n € N, f"(a) = a. The smallest n is the period of (the orbit of) a.

2. An orbit (of a point) is eventually periodic if there exists n < m such that f™(a) = f™(a).
The smallest difference m — n is the period of the orbit.

Definition 1.1.12 (doubling function)
D:[0,1) = [0,1) : z 2z — |2z] returns the fractional part of 2x.

Example 1.1.13. D(0.4) = 0.8, D(0.6) = 0.2, D(0.8) = 0.6, D(0.5) = 0.

This is a nice function that gives lots of periodic orbits for funsies.

Example 1.1.14. Find the orbit of a = % under D.

ot oo
ollw
alo

Solution. Double until we pass 1: %, %, %, — — % The period is ‘{%, %, %, %}‘ =4. O

)

Example 1.1.15. Find the orbit of a = 2—10 under D.

Solution. Double: =, =, L and we can stop because ex. 1.1.14 showed Lis periodic.
20710’ 5 5

So this is eventually periodic with period 4. O

Problem 1.1.16

Given f and a, does f(a) tend towards some limit L?

To solve this problem, we need to rigorously define “tend” and “limit”.

1.2 Real analysis review

Notation. If (x,,)%  is a sequence of real numbers, we write (z,,) C R.

Lecture 2
Jan 10
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Definition 1.2.1 (convergence of a sequence)

Let (z,,) C R, z € R.

We say (z,,) converges to z if for all € > 0, there exists N € N such that |z,, — z| < e for all
n > N.

Then, we write x,, — = or limz, = x.

Example 1.2.2. Show that % — 0.

Proof. Let € > 0. Consider N = % > é For n > N, we have
1 1
’— — 0’ =-<e
n n
Therefore, % — 0. O

Example 1.2.3. Prove that % — 2.

Proof. Let € > 0. Since we know =~ — 0, let N € N such that%<%.
For n > N,
‘ 2n 2‘_’ 2 246 _‘ 6 |_ 6 _6_6_.c_
n+3 | In+3 m+3l ln+sl " nt3 " n-N""6 °
2n
Therefore, —s 2 O

Definition 1.2.4 (bounded sequence)
A sequence (z,,) is bounded (by M) if there exists M > 0 such that Vn € N, |z, | < M.

Proposition 1.2.5 (convergence implies boundedness)

If (z,,) is convergent, then (z,,) is bounded.

Proof. Suppose x,, — x. Then, there exists N € N such that if n > N, then |z, — x| < 1.
For n > N, |z,| — |z| < |z, —z| < 1. That is, |z,| < 1+ |z|.

Let M = max{|z4|,...,|%,_1|, 1+ |z|}. Then, for both all n < N and n > N, we have |z,| < M. O

Remark 1.2.6. The converse is not true. Notice that xz, = (—1)" is bounded by 1 but
obviously not convergent.
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Proposition 1.2.7 (limit laws)
Let z,, = x and y,, — y. Then:

(1) =, +y, 2z +y

(2) =y, — Ty

Proof. (1) Let ¢ > 0. Then, since z,, — x and y,, — y, there exist N;, N, € N such that

n>N, = |z, —z|<5andn>Ny, = |y, —yl <5.

For N = max{N;, N,} and n > N,

(@ +yn) — (+y)| = (2, — 7) + (Y — ¥)]

<5+£
2 2
=c

That is, z,, +y, = = + .
(2) Let € > 0. Notice that:
Since z,, is bounded, there exists M > 0 such that |z, | < M for all n.
Let Ny, Ny € N such that

9
n>N, = |z, — 2| <———and
! 2(lyl +1)
3
> — —.
n2>Ny =y =4l < 535

Then, for n > N := max{Ny, N}, |z,y, —zy| < 5+ 5 =€ by (*).

Definition 1.2.8 (Cauchy sequence)
We say (z,,) € R is Cauchy if for all € > 0, there exists N € N such that for all n and m,

nm>N = |z, —z,,|<e€

Proposition 1.2.9

Every convergent sequence is Cauchy.

Proof. Intuitively: if the terms get arbitrarily close to some limit, they must get arbitrarily close

to each other.

Formally: Let x,, —  be a convergent sequence and € > 0. Since z,, converges, there exists N € N

such that n > N = |z, —z| < 3.

Lecture 3
Jan 12
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Then, when n,m > N, we have:

’xn_xm‘ = ]xn—a:m—i—x—x\
= [(z, —2) + (2 —z,,)]
- € N €
2 2
=e
as desired. O

We take the following theorem from real analysis without proof.

Theorem 1.2.10 (completeness of R)

A sequence is Cauchy if and only if it is convergent.

The big idea here: To prove (z,,) is Cauchy, you do not have to guess the limit first. That is, if you
must prove convergence but do not care about the limit’s value, prove that it is Cauchy instead.

Definition 1.2.11 (continuity of a function)

Let f: A= R, AC R,a € A. We say f is continuous at a if for all € > 0, there exists § > 0
such that |f(z) — f(a)| < € whenever x € A and |z —a| < 6.

If fis continuous at all a € A, we say it is continuous.

We also take this theorem from MATH 137 without proof.

Theorem 1.2.12

A function f: A — R is continuous at a € A if and only if for all sequences (x,,) C A with
x, — a, we have f(x,) — a.

1.3 Orbits, revisited

Proposition 1.3.1
If f:[a,b] — [a,b] is continuous, then f(x) has a fixed point.

Proof. We know by the domain and codomain that f(a) > a and f(b) < b. This means f(a)—a >0
and f(b) —b < 0. By the IVT on the continuous function g(x) = f(z) — x, we know there exists an
x € [a,b] such that g(z) = f(z) —x =0 < f(x) ==, i.e., z is a fixed point. O
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Definition 1.3.2 (contraction)

Let f: A— R, A C R. Wesay f is a contraction if there exists C' € [0,1) such that for all
x,a € A,

|f(z) — f(y)| < Clz —y|

This is just a Lipschitz function with Lipschitz constant less than 1.

Proposition 1.3.3

Contractions are continuous.

Proof. Let € > 0. Suppose f is a contraction such that |f(z) — f(y)| < Clz — y.

Consider y € A. Let § = 7 and assume that € A and |z — y| < 0. But we have:

[f(@) = fy)| < Clz —y| < Cd <e

as desired. O

Definition 1.3.4 (closure of an interval)

We say A € R is closed if whenever (z,,) C A with z,, — z, then z € A.

Example 1.3.5. [a,b] is closed but (0,1] is not because ~ — 0 ¢ (0, 1].

Theorem 1.3.6 (Banach contraction mapping theorem)

Suppose A C R is closed and f: A — A is a contraction. Then, there exists a unique fixed
point a € A for f.

Moreover, for all x € A, f"(x) — a.

3—x
Solution. We can observe that % < ﬁ < %
Also, f'(x) = (3_%)2 Notice that % <|f(z) < %. So by the mean value theorem, for all z,y € [0, 1],

there exists ¢ € (0,1) such that:
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Then, identifying C' = %, f is a contraction. Now,

1 3 9—4 3—+v5
3 :33<:>1:3m—x2<:>x2—3:v+1:0<:>x:iT<:>x: 2\/_
—x

where we pick the negative root because we need x € [0, 1].

3—\/5 D

Therefore, by the Banach contraction mapping theorem, for all z € [0,1], f"(z) — =

Lecture /
Definition 1.3.8 Jan 15
A sequence (a,,) C R is strongly-Cauchy if there exists (,,) C [0,00) such that Y >° &, < oo
and for all n, |a,, —a, | <&,.

Informally, “far enough along the sequence, the neighbours must get close”. This is distinct from
Cauchy, which is “far enough along the sequence, the terms must get close”.

n—oo

Remark 1.3.9 (assignment hint!). Let >>°  a,, = L. This means that >, a, —— L.

That is, for all € > 0, there exists N € N such that n > N implies |ZZ:1 ay, — L’ < Ee.

But |ZZ:1 ap — L| = |2211 Ty = ZZ:I ak:| = |Ziin+1 ak‘ <E.

We can now prove the Banach contraction mapping theorem.

Proof. Let A C R be closed and suppose there exists f : A — A and C € [0,1) such that
|f(z) — f(y)| < Clx —y| for all z and y in A.

Fix z, € A and construct the orbit x; = f(x), To = f(x1), ..., 2, = f(x,,_1) = [ (2).
For n € N, since f is a contraction,

|xn+1 - :En| = |f(xn) _ f(xn71)|
< C|xn — Ty 1|

=C|f(x,_1) — f(z,_5)]

< C2|xn71 - xn72‘

< CMay —
Since 7 O™z — x| = |@; — 20| Y. " C™ is a convergent geometric series, we have that the
sequence (z,,) is strongly-Cauchy.
Hence, by Assignment 1, x,, — a for some limit point a € A since A is closed.

Since f is continuous (prop. 1.3.3), we have that f(x,) — f(a). By definition, f(z,) = z,,,;, so
x,, — f(a). But we already know x,, — a, so a = f(a). That is, a is a fixed point of f.

It remains to show uniqueness.

10
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Suppose a,b € A such that f(a) = a and f(b) = b.

[f(a) = f(b)] < Cla—b|
la —b| < Cla — b

Since C' < 1, we must have |a — b| = 0, that is, a = b. ]

11



Chapter 2

Graphical Analysis

2.1 Cobweb plots

Recall ex. 1.1.9. To visualize the orbit of a under f, we can:

Superimpose y = f(z) over the line y = x.

Connect a vertical line (a,a) — (a, f(a))

Connect a horizontal line (a, f(a)) — (f(a), f(a))

Connect a vertical line (f(a), f(a)) — (f(a), f(f(a)))
Connect a horizontal line (f(a), f(f(a))) — (f(f(a)), f(f(a)))

etc.

Gl o=

This is sometimes called a cobweb plot. We will be using https://marksmath.org/visualization/cob-
webs/ to make cobweb plots.

Within these lecture notes, I use a IXTEX macro to draw plots defined here.

Example 2.1.1. Conduct a complete orbit analysis of f(z) = 22 —x + 1

Solution. Playing around, we find that there is one fixed point z = 1.

When z € [0,1], f*(z) — 1. Otherwise, f™(z) — cc.

12
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T T T T T T T
1 - |
4 - |
0.8 n
0.6 | n 9| |
04} n
0.2 1 0oF i
0 - |
| | | | | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 -1 0 1 2 3 4 )
]
1 Lectures 5 and 6 adapted from Rosie | Lecture 5

Jan 17
Example 2.1.2. Conduct a complete orbit analysis of f(z) = —gaz2 + %:c + 1.

Solution. At x = 0, we can see there is a cycle going from 0 - 1 —- 2 — 0:

| |
—-05 0 05 1 15 2 25

At points near 0, like x = —0.3 or = 0.3, the graph becomes chaotic:

13
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—-05 0 05 1 15 2 25 —05 0 05 1 15 2 25

It appears that the cobweb densely covers the graph. O
As an aside, note that we cannot actually hit every point in the interval because the orbit is

countable (i.e., has the same size as the naturals) but the interval is uncountable. We will later
show that the points are dense (as the rationals are).

14



Chapter 3

Fixed Points

3.1 Attracting/repelling fixed point theorems

Remark 3.1.1. If f(z) is continuous and f"(a) — L, then f""'(a) — f(L). Therefore,
f(L) =L is a fixed point.

Example 3.1.2. The function f(x) = 23 has three fixed points: 0,+1. For x € (—1,1), we
see that f"(z) — 0:

‘ ‘
0 L

Al |
05} - .

0.5] e .
1l |

0,747 |
o ———

It looks like point 0 is attracting the orbit. For z € (—oo, —1) U (1, 00), we see f"(x) — oo:

15
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4

A

1

so the points 41 are repelling the orbit.

=

—1.5

—1

Example 3.1.3. The function f(z) = 2% — 3z also has three fixed points: 0, +2
(left) of 42, orbits go to infinity:

. To the right

16

At xy = £1, the orbit is eventually constant, jumping to the fixed point F2:

5
-1 ]
_9 |47 |
3 L |
—g i
2 - |
4 i
1 - |
_5 ! ! ! ! ! !
—4 —3 —2 2 3 4
The point 0 is repelling (in a different sense) since we get chaos:
2 : 2 ) :
|
0 : 0 A | :
. | ayusspcan [ N
‘“' i H ‘\i
_9l 1 9l i
| | | | |
—2 0 2 —2 0 2
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T T T
2t 1 2f 1
0f 1 of 1
—2 <l —2 - |

| | | | | |

—2 0 2 —2 0 2

Definition 3.1.4
Let a be a fixed point of f(x).

1. If | f'(a)| > 1, we call a a repelling fixed point
2. If | f'(a)| < 1, we call a a attracting fixed point
3. If |f’(a)| =1, we call a a neutral fixed point

Neutral fixed points can be a lot of different things.

~

Theorem 3.1.5 (attracting fixed point theorem)

Suppose a is an attracting fixed point of f(z). Then, there exists an open interval I containing
a such that

1. forallze I, neN, f"(x) €I

2. forallz € I, f*(z) = a
- J

Recall the -0 definition of a limit.

Definition 3.1.6 (limit of a function at a point)
Let f: A— R, ACR.

We say a point a € A is non-isolated if for each € > 0 there exists b € A, b # a with
be (a—e,a+e).

Suppose a is non-isolated. We say lim,_,, f(x) = L if for all £ > 0, there exists a ¢ > 0 such
that |f(z) — L| < € whenever a € A and 0 < |z — a] < 4.

It is important to define non-isolation. If a is isolated, we can choose a § where |z — a| < ¢ is false.
Then, every point is vacuously a limit point.

We now give the proof of the attracting fixed point theorem:

Proof. Assume |f’(a)| < 1. Then, there exists ¢ € R such that |f’(a)| < ¢ < 1. By definition of the

17



PMATH 370 Winter 2024: Lecture Notes James Ah Yong

derivative, this means we can write

o H@ = f@l
T—a Tr—a

and by the definition of the limit, we know there exists § > 0 such that

|[f(z) — f(a)]

<¢, Vzxe(a—9d,a+)9)
|z —al

Hence, for x € I := (a — d,a + 9), we have |f(z) — f(a)| < c¢|x — a] and f is a contraction.

In particular, for x € I, we have 52;757;7; 6
|f(x) —a| = |f(z) — f(a)] (a is a fixed point)
<clr—a| < |z —al (c€(0,1))
<9

That is, f(z) € (a — d,a + §) = I. Continuing for the rest of the orbit, for all n € N,
[f"(x) —al < |z —al < |z —a <6

so we also have f™(z) € I.

Finally, notice that 0 < |f"(x) — a|] < ¢"|x — a| and ¢"|x — a] — 0 since ¢ € (0,1). By the squeeze
theorem, |f"(x) —al — 0. O

Theorem 3.1.7 (repelling fixed point theorem)
Suppose a is a repelling fixed point for f(z). Then, there exists an open interval I containing
a such that for all x € I,  # a, there exists n € N such that f™(z) ¢ I.

Proof. Say |f’(a)] > ¢ > 1. Then, as above, there exists a § such that

o @) = (@)

T—a xr—a

>c = [f(x) = fla)] = c|z — q

forallz € I :=(a—0d,a+9).

Since a is a fixed point, |f(x) — f(a)] = |f(xz) —a|. Suppose for a contradiction that for all n,
f™"(x) € 1. But since ¢ > 1, |f(n) — a|] > ¢"|z — a| — oo. That is, 6 must be arbitrarily large, which
it is not. n

3.2 Neutral fixed points

Neutral fixed points can exhibit a lot of different behaviours.

Example 3.2.1. For f(z) = —z, 0 is a fixed point with |f’(0)| = 1. The orbit bounces:

18
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0.4}

attracting but too slowly.

—0.5

Example 3.2.2. For f(z) = x — 2?2, |f/(1)] = 1 is a neutral fixed point. It is attracting from
the right and repelling from the left:

—0.2 |-

N

—0.4

—0.4

—0.2

Example 3.2.3. For f(x) = x—23, | f/(0)| = 1 is a neutral fixed point. It is weakly attracting,

o+

0.5

—_
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repelling but too slowly:

—0.5 | N

—1 —0.5 0

—0.5 - a

Example 3.2.4. For f(z) =z + 23, |f/(0)| = 1 is a neutral fixed point. It is weakly repelling,

0.5 -

1

Example 3.2.5. Consider f(z) = 2 —1. The orbit at a = 0 is periodic (0, —1,0,
period 2. Near 0, the orbit tends to the (0, —1)-cycle:

—1,...) with

I

T Lectures 5 and 6 adapted from Rosie T

We will call 0 an attracting periodic point because 0 is an attracting point of f2(x).

Definition 3.2.6
Let a be a periodic point for f(x) with period n.

fixed point of "

We say a is an attracting /repelling /neutral periodic point if a is an attracting/repelling/neutral

Finding a closed form expression for something like f19(z) is a nightmare, so we need a better way.

20

Lecture 7
Jan 22
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Proposition 3.2.7
Let f(z) be a differentiable function. Then, (f*) (x) = f'(z) - f'(f(x)) - f (f*(z)).

Proof. Proceed by induction on n.
If n =1, we have f'(x) = f/(x) and we are done.
Suppose (f™) (z) = HZ;; I/ (f¥(x)) for some n > 1. Consider fm*i:

d +1 _d n o/ en n\/
o @) = f( (@) = f( (@) - (1) (@)

by the chain rule. Then,

(f) (@) = £/ (f* (@) - (f*)' ()

n—1

completing the proof. O
Example 3.2.8. Analyze the periodic point f(z) = —%xZ + ga: +1,a=0

Solution. The orbit is (0,1,2,0,1,2,...) with period 3.
We have f'(x) = =3z + 3. Then, (f*)/(0) = f'(0)f"(1)f'(2) = (—5)(—=3)(3) = T > 1.

Therefore, the point is repelling. O

21



Chapter 4

Bifurcations

In general, bifurcation theory is the study of how a family of curves can change when a defining
parameter is changed.

Consider the quadratic family:

Qclz) =2*+C
defined by the parameter C' € R.

Problem 4.0.1
How does the behaviour (fixed points, orbits, etc.) of Q- change based on C?

First, we can find the fixed points (if they exist) by solving

1+v1—-4C
2

2_24+0=0 < z=

Qcelz) =2 <= =z
and note that Q(z) has 2 fixed points when C' < i, 1 fixed point when C' = %, and no fixed points
when C > i.

Suppose C > i. Then, we must have Q¢ (x) — oo for all .
Instead, if C' = i, Qo (x) has the unique fixed point p = % Since Q¢ (z) = 2z and Q(p) = 1, this
is a neutral fixed point. In fact, it attracts to one side and repels from the other.

Finally, if C < %, Qc(z) has two fixed points p, = Ly ;740 and p_ = 17V;74C. Then, Qn(p,) =
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14+ +v1—4C > 1 is repelling. Next,
—1<Qclp) <1
= —-1<1-V1-4C<1
= —2<—V1-4C<0

= 0<V1—-4C< 2

<~ 3<C<1
4 4

and in fact if C < —3, Qi(p_) < —l and if C = -2, Q4(p_) = —1.

&

(Theorem 4.0.2 h
For the family
QC(x) = $2 + C?
depending on C:
1. All orbits tend to oo if C' > i.
2. When C = %, Qo (z) has a unique fixed point % and it is neutral.
3. I C< %, Qc(z) has two fixed points p, and p_. The point p, is repelling. Moreover,
(a) if —% <C< i, p_ is attracting;
(b) if C = —%, p_ is neutral; and
(c) if C' < —%, p_ is repelling.
J

Definition 4.0.3 (bifurcation)

We say a family of functions F)\(x) undergoes a bifurcation at \, if there is a change in fixed

point structure at Ag.

Example 4.0.4. The quadratic family Q~(z) = 22 + C undergoes a bifurcation at \, = %.

Definition 4.0.5 (tangent bifurcation)

€ > 0 such that:

1. for A\j —e < XA < Ay, F)\(x) has no fixed points on I;

other repelling.
(or with all inequalities flipped)

2. for A = Xy, F\(z) has one fixed point and it is neutral; and
3. for \y < XA < Ay + ¢, F\(x) has two fixed points in I, one of which is attracting and the

A family F\(z) undergoes a tangent bifurcation at \, if there is an open interval I and an

23
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Visually, you have situations like

121 -
1, |
1, -
0.8 |
0.6 |
04l 1 os| |
0.2 |
0l | 0 |
L L L L L L L L L L L L
0 02 04 06 08 1 0 02 04 06 08 1
T T T T
1, |
0.5 |
0, -
L L L L L L
0 02 04 06 08 1

for A < Ag, A = Ao, and A > A,

Example 4.0.6. Consider the exponential family F\(z) = e* + X at A\j = —1.

This is a tangent bifurcation.

Example 4.0.7. F\(z) = Az(1 —x), g =1

Here, we have two fixed points on one side of A\; and one fixed point on the other. So this is a
bifurcation but not a tangent bifurcation.

24



Chapter 5

Cantor set

1+v1-4C

Recall the quadratic family Qa(z) = 22 + C for C < —2. Then, p, = 5

Consider the interval/region I = [—p,,p,]| and I x I.

>2and —p, < —2.

Draw the picture of y = =, y = Q(z), and the box I x I:

A%

Let J; C I be the interval such that Q(x) ¢ I for all z € J;.

For x € Jy, Q%(x) — oo. Moreover, if there exists n such that QF(x) € Jy, then Q% (z) — oc.
Consider the set of points A = {x € I : Vn,Q%(x) € I} with “interesting” orbits staying inside I.
Now, let J, ={z € I:Qu(x) € J;} ={z € I: Q%(x) ¢ I} and define higher J,, likewise.

Then, A = I\ (J;UJyU-) is a Cantor set, that is, a fractal. (ol credits!)

Drawing A on the x-axis, we get something that looks like

A Jy Iy Jy s
1 Lecture 9 adapted from Imaad | Lecture 9

Jan 26
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Definition 5.0.1 (Cantor middle thirds set)
Let Cy = [0, 1]. Remove the open middle third interval each time.

That is, C; = [0, %] U [%, 1], Cy =0, %] U [%, %] U [%, %] U [g, 1], and so on.

The set K = (", C, is the Cantor (middle thirds) set.

Proposition 5.0.2
Suppose a bunch of sets A,, C R are closed. Then, (] A4,, is also closed.

Proof. Let (a;,) C NA,, where (a;) — a.

Note that for all n, (a) C A, = a€ A, = a€[)4, O
Proposition 5.0.3
Let A, B C R be closed. Then, AU B is closed.

Proof. Let (a,,) € AU B where a,, — a.

WLog, {n:a, € A} is infinite. This allows us to construct (b,,) C A such that b,, — a.

Since A is closed, a € A C AU B. O

Theorem 5.0.4 (Cantor sets are closed)

Any Cantor set, in particular K, is closed.

Theorem 5.0.5

K contains no non-empty open intervals.

—

Proof. Consider I C K. Then Vn,I C C,,.

Then ¢(I) < 3% = ((I) =0 = I = @&, contradiction.
Now, let’s consider the base-3 expansion of x € [0,1]. = 0.5;8953,--,5; € {0,1,2}

Consider [0,1/3] and [2/3,1] and [0,1/9] [2/9,1/3] [2/3,7/9] [8/9,1].

s1=0 s1=2 51=0,5,=0

Remark 5.0.6. x € K if and only if x can be written in base 3 using only 0s and 2s

Example 5.0.7. 5 € K. 5 = 0.15 = 0.02222 .4

26



PMATH 370 Winter 2024: Lecture Notes James Ah Yong

Theorem 5.0.8
K is uncountable and |K| = |R|.

T Lecture 9 adapted from Imaad T
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Chapter 6

Symbolic dynamics

Lecture 10

Recall the construction of the Cantor set from the quadratic family: Jan 29

Fix C < —2 and consider Q(z) = 22 + C. Define an interval I = [—p_,p.] for a fixed

point p, = Ly ;740. Then, let

Jy={ze€l:Qc(x) ¢ I}
Jo={re€l:Qc(x) € J;}
Jy={rel:Qc(x) € Jo}

and define A =TI\ (U J;) ={z €1:Vn,Q%(x) € I}.

We proceed to do some analysis of A by translating into some sort of sequence space, doing analysis,
and then going back to the Cantor set.

Notation. Define closed intervals I, U I; := I\ J; on the left/right of J;:

4 'a F .|
E =S x e

Iy Ji I

Definition 6.0.1
For x € A, the itinerary of x is the sequence S(z) = (z¢z;x9x3-) with z; € {0,1} where

Our goal is to understand S(x) better so that we can glean information about A.

Notation. Let ¥ = {(zgz 24 -) : z; € {0,1}} be the sequence space. Write elements of ¥ as
binary strings. Then, S : A — ¥ is a function.

It would be helpful to define some PMATH 351 /topology shit.
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6.1 Intro to topology

Definition 6.1.1 (metric space)
Let X be a set. A function d : X x X — [0,00) is a metric if

1. d(z,y) =0 < z =y (positive definiteness),
2. d(z,y) = d(y,z) (symmetry), and
3. d(z,y) < d(z,z)+d(z,y) (triangle inequality).

The pair (X, d) is a metric space.

Once we have a metric space with a notion d of distance, we can adapt all our definitions from real
analysis to an abstract space.

Example 6.1.2. The following are all metrics:

® XZR? d(m7y>: |:I"_y|

o X =R" d(xy) = V- 0P F T 5

For any set X, the discrete metric d(z,y) = [z # y] (but is not particularly useful).

For a subset A C R, d(z,y) = |x — y| is a metric.

Extremely helpfully, we can define a metric on the sequence space.

Definition 6.1.3 (Cantor space)
Let X = X. Define d(z,y) = Y7, 27" |z; — yil.

This is well-defined (converges) since |z; — ;| <1 and Y 27% converges.

Example 6.1.4. Let x = (1111 ---) and y = (1010--+). Calculate d(z,y).

Solution. By definition,

'Loo 1
- Z o (even indices cancel)
=0
11
=327
i 1) 1 (4) 42 -
c2\1-1) 2\3) 6 3

We don’t want to do this manual calculation every time.
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Proposition 6.1.5
Let z,y € 3.

1. If x; =y, for i <mn, then d(z,y) < 2%
2. If d(z,y) < 2%, then x; =y, for i <n.

Proof. Suppose z; = y,; for i < n. Then, d(x,y) < ZZinH 2% since the first n terms will be 0 and

n+1
|z; —y;] < 1. That is, d(z,y) < 112_ _ 1

on
2

Conversely, suppose d(z,y) < Qin and for a contradiction that there exists k < n where z;, # y,.

Then, there will be a 2% term in the sum, so d(z,y) > 2% > 2% Contradiction.

1 _

5 = 1. However,

Example 6.1.6. Let 2 = (0000---) and y = (1000---). Then, the distance is
Lo F Yo-

Definition 6.1.7 (shift map)
The map 0 : ¥ — ¥ : (xqz 2y -) > (T;2924 ) that shifts a bitstring one bit to the left.

Remark 6.1.8. 0% (zq2175 ) = T T p 1 Tppo

Definition 6.1.9 (continuity in metric spaces)
Suppose (X, d) and (Y, d") are (possibly distinct) metric spaces.

A function f: X — Yis continuous at y € X if for all € > 0, there exists a § > 0 such that for
all z € X

d(z,y) <6 = d'(f(z), f(y)) <e

We say f is continuous if it is continuous at every y € X

Proposition 6.1.10
The shift map o : ¥ — ¥ is continuous.

Proof. Fix y = (yoy1Y2 ) € ¥ and let € > 0. Take n € N such that 2i <e.

Consider § = ——. Let = = (zyz,25-) € ¥ such that d(zx,y) < 6.

on+1*

Therefore, by prop. 6.1.5, x; = y; for i = 0,1,...,n + 1. Then, o(z) = (z,2525---) and o(y)
(y1Y2ys ++) agree for the first n terms.

Again by prop. 6.1.5, d(o(z),0(y)) < 2% <e.

30
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Definition 6.1.11 (convergence in metric spaces)
Let (X,d) be a metric space, (z,,) C X, and z € X.

We say (x,,) converges to x (x,, — ) if for all £ > 0, there exists N € N such that

n>N = d(z,,z) <e.

Proposition 6.1.12 (sequential characterization of continuity in metric spaces)

Let (X,d) and (Y,d") be metric spaces and f : X — Y. Then, f is continuous if and only if
f(z,) — f(x) whenever z,, — x.

Definition 6.1.13 (homeomorphism)
Let (X,d) and (Y,d’) be metric spaces. A function f: X — Yis a homeomorphism if

1. fis injective,

2. f is surjective,

3. fis continuous, and
4. f~1is continuous.

Suppose f: X — Y'is a homeomorphism. Then, if (z,,) C X with z,, — z, then f(z,,) — f(x).

Likewise, suppose (y,,) C Y with y,, — y. Say y,, = f(z,,) and y = f(z). Then, f(z,) — f(x), so
fHf (@) = fH(f(2) and @, — .
That is, fis a relabelling of X to Y. We think of X and Y as the “same metric space”.

6.2 Revisiting the itinerary

Remark 6.2.1. Suppose we have x € A with S(z) = (2o, ). Then, by definition, z € I, ,
Qc(‘r) S Imla Qz(l‘) € I;r27 etc. Therefore, S(Qc(x» = (‘Tlx2 ) = O-(S<‘T)>

Iterating, S(Q2(z)) = o™ (x).

Theorem 6.2.2

S : A — ¥ is a homeomorphism.

We will prove this with some more tools. Recall from MATH 137:

Theorem 6.2.3 (monotone convergence theorem)

If (a,) C R is increasing/decreasing and bounded, then (a,,) converges.
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Instead of using this directly, we use a lemma:

Lemma 6.2.4 (nested intervals lemma)
If I, D I, D I3 D - are closed intervals, then (2 I, # &.

Proof. Let I, = |ay,, by].
That is, [aq,b;] D [ag, bs] D [ag, bs] .

Then, (a,,) is increasing and (a,,) C [aq, b;]. Likewise, (b,,) is decreasing and (b,,) C [a;, b;]. By the
monotone convergence theorem, a,, — a and b,, — b for some limit points a and b.

Therefore (handwavey), & # [a,b] C (., I, O

5425 Lecture 12
0

We will now prove thm. 6.2.2. It is true for ¢ < —2, but we will show it for ¢ < — Feb 2

Proof. (injective) Suppose z,y € A with S(x) = S(y) but « # y. Then, for all n, Q7 (z) and Q7 (y)
live in the same I, or I;. Recall from Assignment 2 that for all x € I\ J;, = I, U I;, we have
|QL(x)| > p > 1. By the mean value theorem,

|Qc(2) = Qe(y)| = plz —yl.

Since @, is injective on I, and I;, we have that Q.(x) # Q.(y). Thus,

|Q2(z) — Q2(y)| = p?|z —y|

Q2 (z) — Q2 (y)| > p™|x —y|

Since p > 1, we have u"|x — y| — co. However, |Q7(z) — Q% (y)| < max{l(l,),4(I;)}, so it cannot
blow up to infinity. Contradiction, so we have injectivity.

(surjective) Let y = (ypy; -+-) € X. For n € N, define

I ={zel:zel,,Q.(r)el,, .., Qx) €, }.

YoY1Yn

It is enough to show there exists

00
RS ﬂ Iyoyr"@/n
n=1

which would imply S(z) = y. Clearly, by definition, I, 21, , D1, , 2
We claim that each I, , .., is a closed interval. Proceed by induction.
First, I, € {Iy, 1} so it is closed. Assume I, , .., is closed for some n > 0. Note:
T [yoy1“‘yn+1
el Q) € 1,,QuQ) € I, QuQ2x)) € I, .. Q1) € 1, |
=T E Iyo N QZl(I@hZ/?“ynH) (*)

By the inductive hypothesis, I, is a closed interval (the subscript has length n).

1Y2Ynt1

We have
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Iy I

N/

That is, Q7 Y( ) is a union of two disjoint closed intervals, one in I, and one in I;.

In particular, returning to (x), Iy, .., =1, N Qzl(IylyQ"'yn+1) is one of these closed intervals.

. Hence, S(z) = y and we have

. . oo
By the nested intervals lemma, there must exist x € (. I, , ..
’ n=1"YoY1"Yn

surjectivity.
(continuous) Fix y € A and say S(y) = (yoy1¥s ). Let € > 0 and choose n such that 2% <e.
Consider the 2"*! disjoint, closed intervals Lyg o, -

Pick 6 > 0 such that (y — 4,y + §) only overlaps with I, , ..
finite set of disjoint closed intervals.

v We know ¢ exists since we have a
n

For z € A with [z —y| <0, v € I, and so d(S(x),S(y)) < 2% <e.

oY1 Yn

(continuous inverse) Similar. O
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Chapter 7

Chaos

. Lecture 13
7.1 Prerequisites to chaos Feb 5

Definition 7.1.1 (density)
Let (X,d) be a metric space. We say A C X is dense in X if for all x € X and ¢ > 0, there
exists a € A such that d(a,z) < e.

Informally, there is always something “that close” to any point.

Example 7.1.2. Q is dense in R. Given a real number, there is always a decimal approxima-
tion with arbitrary accuracy.

Z is not dense in R. Given x = % € R, there are no integers within € = %.

Example 7.1.3. Let A = {x € ¥ : IN,Vi > N,z;, = 0}, i.e., the sequences which are
eventually constant Os. This is dense in X.

Proof. Let © = (xgrix4-+) € ¥ and let € > 0. As usual, take n € N such that 2% <e.

Consider y = (zygx2z4 - 2,0000--) € A. Then, by prop. 6.1.5, d(z,y) < 2% <e. O

Exercise 7.1.4. Let A= {x € ¥ : z is periodic}. Show that this is dense in X.

Remark 7.1.5. A in exercise 7.1.4 is exactly the set of periodic points for the shift map
oY — Y.

Proposition 7.1.6
There exists z € ¥ such that {o*(2) : K € N U {0}} is dense in X.
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Proof. Take z = (0 1 00 01 10 11 000 001 ---) to contain all possible blocks of increasing sizes.
Let z € ¥ and € > 0. Again, let 2% < e.

For some k, 0%(z) and x agree on the first n terms. This must exist because z has every possible
sequence of n terms. That is, by prop. 6.1.5, d(c¥(2),z) < 2i < €. O
Warning: def. 7.1.7 is not the normal definition from applied math textbooks, but it is what we
will use in the course.

Definition 7.1.7 (dynamical system)

A metric space (X, d) together with a continuous function f: X — X.

This is an abstract space in which we can do orbit analysis and all our fun stuff.

Example 7.1.8. 0 : ¥ — ¥ is a dynamical system (see thm. 6.2.2).

Definition 7.1.9 (transitivity)

We say a dynamical system f: X — X is transitive if for all z,y € X and € > 0, there exists
z € X and n,m € N U{0} such that d(z, f"(2)) < € and d(y, f™(2)) < e.

Informally, given any two points, there is a special point whose orbit gets arbitrarily close to both
points.

Proposition 7.1.10

o X — X is transitive.

Proof. Take z from prop. 7.1.6 such that the orbit is dense in 3.

Then, for all € > 0 and x,y € %, there must exist by the definition of density n and m such that
d(z,0™(z)) < e and d(y,0™(z)) < €. O

Definition 7.1.11 (sensitive dependence on initial conditions)

Let f: X — X be a dynamical system.

We say f is sensitively dependent on initial conditions (or just sensitive) if

38 >0, Ve >0, Vx e X, dJye X, dke N

such that d(z,y) < e and d(f*(x), f*(y)) > B.

Informally, there exists a “wrongness” [ that can always be achieved in the orbit no matter how
close two starting points are.
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Proposition 7.1.12

o : X — X is sensitive.

Proof. Take g = 1.

Let € > 0 and let x € 3. Say 2% < € and pick y € ¥ such that 0 < d(z,y) < 2% That is,  and y
must agree on the first n terms by prop. 6.1.5, but they are not equal.

Therefore, there exists k > n such that =, # y,.

In the distance d(o*(x), 0% (y)) > lx’g;oy’“‘ >1=5. O

7.2 Defining chaos

1 Lectures 14 and 15 adapted from Imaad | Lecture 14
Feb 7

Definition 7.2.1 (chaos)
A dynamical system f : X — X is chaotic if
1. the periodic points for f are dense in X,

2. fis transitive, and
3. f is sensitive.

(Theorem 7.2.2 R
o : Y — Y is chaotic.

\

Proof. By props. 7.1.6, 7.1.10 and 7.1.12. O

Proposition 7.2.3
Let (X,d),(Y,d") be metric spaces.

Suppose f : X — Yis continuous and surjective. If A C X is dense in X, then f(A) is dense
inY.

Proof. Let y € Yand say y = f(x).

Let € > 0. Since f is continuous at z, there exists § > 0 such that
d(z,x) <d = d'(f(2), f(z)) <e€
for any z. In particular, since A is dense in X, we may find a € A such that
d(a,x) <0 = d'(f(a), f(x)) = d'(f(a),y) <€

as desired. ]
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Theorem 7.2.4

Let ¢ < _(5+T2\/5>. Then, @, : A — A is chaotic.

Proof. (periodic point density) Note that Q7 (z) =z < S(Q%(z)) = S(z) < o"(S(z)) = S(z).
By prop. 7.2.3 applied to S~! : ¥ — A, the periodic points for @, are dense in A.

(transitivity) Take z € ¥ from prop. 7.1.6 such that {o¥(z) : K € NU{0}} is dense in X. Again
by prop. 7.2.3, {S71(c¥(2)) : K € NU{0}} is dense in A.

Note: Say S(x) = 2z, we know (S(QX(z))) = o%(S(x)) <= QE(z) =S 1(c%(S(x)))
This, {QX(z) : K € NU{0}} is dense in A. As in prop. 7.1.10, we have that Q. is transitive.
(sensitivity) Recall that A C I\ J; = [, UI;. Let 8 > 0 be less than the gap between I, and I;.

For x,y € A with = # y, supppose S(z) # S(y). Then, there must exist a k& where k™" term of S(z)
does not equal the k" term of S(y).

Hence, |Q¥(z) — Q%(y)| > B and Q,, is sensitive. O
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Chapter 8

Sarkovskii’s Theorem

@ N
Theorem 8.0.1 (period 3) Lecture 15
Let f: R — R be continuous. If f has a point with period 3, then f has a point with period Feb 9

n for all n € N.
J

Proposition 8.0.2

Let I C J be closed intervals and suppose f : R — R is continuous. If f(I) D J, then f(x)
has a fixed point in I.

Proposition 8.0.3

Let I,J be closed intervals, f : R — R be continuous, and f(I) O J. Then, there exists a
closed interval I” C I such that f(I") = J.

We can now prove thm. 8.0.1.

Proof. Let a € R be a period 3 point for f(z). Say f(a) = b, f(b) = ¢, f(c) = a. WLOG, suppose
a<banda<c.

Suppose a < b < ¢. The case where a < ¢ < b is left as an exercise.

Let I = [a,b] and J = [b,c]. Then, f(a) = b and f(b) = c imply by IVT that [b,c] = J C f(I).
Likewise, f(b) = ¢ and f(c) = a imply by IVT that [a,c] =T U J C f(J).

Since J C f(J), there exists a closed interval A; C J such that f(A;) = J by prop. 8.0.3. Again,
A, CJ = f(A;), so there exists a closed interval A, C A; such that f(A4,) = A;.

Now, fix n > 3. Repeating the above process, we can find A, s C A, 3 C - C Ay, C A, C Jsuch
that f(A;) = A,_,. Now, f(I) D J D A,_, means there exists a closed interval A, ; C I such that
f(An—l) = An—2'

Moreover, f(J) D I D A,,_; which means there exists a closed interval A,, C J such that f(A,,) =
A

n—1-

We have f"(A,,) = Jand A,, C J. By prop. 8.0.2, there exists z, € A,, such that f"(x,) = x,.

38



PMATH 370 Winter 2024: Lecture Notes James Ah Yong

Note: for 2 € A,,, f(zy) € A,y C I, fi(zy) € Jfori=2,3,...,n.

For contradiction, suppose f'(x,) = z for i < n.

el €J
Then, f(xy) = fit(zy) = b so f(zg) = b, f2(xy) = ¢, and f3(x,) = a, which is a contradiction
because f3(x,) € J but a ¢ J. Hence, z,, has period n.

That is, f has a periodic point with period n for all n > 3.
Further, f(J) D J and so by prop. 8.0.2, f has a fixed point (aka period 1) in J.

Finally, f(I) D J means J = f(I’) and f(J) D I’ means f(J’) = I’. This implies f2(j') = f(I’) =
Jsup J’. Therefore, we know there exists # € J’ such that f?(z) = x.

If f(x) =, then z € J" and f(z) € I’, meaning x = b. But, f(b) # b = ¢, contradiction.
Hence, = has period 2.

Therefore, since we already supposed f has a period 3 point, f has a period n point for all n. [

Exercise 8.0.4. Complete the proof for the case where a < ¢ < b.

T Lectures 14 and 15 adapted from Imaad T

Lecture 16

Draw the continuous function Feb 12

Then, the orbit of 1is 1+ 3+ 4+ 2+ 5+ 1 and 1 has period 5.

Claim 8.0.5. f has no point with period 3.

Proof. Suppose that f has a point x with period 3. Then, 1 <z < 5.

Suppose = € [1,2]. Then, x € [1,2] N f3([1,2]) since x = f3(z). But f3([1,2]) = [2,5], so x = 2.
However, 2 has period 5 since it is on the same 5-cycle given above.

Suppose instead that x € [2,3]. Then, z € [2,3] N f3([2,3]) = [2,3] N [3,5] = {3} which is also on
the 5-cycle.
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If z € [4,5], then z € [4,5] N f3([4,5]) = [4,5] N [1,4] = {4} which is, again, on the 5-cycle.

Finally, suppose that € [3,4]. Then, f([3,4]) = [2,4] and it is strictly decreasing. Further,
f([2,4]) = [2,5] and it is also strictly decreasing. Once more, f([2,5]) = [1,5] and it is again
strictly decreasing. Since f3 is strictly decreasing, it has a unique fixed point in [3, 4], but it is just
the fixed point of f.

Since we have covered the entire interval [1,5], x must not exist. O
1 < —1
Example 8.0.6. The function f(z) = < —2 —1 <z <1 has a period 1 point at x = 0,
1 x>1

period 2 points [—1, 1]\ {0}, and no other periodic points.

Definition 8.0.7 (Sarkovskii ordering)
Start by ordering the odd numbers 3 <5 <7 <9 < -

Then, all those are -+ <2-3<2-5<2-7< -
All those are - <223 <22.5<22.7 < -
Complete the ordering as - < 2" <2771 <... <22 <2 < 1.

This is a total order on the natural numbers.

Example 8.0.8.

26 = 2-13 < 22 -5 = 40 because the exponent of 2 is smaller.
3072 = 210. 3 < 25 = 32 because powers of 2 are big.

n <1 for all n.

215 < 23 since the powers of 2 are ordered backwards.

Theorem 8.0.9 (Sarkovskii’s theorem)

Let f: R — R be continuous. Suppose n < m in the Sarkovskii ordering. Then, if f has a
point with period n, then it has a point with period m.
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Chapter 9

Fractals

9.1 Definitions and dimensions

Definition 9.1.1 Lecture 17

Define a few things from topology. Feb 14

o For x € R", the norm ||x| = \/x% + Ty 4+ 22

e d(x,y) = |x —y| is our default metric on R™

o For x € R™ ¢ > 0, the open ball of radius ¢ centered at z is B.(x) = {y € R" :
Ix—y <el}

o Wesay U € R" is open if for all x € U, there exists ¢ > 0 such that B_(x) C U.

o The boundary §(A) of a set A C R" is the closure of A without the interior of A.

Definition 9.1.2 (topological dimension (zero case))

We say S C R" has topological dimension dim, .S = 0 if for all x € S, there exists arbitrarily
small open sets U 3 x such that 6(U)N S = @.

)

Example 9.1.3. Let X =. .. Then, since we can draw balls {*) {*) separating each point,
dim, X = 0.

Example 9.1.4. X = {= : n € N} U {0} has topological dimension 0.

Definition 9.1.5 (topological dimension (non-zero case))
A set S C R™ has topological dimension k& € N if for all x € S, there exists arbitrarily small
U 3 x such that 6(U)NS has topological dimension k—1, where k is minimal with this property.
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Example 9.1.6. Consider a line X = . Then, since any ball’s boundary / creates
an intersection made of two distinct points (i.e., a set with topological dimension 0), we know
that dim, X = 1.

Example 9.1.7. Let X be a circle Q Again, any ball’s boundary @ still only has

two intersecting points, so dim, X = 1.

Example 9.1.8. Let X be a filled 2D region.

Then, the intersection of a ball’s boundary will give either a or an arc, which have
topological dimension 1, so the region has topological dimension 2.

Example 9.1.9. Let X be a non-filled sphere.

Then, the intersection of a 3D ball’s boundary will give a circle, which has topological dimension
1, so dim, X = 2.

Example 9.1.10. Let X be a filled sphere.

Then, a 3D ball’s boundary’s intersection is either a hollow sphere or a spherical cap, which
each have topological dimension 2, so dim, X = 3.
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Definition 9.1.11 (fractal dimension)
We say S C R" is self-similar if S may be divided into K congruent subsets, each of which
may be magnified by a fixed M to yield S itself.

In K
InM"*

The fractal dimension of S is given by dim;S =

Definition 9.1.12 (fractal)
A fractal is a self-similar S C R" such that dim;S > dim, S.

9.2 Fractal gallery

Example 9.2.1. Let X = be a line. Then, since we can divide it into n smaller lines
Inn

each of size %, it has fractal dimension dim;X = ;— = 1. The topological dimension is
nn

dim, X = 1.

So this is not a fractal, and is indeed just boring (not a fractal).

Example 9.2.2 (Sierpinski triangle). Let X be the Sierpinski triangle, i.e., the limiting point

of the process:

Then, the topological dimension is dim;, X = 1 because, in the limit, any ball will touch only
single points. In particular, we can imagine balls touching the three points of a triangle.

However, the fractal dimension is dim; X = }E—g ~ 1.58 > 1 because each step is consisted of 3

previous steps scaled by % so X is a fractal!

Lecture 18
Example 9.2.3 (Cantor set). Let K be a middle-thirds Cantor set, i.e., the limiting point of  fep 14

the process:

For any point in the Cantor set, we can find a small empty region around it since we keep

cutting away from the sides. That is, dim; K = 0. However, dim; K = ﬁ—g > 0.
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Example 9.2.4 (Koch curve). Let X be the Koch curve, where each line segment is replaced

by a bump:

As a continuous line, intersection with a ball boundary gives points, so dim, X = 1. We have

_ Ind
—1n3>1.

four copies scaled by %, so dim, X

Example 9.2.5 (box fractal). Let X be a box fractal, where we delete edge pieces of a 3x3

N E

Then, since the squares are solid, we have topological dimension 1 but fractal dimension
dim; X = &3 > 1.

Example 9.2.6 (Minkowski sausage). Let X be the Minkowski sausage, where each line seg-

ment is replaced by a square wave:

In8 3

Then, as a continuous line, dim; X =1, but we have dim; X = — =35 > L.

There is a hidden connection between iterated systems and fractals! For example, playing around

with the website http://www.shodor.org/interactivate/activities/ TheChaosGame/ has a process

where each iteration moves a point halfway to one of the vertices.

Lecture 19
Feb 26

...one reading week later...

Recall the chaos game:

1. Start with the vertices (v, vq,v5) of an equilateral triangle.
2. Pick p €g R2.

3. Pick v; €g {vy, vy, v3}.

4. Replace p with the midpoint of p and v,.

. Iterate.

Where does the orbit of p end up? Somehow, exactly in the Sierpinski triangle. Our goal is to
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formalize this.
9.3 Iterated function systems

Fix some p, = BO] and contraction factor 0 < 8 < 1. Consider
0

i (M) R Y

i.e., F(p) = B(p — Po) + Po- Then,

L. F(Po) = Po
2. |F(p) — F(po)l = 18P —Po)l = Blp — pol
3. [F™(p) — poll = B"[p — poll = 0 so F™(p) — py

xo]
Yo

Definition 9.3.1
Let 0< 3<1and py,...,p, € R% Foreachi=1,..,n, let

F,(p) =B —p;) +p;

Then, {F},..., F,} is an iterated function system (IFS).

the orbit q;,qs,qs, ... lives is the attractor for the IFS.

Fix q, € R?2. Randomly select an F;. Let q; = F;(q,). Repeat. The set of points in which

Fi(p) = %(P —p;)+p; = %(p + p;) is the midpoint.

Example 9.3.2. Formalize the chaos game. Let p; = v}, Py = vg, P35 = v3, and 8 = % Then,

The set {F}, F,, F3} is an iterated function system whose attractor is the Sierpinski triangle.

Note that we can construct pathologically unlucky sequences of F}’s that give us point sequences

that never reach the attractor. However, we ignore those :)

Example 9.3.3. Let Po = (070)T7 b = (17O>T7 P2 = (07 1)T7 P3 = (17 l)Ta Py = (%7 %)Ta and

p=1,
What fractal does this produce?

Solution. Draw the points:
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P1 Ps3
[ ] [}
Py
[}

[ J [ J
Po P2

Divide the square into thirds (since we are using 3 = %) Then, colour in the images of the square

under each Fj:

P1 Ps3
[ ] [}
Fy Fy
P4

[ F4

Fy F,
[ J [ ]
Po P2

This is going to produce the box fractal.

Example 9.3.4. Repeat with p, = (0,0)", p; = (1,0)", p, = (0,1)", and 3 = %

Solution. Again, draw the points:

P2

[ ]

[ ] [
Po P1

P2
[ ]
F,
F, F
[} [}
Po P1
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This will generate a Sierpinski-like triangle. O

Lecture 20
Example 9.3.5. Let p, = (0,0)", p; = (1,0)7, 3= % Repeat. Feb 28

Solution. Write the functions explicitly
1 [z lm} 1 [x — 1] H [lx T z]
Fy(x) == = and F;(x)= - + =3 3
00 =5] = |17 =507 o = P

and pick a point q5 = (xo,yo)T € R2. We say that the orbit of qo under {Fy, Fy} is qg, 41, Ga, ---
with random selections sy, s, 53, ... € {0,1} where ¢; = F, (g;_1)-

First, notice that no matter which one we choose, y, = %@/2‘—1- Therefore, y,, = Sinyo — 0.

For the z-coordinate, we can write it out explicitly to find the pattern:

1 2s;
Ty = 3.%0 + ?

1 251  2sy
TR T Ty

1 254 25, 2s,
BTN T 3

As n — oo, the first term disappears. The remaining term looks like a funny ternary expansion.
Therefore, x,, gets arbitrarily close to points of the form >, ;— where t; € {0,2}.

However, the set of points whose ternary expansion uses only Os and 2s is exactly the Cantor set
from def. 5.0.1 (see rem. 5.0.6).

Therefore, the attractor of the IFS {F,, F}} is {(z,0)" : x € Cantor set}. O

9.4 Generated iterated function systems

We want to generalize our definition of IFSs and fractals so that we can play with things that look
exactly like fractals (for example, where the scaling factor differs for each piece).

Definition 9.4.1 (affine transformation)
A function F': R™ — R"™ given by F(x) = Ax + b where A € M (R) and b € R". If b =0,

we recover the linear transformations.

We call F a linear contraction if there exists 0 < A < 1 such that |F(x) — F(y)| < A|lx —y]|-

In general, “affine” just means linear but shifted.
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cosf —sinf

Example 9.4.2. Let A = [sinG cos 0

]and0<6<1.

Then, F : R? = R? F(x) = (34x + b) is a linear contraction.

This linear contraction (1) scales by 3, (2) rotates counter-clockwise by 6, and (3) translates by b.

Definition 9.4.3 (compactness)
A subset A C R™ is compact if A is closed and bounded.

Write X, for the set of all non-empty compact subsets of R".

Definition 9.4.4 (generalized iterated function system)
Let Fy,..., F}, : R™ = R"™ be linear contractions. We call F': X', — X,, given by

F(A) = Fy(4) U F,(4) U Fy(4) U - U Fy(4)

a (generalized) iterated function system.

This is well-defined since finite unions and the F}’s continuity preserve closure and compactness.
We will now:

1. Equip X,, with a metric.
2. Show F has a unique fixed point A* and for all A € X,,, F"(A) — A*. The point A* is the
attractor of F'(and is a fractal!).

1 1 1 1
Example 9.4.5. Let F(x) = % [*{5 ﬂ] x and F,(x) = % [ 1‘/5 \?] X + [é]
N 2 V2

Find the attractor.

Solution. Notice that F; will (1) scale by % and (2) rotate by . Then, F, will (1) scale by %,
(2) rotate by %ﬂ, and (3) shift one unit left.
Consider the line L from (0,0) to (1,0).

Then, we can draw:

Ja%ﬁﬁa% %%HEE? 3%

48

I
]
J

[

1 MAan

R

EMJIJ

H
OO
-+

P 7



PMATH 370 Winter 2024: Lecture Notes James Ah Yong

This fractal, the dragon fractal tiles the space. O

Lecture 21
Remark 9.4.6. For all A € X, F;(A) € X,. This is because the continuous image of a  p74r J

compact set is compact (beyond the scope of this course).

We can now equip X, with a metric. We will consider F': X,, — X,, : A+ Fi(A) U U F,(A).
This is well-defined since we already showed that the finite union of closed sets are closed, and it
is trivial to show that the finite union of bounded sets is bounded.

We will then show that F'has a unique fixed point A* € X, and that for all A € X', F"(A) — A*.

1 1
_ 1 _ 1 5 _ 1 1
Example 9.4.7. Let Fy(x) = 5x, Fy(x) = 5x + [(2)], and F3(x) = 5X + g .
Find the attractor.
Solution. Let A be the filled triangle with vertices (0,0)7, (1,0)7, (3, @)T:
— — e — A"
This is the Sierpinski triangle.
Alternatively, we could have started with a square:
— — — e — A*
or with a goose:
TODO
but these all converge to the same attractor. O

4 9 1 T =
Example 9.4.8. Repeat with F)(x) = %x, Fy(x) = % \/25 2oxt [8} , F3(x) = % 2\@ Tx+
2 2 T2 2

1

2
\%] , and Fy(x) = %x—l— [g]

6

Solution. Let L be the line segment from (0,0)" to (1,0)". Then:

- Hm_“'_”‘*
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The attractor converges to the Koch curve. O

Example 9.4.9. Let A =[0,1] x [0, 1] (i.e., the filled square).

Repeat with F|(x) = x, Fy(x) = %x + [(1)], Fi(x) = %x + [(1)]

Remark 9.4.10. Since Fj is not a linear contraction, nhﬂrglo F"(A) will depend on A.

Solution. Draw the [0, 1] x [0, 1] square and iterate:

This is not a fractal by our strict definition (it is not even self-similar), but in our eyes and our
hearts it’s a fractal. O

Definition 9.4.11 (Hausdorff metric)
Let ve R", A B € X,. First, define

d(v,B) := min{|v—Db| : b € B}

(this should be an inf{---} but since B is compact, the extreme value theorem gives us min{---}
instead)

Then, define
d(A,B) := max{d(a,B):a € A}

i.e., the length of the longest direct path between points in A and B.

Finally, define
D(A, B) := max{d(A, B),d(B,A)}

to fix the fact that d is not symmetric.

Lecture 22
Fact 9.4.12. D is a metric on X, Mar 6

We take this fact without proof.

Example 9.4.13. A= {(1,1)},let B={(z,0): 0<x <1}

[figure]
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Then, d(A, B) =1, d(B, A) = V2, and D(A, B) = max{1,V2} = V2.

Lemma 9.4.14

Let f : R™ — R™ be a linear contraction such that |f(x) — f(y)| < A|jx—y| for some
A€ (0,1).

Then, for A, B € X,,, D(f(A), f(B)) < AD(A, B).

Proof. First, we have

A(f(a), (B)) = min | f(a) ~ FB)] < min Mo — b| = Aminla — b] = Ad(a, B)

and so
d(f(A), f(B)
Therefore, d(f(A), f(B)) < AD(A, B). Similarly, d(f(B), f(4)) < AD(A, B).
Hence, D(f(A), f(B)) < AD(A, B). O

) = maxd(f(a), f(B)) < Amaxd(a, B) = (4, B) < AD(A, B)

Lemma 9.4.15
For AlaAQ’BluBZ s j(nn

D(A; U Ay, By U By) <max{D(Ay, By), D(Ay, By)}

Proof. First,

d(A; U Ay, B UB,y) = max d(a,B; U By)

acAUA,

= max {max d(a, By U By), maxd(a, B; U Bz)}
A acA,

acAy

< max {mixd(a, Bl),(rlréz%);d(a,Bz)} (%)

acA,
by the min in the definition.

= max{d(A,, B,),d(Ay, By)} < max{D(A,, B,), D(Ay, By)}

Hence, d(A; U Ay, B; U By) <max{D(A,, B,), D(Ay, By)}

Similarly, d(B; U By, A; U Ay) < max{D(A,, By), D(As, By)}

Therefore D(A; U Ay, B; U By) < max{D(A,, B;),D(As, By)} O

Lemma 9.4.16

Let F},---, F}, be linear contractions with contraction factor A € (0,1).

Consider F : X,, — X, F(A) = F,(A)UF,(A)U-UF,(A). Then, D(F(A), F(B)) < AD(4, B).
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Proof. We have, D(F(A), F(B)) < max;__ D(F;(A),F;(B)) by lem. 9.4.15. By lem. 9.4.14,
S maXizl k )\D(A, B) — )\D(A, B) D

.....

Definition 9.4.17
Let (X,d) be metric space.

1. (z,,) € X is Cauchy if Ve > 0, 3n € N, such that n,m > N = d(z,,z,,) < €.
2. X is complete if every Cauchy sequence (z,,) C X converges to some z € X.

Fact 9.4.18. (K,,, D) is complete.

We do not prove this.

Lecture 23

(Theorem 9.4.19 Mar 8

Let Fy,..., F}, be linear contractions with contraction factor A € (0,1).
Let F': X,, — X ,, be the corresponding IF'S. Then,

1. F has a unique fixed point A*, which we call the attractor.
2. Forall Ae X, F"(A) — A"
N J

Proof. Fix A € X,,. Consider its orbit F™(A). Look at the distance

D(F™*1(A), F™(A)) = D(F™(F(A)), F™(A)) < A" D(F(A), A)

by lem. 9.4.16. Let €,, = A™D(F(A),A). Then, > ¢, converges, since |A\| < 1. Therefore, the
sequence (F™(A)) C X, is strongly Cauchy. In particular, F*(A) is Cauchy, so there exists some
Fm(A) — A* € X, because X, is complete.

Since F'is continuous, F™*1(A) — F(A*). Hence, F(A*) = A*.

Now, consider uniqueness. Suppose A* and B* are fixed points for F. Then,
D(A*,B*) = D(F(A*), F(B*)) < AD(A*, BY)

but A € (0,1). This forces D(A*, B*) =0, so A* = B*. O
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Chapter 10

Complex Functions

Definition 10.1.1 (complex derivative)

Let f: C — C. Then,

1. For 7, € C, we say that
lim f(z)=LeC

z—2z

if for all € > 0, there exists a § > 0 such that
0<|z—2z|<d = |f(z)—LI<e

2. The derivative of f(z) at z is

provided the limit exists.

In general, we will write f(x) for a real-valued function and f(z) for a complex-valued function.
Then, analogous to real-valued functions, we can consider complex fixed points.

Definition 10.1.2 (complex fixed points)
Let a € C be a fixed point of f(z). Then,
1. a is attracting if | f"(a)| > 1,

2. a is repelling if |f'(a)| < 1, and
3. a is neutral if | f'(a)| = 1.

Remark 10.1.3 (attracting/repelling complex fixed point theorems). We can obtain complex
analogues of the proofs of the real-valued attracting/repelling fixed point theorems by replacing
intervals around fixed points with open discs.
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Example 10.1.4. Analyze the fixed points of f(2) = 22 + 2 + 1.

Solution. The fixed points are 22 + z+1=2 <= 22+ 1=0 <= 2z = +i.

Then, f/(z) = 2z + 1,50 |f/(i)] = |2i + 1| = V5 > 1 and |f'(—i)| = |-2i + 1| = V5 > 1, so both
are repelling. O

Recall polar form. For some complex number z = a + ib, we can plot it as (a,b):

Im

/”X@ Re

Then, we can recall from MATH 135 that we can write z = r(cosf + isinf) = re?’ and we have
really nice multiplication.

Fact 10.1.5 (PMC, MATH 135). e®e*® = ¢¥0+%) and (re?)” = r"e*™, which is just so much

prettier than Cartesian multiplication.

In particular, for complex numbers of the form e2™/" we have (627”/ m)n = 2™ — 1 which is a nice
way to generate periodic points.

4 Lecture 24
Example 10.1.6. Let z = ¢*™/? and f(w) = w?. Mar 11
Solution. Write z = cos 2% + 7 sin %” = —% + z@

Then, f(z) = edmi/3 — 1 z@ and f2(z) = 8T/ = 2mi/3 — 5

2

That is, z is periodic with period 2.

We can then find |(f2)'(z)| = |f'(2)f'(f(2))| = |—1 + 2\/§‘ : ’—1 — Z\/§| =4 > 1, so z is attracting.
0
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Chapter 11

Julia Sets

11.1 Definition

Notation (quadratic family). For ¢ € C, write Q.(z) = 22 + ¢ just like the real one.

Definition 11.1.1
The filled Julia set for ¢ is K, = {z € C: (Q%(z)) is bounded}.

Equivalently, {z € C:3M > 0,Vn € N, |Q"(z) < M|}.

Remark 11.1.2. This is the complex analogue of A for Q.(x) = 22 + ¢ where ¢ € R and
c<—2.

Definition 11.1.3
Let (X,d) be a metric space and A C X.
1. The closure of Ais A = {z € X : 3(a,) C A,a, — z}.

2. The interior of A is Int(A) = {z € X : 3¢ > 0, B.(z) C A}.
3. The boundary of A is 9(A) = AN\ Int(A).

Example 11.1.4. Let A be the blob
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Find the closure, interior, and boundary.

ﬁolution. Since we can make a sequence of points that reaches the dashed open parts, the closure
A will simply be

Then, since we can draw a ball on the shaded inside but not on the edge, the interior Int(A) is

Finally, the boundary 9(A) is

Remark 11.1.5. A is closed if and only if A = A.

Lemma 11.1.6 (Assignment 4)
K, is closed.

Definition 11.1.7
The Julia set for ¢ is J, = 0(K,).
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Remark 11.1.8. Since K, is closed, J, = (K,) = K.\ Int(K,) = K, \Int(K,).

11.2 Construction

Example 11.2.1. Let ¢ = 0, so Q,(z) = 22. What do K, and J; look like?

Solution. Let z = re®. Then, |Q(z)| = |[r?e**| = r2. Likewise, |Q3(z)| = |r*e*"| = 18. Clearly,
|Q3(2)| = r*". Therefore, K, = {z € C : |2| < 1} since that is when |2]*" is bounded.

This is the unit disc in the complex plane. Therefore, J, = {z € C : |z| = 1}, the unit circle. [

Example 11.2.2. Repeat with ¢ = —2.

Solution. First, let R = {z € C:|z| > 1} and define a function H: R - C: z > z + %
Then, we claim that H is injective. Suppose H(z) = H(w). Then,

1
z+-—=w+—
z w

w

w

=w?+1——

z

s o w oz w'—2?
w—f=———=
z  w 2w

This means that either zw = 1 or w? — 22 = 0. However, |zw| = |z| - |w| > 1, so w = +2. Since

H(w) = H(z), we must pick w = +z, and we are done.
Now, claim that H : R — C \[—2,2] is surjective. Suppose that H(z) = w. Then,

1
z+-=w
z

22—wz+1=0

z= %(w + Vuw? —4)
and write z, or z_ for the two possible z’s. Since these are roots of a polynomial with constant 1,
we must have z, z_ = 1.
That is, either (1) |z | > 1and |2_| <1, (2) || <1l and |z2_| > 1, 0r (3) |z, =|2_| = 1.
If either root is in R, then either H(z,) = w or H(z_) = w.
Otherwise, |z, | = |2_| = 1. Then, H(z) = H(e%) = ¢ + ¢ = 2cosf € [-2,2].
Therefore, H is well-behaved (i.e., invertible) on R — C \[—2,2].

Consider now H(Qy(z)) = H(2?) = 2° + Z% Note that Q_o(H(z)) = (z+2)2—2 =22+ z% Hence,
H(Qy(2)) = QUy(H(z2)).

Lecture 25
Mar 13
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This looks quite similar to S(Q%(z)) = oc™(S(z)) in R. We can say that H plays a similar role as S.
In fact, (not course content), @, and Q)_, are conjugate because H is a homeomorphism between
them.

Let z, be a diverging sequence |z,| — oo. Note that |H(z,)| = |zn+zi‘ > |z, — \z_1| — 00

Therefore, the image of the sequence |H(z,,)| — oo also diverges.

Let z € C\[—2,2]. Since H is surjective, we know there exists a w € R such that z = H(w), and
see that

Q"5(2)| = [Q"(H (w))| = [H (Qg (w))]| — o0

— 00

by the previous claim. Hence, z ¢ K_, and we have that K_, C [—2,2].
Finally, let z € [—2,2]. By graphical analysis,

2

—9 ‘ ‘ w | |

there is no way to escape the box. That is, z € K_,, i.e., [-2,2] C K_,.
Therefore, K_5 = [—2,2], and we have that J_, = [—2,2]. O

Proposition 11.2.3 (Escape Criterion)
If |z| > |c| > 2, then |Q7(z)| — co. In particular, z ¢ K.

Proof. We can write
2 2
|Qe(2)| = |22 + ¢ = 2" — le| = |2 — |2l = |2|(|2] = 1)
Suppose |z| > 24\ for some A > 0. Then, we have that |z|—1 > 1+A. Therefore, |Q.(2)] > |z[(1+)).
Iterating, we see that |Q7(2)| > |z[(1 + A\)"™ — oo. O

Corollary 11.2.4. Suppose |c| > 2. Then, |Q7(0)] = oo and 0 ¢ K.

Proof. Let z = Q.(0) = c and |z| = |¢| > 2. By the Escape Criterion, |Q7(0)| — oo. O
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Corollary 11.2.5. Let M = max{|c|,2}. If |2| > M, then |Q¥(z)| — oo. That is, we have
that K, C {z: |z| < M}.

Proof. We have |Q7(z)| > (1 + A\)"™|z| = oo by the proof of the Escape Criterion (not the Escape
Criterion itself because we don’t know if |z| < 2). O

Remark 11.2.6 (assignment hint!). The fact that K_ is inside this bounded disc will help
with the proof of its closedness.

Corollary 11.2.7. If there exists a k such that |Q¥(z)| > max{|c|,2}, then |Q%(2)] — oc.
That is, z ¢ K.

Based on these results, we can develop the

Algorithm 1 Filled Julia set algorithm
1: Choose a large N € N.
2: for points z do

3: if |Q%(z)| > max{|c|,2} for any i < N then

4: Colour z white

5: else if |Q%(2)| < max{|c|,2} for all i < N then
6:  Colour z black

whose black-shaded region approximates K..
Lecture 26

Example 11.2.8. Is i € K, ;7 Mar 15
Solution. Let Q(z) = 2% + 2+ i and M = max{V/5,2} = V/5.
Then, i 1+ — 2+ 3 but |2+ 3i| = V13 > V/5.
Therefore, i ¢ K, ;. O]

Remark 11.2.9. Forn € Z, n # 0, f027r emtdt =0

Proof. Evaluate the integral:

2m
/ et dt =
0

cos(nt) + isin(nt) dt

2T
cos(nt) —l—i/ sin(nt) dt
0

2 2

1
+1 [ﬁ cos(nt)

0

1
= [— sin(nt)
n 0
0
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as desired. ]

Proposition 11.2.10 (Cauchy’s Estimate)
Let P(z) = Zi:o a, 2" be a polynomial such that |P(z)| < M for all |z — z,| < r.

Then, |P’(zy)| < X.

Proof. Suppose z5 = 0. Assume |P(z)| < M for all |z| < r. Consider the integral

1 27 P(Teit) 1 27 d )
. : dt = — n—1_i(n—1)t dt
27 Jy rett 27 Jy ;anr ©
1 27
= — Odt (by rem. 11.2.9)
o A alr e .
= al
= P'(0)
and so we have
1 27 P(Teit)
P’ < — -
[PO)] < 27 J, rett
1 [ M
< — —d
2T o T
B M
o

because |re'| = r <7, so |P(re')| < M.

Suppose now that z; # 0. Assume |P(z)| < M for |z — z5| < r . We proceed by just translating to
make use of the first case.

Let w = z — zy so that |P(w + zy)| < M for all |w| < r. Then, by the first case,

M

’ 'U)"‘Z()) S

o
M
"

P(z)

2=z

completing the proof. O

Theorem 11.2.11
If z, is a repelling periodic point for Q.(z), then z, € J..

Proof. Assume z; is a repelling periodic point with period n. Suppose for a contradiction that
2y & J.. Since z; is periodic, z, € K. Therefore, 2z, is in the interior of the Julia set.

That is, 3r > 0 such that z € K, for all |z — zy| < r (i.e., there is an r-ball in K_ at z). For all
z with |z — 2| < r and K € N, we have |(Q7)¥(z)| < M where M = max{|c|,2} by the Escape
Criterion.
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Then, by Cauchy’s Estimate, [(Q2%)(z)| < % for all k € N. Suppose that [(Q7%)'(zy)| = A > 1.

Finally, |(Q7%) (zy)| = H;:é (QQ)’(QZ(zO))‘ =\ - o £ A74, by prop. 3.2.7, which is our conra-
diction. Therefore, 2, € J,. O

Fact 11.2.12. Suppose K C C is closed. Then, if z € Int(K), then Q.(2) € Int(Q.(K)).

Proposition 11.2.13
If Q.(z) € J., then z € J.. That is, the Julia set is closed under preimages.

Proof. If Q.(2) € J,, then Q.(z) € K. and z € K_.
But if Q.(z) ¢ Int(K,), then z ¢ Int(K,).
Therefore, Q.(K,.) = K.. O

Lecture 27
Definition 11.2.14 (supersensitivity) Mar 18

We say @, is supersensitive at z, if whenever z, € U C C is open, then C = U Q7 (U).

Fact 11.2.15. @, is supersensitive at all z; € J,.

For a geometric justification, see https://agony.retrocraft.ca/PMATH370/doodles#fact-11215.

Therefore, if we pick z € C and z, € J,, then for all ¢ > 0, U = B.(2;), by supersensitivity,
QF(w) = z for some w € U. By looking at the backwards orbit of z, we can find a very close w € C
to J,. This leads to a new algorithm:

Algorithm 2 Algorithm to draw the Julia set
1: Choose z € C.

2: Compute 10,000 terms in the backwards orbit, randomly selecting a preimage at each step.
3: Plot all but the first 100 points.

This is implemented here: https://marksmath.org/visualization/julia2.html
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Chapter 12

The Mandlebrot Set

12.1 Construction

Definition 12.1.1

Let (X, d) be a metric space. A path from a to b is a continuous function ~ : [0, 1] — X such
that v(0) = @ and (1) = b.

A set A C X is path-connected if for all a,b € A, there exists a path v : [0,1] — X from a to b
such that ([0, 1]) C A.

The maximal path-connected subsets of A are the path-connected components of A.

If the path-connected components are all singletons, then A is totally disconnected.

Lecture 28
Example 12.1.2. The unit circle A = {z: |z| < 1}: Mar 20

is path-connected.

Example 12.1.3. The set A:

O

is neither path-connected nor totally disconnected.
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Example 12.1.4. The Cantor set K C R is totally disconnected.

\
Theorem 12.1.5 (all-or-nothing theorem)
For Q.(z) = 22 + ¢, either
1. |Q*(0)] is bounded (i.e., 0 € K ), in which case K, is path-connected; or
2. |Q2(0)] — oo (i-e., 0 ¢ K.), in which case K, is totally disconnected.
J

Definition 12.1.6 (Mandelbrot set)
The set M = {c € C:|Q?(0)| is bounded} = {c € C : K, is path connected}.

12.2 Shape

We want to prove that the Mandlebrot set has our expected shape of circle + heart.
Recall from cor. 11.2.4 of the Escape Criterion that if |c¢| > 2, then |Q7(0)| — oo.

Example 12.2.1. We know 0 € M, so K|, (the disc, ex. 11.2.1) is path-connected. Likewise,
—2 € M, so K_, (the interval, ex. 11.2.2) is path-connected.

Example 12.2.2. Let ¢ = 2. Then, Q.(z) =22 +2 and 0+ 2+ 6 > 38 I+ - = co. That is,
2¢ M.

Example 12.2.3. Let ¢ = i. Then, Q.(2) = 2> +iand 0+ i = —1+i > —i > 1 > -, which
means that ¢ € M.

Lecture 29
Remark 12.2.4. Pick a rational z € Q.. Let M = max{|c|,2}. By the Escape Criterion, Mar 22

either

1. |Q7(2)| < M for all n, or
2. 1Q2(2)| = oo.

First, we want to determine when @_.(z) has an attracting fixed point. Why do we care? Suppose
z € C is an attracting fixed point for Q.. Then, there exists » > 0 such that z € B,(z), giving
Q"(r) — zand B,(z) C K,. Hence, K_ is path connected and ¢ € M. That is, the existence of an
attracting fixed point for @, tells you that ¢ € M.
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Suppose z € C exists. Then, 22 + ¢ = z and |2z| < 1. This implies ¢ = 2 — 22 and |2] < % We can
parametrize the boundary. Write z = %ew in polar form, so that

= iew _ 161‘29

0ecR
¢ — 3¢ UE

which, when plotted for all values of 8, gives the cartioid:

1
Fm(c)

- ~

—1 1
Second, when does (. have an attracting 2-cycle? That is, when does (). admit a periodic point of

period 27 If @, has an attracting periodic point z with period 2, we can similarly show that ¢ € M
(do the open ball around the two cycle, and the existence of that ball makes K, path-connected).

Suppose (22 + ¢)? + ¢ = 2. Then, p(2) := 2% + 2¢2? — 2 + ¢ + ¢ = 0. The roots of p(z) include all
the points with period < 2: both the 2-cycle points and the fixed points.

2

Let p; and py be the fixed points of Q.. Then, (z —p;)(z — py) = 2° — 2 + ¢ is a factor of p(z).

. . 419022 2
That is, z is a root of Z12e2 =2+ He _ 2 4 » 1 ¢+ 1.

22—z+c

Let z; and z, be the roots of 22 + 2z + ¢ + 1, i.e., the period-2 points for Q.. For these to be
attracting, we must have

(Q2)(z)] <1 = [Qu(z1) — Qilzy)] < 1

— 4’2122‘ < 1
1
= |z125] < 1

1
— |C+1|<Z

which is a ball of radius % centered at —1:
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p N
’ Y
’ \
s \
/
,""\\ ‘ :
4 \l,’ ; Re(c)
N
—1.5 X 2 4 0.5 1

-

Proposition 12.2.5

We can write M as the intersection
{ceC:le|<2tn{c: |2+ <2}n{c:|(+c)?+c|] <2}

for repeated iterations of Q7.

Proposition 12.2.6
M is closed.
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Chapter 13

Polynomial Julia Sets

Lecture 30

Theorem 13.1.1 (Polynomial Escape Criterion)
Mar 25

Let p(z) = a,,z2" + -+ a, 2 + ag be a complex polynomial with a,, # 0 and n > 2. Then, there
exists R > 0 depending only on n and a; such that [p*(z)| — oo for all |2| > R.

Informally, there is a ball of radius z outside of which iteration blows up.

Proof. Fix A > 1 and let C' = Z?z_ol |a,|.

1/n—1
Consider R = max {1 2c ( 22 ) }

" lagl” \lan|

Assume |z| > R. Then,

p(2)] = |ay2"| = |ap 12"+ + ay2 + ag

—1
> Ja, 2| = (Jan ] - 21" + -+ lay | - 2] + lag])

> |a, 2" — Clz|" " (since |z| > R > 1)
4" ()~ =
=12|"| |a,| — =
B
2] 2 ¢ _ lal
> 2" - i > == = < Bn
> |2 (‘an 2 (since |2 2 77 = <50
1 n—1
= 12| gla| |
1 2A o\ Y/t n—1 _ 2X
>z = C— i > (22 > 22
> |o| glonl 1 (since |22 (2) 7 = "= 2
> Az
Therefore, |p¥(z)| = A*|2| so it blows up to infinity. O

Remark 13.1.2. Either (1) for all k, |[p¥(z)| < R, or (2) |p*(z)| = occ.
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Definition 13.1.3
Let p(z) be a complex polynomial with degree > 2.

The filled Julia set of p(z) is K, = {z € C : p¥(2) is bounded}.

The Julia set of p(z) is J, = 9(K,,).

We can approximate the Julia set by iterating and seeing if a given point “escapes” in a fixed
amount of time.
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Chapter 14

Guest Lectures

14.1 Joaco Prandi: Creating a sundial

Lecture 31
Mar 27

Definition 14.1.1 (box-counting dimension)
Consider a blob K. Given a grid with spacing ¢, define Nj(K) to be the number of squares
touched by K.
log(N5(K))
—log(d)

This does not always exist, so we define the upper and lower box-counting dimensions as
log(Ns(K)) log(Ns(K))
—log(d) —log(é)

The box-counting dimension is dimg(K) = lim;_,,

dimp(K) = limsupy and dim ,(K) = liminfy_,, , which always exist.

The definition of Ns(K') can be replaced by a lot of other vaguely similar ideas:

e the maximal number of d-balls that pack into K
e the minimal number of -balls that cover K
o etc.

recovering an equivalent definition.

Definition 14.1.2 (Hausdorff dimensional measure)

Define H§(K) = inf {3 |U,|": U ", U, D K,|U,| < 6} where the U,’s are a cover of K
and |U,,| is the diameter of the set U,,.

Then, let 7*(K) = lims_,q H3(K).

When working in R?, we have that #™ for n < d measures the n-dimensional Euclidean metric.
That is, /' measures length, #? measures area, etc.

Fact 14.1.3. Let s < t. If A *(K) is finite, then H*(K) = 0.
If H*(K) is non-zero and finite, then #*(K) = oo.
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This means that the values will go {..., 00, 0o, some non-zero finite value, 0,0, ... }.

Definition 14.1.4 (Hausdorff dimension)
The Hausdorff dimension dim g (K) = sup{s : H*(K) = oo} = inf{s : H*(K) = 0}.

Example 14.1.5. If C is the Cantor set, then dimg(C) = dimy(C) = log,(2).

If F = {1} then dimpy(F) = % (for some reason) and dimg(F) = 0.

Fact 14.1.6. In general, the box-counting dimension is invariant under closures, while the
Hausdorff dimension varies after closure.

Fact 14.1.7. If dimy(F) < 1, then the set F'is totally disconnected.

Fact 14.1.8. If fis Lipschitz with ratio ¢, then H*(f(K)) < ¢*H*(K).
This implies that dimz(f(K)) < dimyz(K).

Let Ly be the line through the origin with angle € [0, 7) and Proj,(F') be the orthogonal projection
to Ly.

Theorem 14.1.9

For almost all 6 (that is, in all cases that actually matter),

1. If dimy(F) < 1, then dimg(Proj,(F)) = dimg(F).
2. If dimy(F) > 1, then dimy(Proj,(F)) = 1 and K *(Proj,(F)) > 0.

Informally, everything is either less than one-dimensional or casts a one-dimensional shadow.

Given a set which casts a shadow on L, and Ly, , we can split it up and rotate the sections so that
it the projection on L, becomes a set of singletons but the projection on Ly remains connected
(this is the iterated Venetian blinds process).

Theorem 14.1.10

Let Gy C Ly for § € [0,7) be a collection of sets such that | J, G, is a measurable 2-dimensional
set. Then, there exists a set F' C R? such that Gy C Proj,(F) and ' (Proj,(F)\Gy) = 0 for
almost all 6.
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14.2 Paul Fieguth: Bifurcations in continuous- and discrete-time
systems

In general, university courses focus on “nice” linear, Gaussian, small models. However, reality is
usually non-linear, non-Gaussian, and large. We will look at non-linear systems, in particular,
bifurcations in non-linear dynamics.

Recall that in continuous time, we define some system as 2(t) = f(z(t),6); in discrete time, we have

Zn+l = f(zrne)

Discrete time can be expressed as the forward Euler discretization of continuous time, i.e., if 2 =
f(2), we have z(t +9) = z(t) + 9 - f(2(¢)).

Suppose we draw a system diagram relating z to 2. When f(z) crosses the z-axis, we have a fixed
point because Z = 0.

When sloping up the derivative is positive to the right and negative to the left. That means it is
pushing away from the fixed point, creating instability. In the downwards-sloping figure, the fixed
point is attracting (stable).

Linear systems have a handful of key attributes:

o Superposition: If x; = y; and x4 = Yy, then az; + Bzy = ayy + By,

o Sine wave: If Asin(wt+ ¢) goes in, then Bsin(wt+ ¢) comes out. Only the phase and
amplitude can be changed, not the frequency.

e Constant input cannot lead to oscillating output.

Definition 14.2.1 (bifurcation)

Discontinuous change in an attribute or behaviour in response to a continuous change in pa-
rameter.

Suppose z = —(2 —5)? + ¢
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z

Then, the number of fixed points jumps from none to two as ¢ crosses some value

this, we can draw a bifurcation plot:

stable

unst\aTﬂé

. To summarize

We also have bifurcations in discrete time, when we punch through the 45-degree line (as covered in
the course proper). Considering the quadratic family as a discrete system, we can draw a bifucation

plot

another bifurcation!
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since the stable points eventually become unstable.

There are two major kinds of bifurcations that show up. First, the double-fold:

>
»

~
~~a
-
-

Polar ice latitude

v

Atmospheric CO4 concentrations

This is the way that thermostats, switches, etc. work to force the system into one of the two stable
states. That is, global climate models are just fridges.

Second, the Hopf bifurcation: a transition between cycling and not cycling.

r

21

29

v

Cycling usually comes up from a bounded unstable system. Instability forces the system away from
the fixed point, but the bounds prevent it from leaving, leading to a cyclical motion.

7

Ohter bifurcations include stick-slips (like chalkboard dashed lines), Covid cases, slap bracelets,
jumping frogs, ecologies, epileptic seizures, etc.

14.3 Andy Zucker: Fixed point properties in topological dynamics

Lecture 33

Definition 14.3.1
Apr 3

Let G be a group. A G-flow is a compact Hausdorff space X equipped with a continuous action
a: G x X — X satisfying (1) a(1g,2) = = and (2) a(g,a(h,z)) = a(gh, ).
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Notation. Typically, we understand actions as implied and write g.z or just gz for a(g,x).

For example, the above axioms can be written as 1,2 = = and g(hx) = (gh)x.

Example 14.3.2. Let G = Z and X be the unit circle.

Let T': X — X be rotation by an irrational a, which acts as our generating homomorphism.
Since « is irrational, the action is free, i.e., for all  and non-zero n, T™(z) # x.

Example 14.3.3. Let G = Z and X = 2%.
Let T : 22 — 2% be the Bernoulli shift T'(x)(n) = z(n — 1).

This action is not free, since x = 0 is a fixed point of 7. However, there is a closed, non-empty,
T-invariant subspace of X which is free.

These two examples are related. Suppose we define an interval on the unit circle. Then, check if
each of the elements of the orbits of the rotation fall in that interval, and assign binary values to
the function based on that. This generates the closed, non-empty, T-invariant subspace.

For now, fix X as the Cantor space ¥. Write Clop(X) = {A C X : A is both closed and open}.

Definition 14.3.4
A probability measure on X is a map p : Clop(X) — [0, 1] with x(X) = 1 and finite additivity.

Example 14.3.5. View X as 2%. For each A € Clop(X) defined by {z : z(n) = i} for some
fixed n, set p(A) = % Generate the rest of the values axiomatically.

This is like flipping the n** coin and expecting i.

0 z¢ A
1 2z€A

Example 14.3.6. Fix x € X. The Dirac delta at = is the measure p(A) = {

This is measuring whether a set contains x.

Definition 14.3.7

The space of probability measures P(X) is equipped with a topology such that p,, — p if and
only if for all clopen A, u,,(A) — u(A)

This is the “weak™* topology” on P(X).
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If G is a countable group and G acts on X, then G acts on P(X) which we define as (g.u)(A) =
(g~ A).

Definition 14.3.8
A countable group is amenable if for any finite S C G and € > 0, there exists an Fg . such

|SF\Fl
that B

<e€

Example 14.3.9. The integers Z are amenable.

Consider S = {+1}. Given ¢ > 0, find n € N such that % < e. Let Fg_ be an interval of
length n.

|SF\F|

Then, |SF\ F] = 2 giving &

<e€

Theorem 14.3.10 (Fglner)

A countable group G is amenable if and only if whenever G acts on X = 3, the induced action
on P(X) has a fixed point.

Proof. Suppose G is amenable. Write G as an increasing union | JS,, where S; C §, C - are finite.

Let F,, C G be (S,,, =)-Fglner. Given an action of G on the Cantor space X,

1. Pick an arbitrary z € X.
2. For every n € N, let p,, = > 25, where § is the Dirac delta. That is, we are taking the

S, |~ 9%
geF,
average of the Dirac measures of finitely many points. Concretely, given a clopen set A, we

ask what proportion of the points lie inside of A.

Because (F), : n € N) are more and more Fglner, we have p,,(A4) — (g.i,,)(A) — 0 for every A €
Clop(X) and g € G.

That is, because g eventually lies in one of the S,, and % is very small, applying the action will
eventually... something... i’'m lost...

Then we use the compactness of P(X) to do something? which passes to the convergent subsequence
of u,, with limit u? those are math words! they mean something! O
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homeomorphism, 31

interior, 55
interval
closure, 9
iterated function system, 45
iteration, 3
itinerary, 28

Julia set, 56
filled, 55
of p(z), 67
of p(z), 67

linear contraction, 47

Mandelbrot set, 63

metric, 29

metric space, 29
continuity, 30
convergence, 31

non-isolated, 17
norm, 41

open, 41

open ball, 41

orbit, 3
constant, 4
eventually periodic, 5
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periodic, 5

path, 62

path-connected, 62

path-connected

components, 62

period, 5

periodic point, 5
attracting, 20
neutral, 20
repelling, 20

periodicity, 5

quadratic family, 22

Sarkovskii ordering, 40
self-similar, 43
sensitive, 35
sequence
bounded, 6
Cauchy, 7
convergence, 6
shift map, 30
space of probability
measures, 73
strongly-Cauchy, 10
supersensitivity, 61

tangent bifurcation, 23
topological dimension, 41
totally disconnected, 62
transitivity, 35
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